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Abstract. Historical maps provide a rich source of data for social sci-
ence researchers since they contain detailed documentation of a wide va-
riety of factors, such as land-use changes, development of transportation
networks, changes in waterways, destruction of wetlands, etc. However,
these maps are typically available only as scanned documents and it is
labor intensive for a scientist to extract the needed data for a study.
In this paper, we address the problem of how to convert vector data
extracted from multiple historical maps into Linked Data. We describe
the methods for efficiently finding the links across maps, converting the
data into RDF, and querying the resulting knowledge graphs. We present
preliminary results that demonstrate that our approach can be used to
efficiently determine changes in the Los Angeles railroad network from
data extracted from multiple maps.
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1 Introduction

Historical map archives contain valuable geographic information on both natu-
ral and man-made features across time and space, but the information is only
available as scanned images. There exist many studies in developing technologies
for extracting information from scanned historical maps to then integrate the
extracted information with other datasets in Geographic Information Systems
(GIS) [2, 4]. This line of work enables long-term spatiotemporal analyses such
as detecting the changes in railroad networks between two map editions of the
same region (Figure 1), which can be useful for the development of transporta-
tion infrastructure, etc.

However, there are still major challenges with integrating datasets extracted
from scanned maps and using them for analytical tasks. First, existing work on
integrating vector datasets such as conflation [11] focuses on reconciling different
sources for improving data accuracy or enriching data attributes and does not
consider changes over spatial scale or time. Second, once the vector datasets have
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Fig. 1. Railroads appearance (blue) from 1950 to 1965 in Louisville, Colorado

been aligned and matched across space and time, the information still needs to
be organized and related to other datasets to support efficient analysis.

To enable change analysis over time periods and across spatial scales, we
present an approach to integrating map data using Linked Data as the repre-
sentation. This approach is not only helpful in making the data widely available
to researchers, but also in enabling the ability to answer complex queries from
social sciences researchers, such as investigating the interrelationships between
human and environmental systems. The approach also benefits from the open
and connective nature of Linked Data. Compared to existing tools such as Post-
GIS4 that can only handle queries related to geospatial relationships within local
databases, Linked Data can utilize other widely available knowledge sources (e.g.
GeoNames) in the Semantic Web and enable rich semantic queries.

In this paper, we present a general pipeline for constructing the semantic
representation of extracted map data, which is demonstrated using railroad ge-
ographic features. The pipeline consists of three major steps (Figure 2). The
preprocessing step includes 1) automatic line segmentation, using PostGIS to
process railroad features, and 2) data preparation to generate necessary meta-
data for semantic modeling. Then, we use Karma5 to map the geographic features
to an ontology and publish the mapped data in RDF. Finally, we run SPARQL
queries against Apache Jena, which stores the geospatial Linked Data.

4 https://postgis.net/
5 http://karma.isi.edu/

Fig. 2. General pipeline for processing the extracted map feature data
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2 Data Preprocessing and Linking
Given a set of railroad map vector data extracted from separate map editions
covering the same region, the goal is to match the line segments that represent
the same line segments across multiple maps published at different points in
time. Such relationships are key to support the queries for finding changes in the
feature of interest through time.

2.1 Automatic Segmentation and Linking
The first challenge that we need to address is vector-to-vector matching. Consider
an example consisting of vector features from two maps (Figure 3), where map A
represents an older map edition and map B is the latest map edition with a part
of the railroad that has been changed. In order to link only the parts that are
common across the two maps, we split each of these vector features into several
features, as shown in the figure.

In order to efficiently identify the portions of the railroads that are common
across two maps, we use PostGIS, which is a powerful PostgresSQL extension for
spatial data storage and query. PostGIS offers various functions to manipulate
and transform geographic objects in databases. As shown in Figure 3, first we
create buffers for the vector data in Map A and B for a particular buffer size
using the PostGIS function ST Buffer. Second, we extract the buffer intersection
with the function ST Intersection. Third, we use this buffer intersection to run
ST Intersection again with each of the original vector features from map A and
map B to determine where to split the line segments in each of the original maps.
The process records both the new segmentation and the “sameAs” relationships
among the split line segments if their buffers intersect.

The segmentation process can also handle vector datasets from more than
two map sources. With multiple vector datasets as the input, the segmentation
process first processes two datasets and then integrates more datasets one at a
time. During the integration step, the segmentation process stores the “contains”
hierarchical relationship (Figure 4) for tracking the segmentation result for each
additional dataset and uses the hierarchical relationship to handle the “sameAs”
relationships for multiple sources.

The data structure and steps for handling multiple datasets are as follows. In
the hierarchical relationship, each node in the tree stands for a line segment from

Fig. 3. Line segmentation for two map vector features: spatial buffers are used to
identify the same line segments considering potential positional offsets of the data.
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Fig. 4. “Contains” relationship in segmentation of more than two maps

one or more vector data sources. The nodes with two parents are the common
line segments shared by two maps. When a third map source, C, comes in, the
segmentation process repeats the ST Buffer and ST Intersection procedures
using the line segments of C and all of the leaf nodes at the second level of the
tree, generates new segmented line segments shown as the new leaf nodes, and
records the newly identified “sameAs” and “contains” relationships (Figure 5).

2.2 Data Preparation

Fig. 5. Incrementally integrate vector datasets from multiple
map sources

Once we identify the
“sameAs” relationships,
we need to convert
the data into Linked
Data. To do so, we
need to perform sev-
eral additional data
preparation steps.

Geometry represen-
tation There are sev-
eral popular meth-
ods for representing
geometries, such as
GML (Geography Markup Language), WKT (Well-Known Text), and WKB
(Well-Known Binary). We need to describe the geometries in a compact and
human-readable way; therefore WKT format is chosen for further preprocessing.

URI The first thing we need for representing the integrated vector data as
Linked Data is the unique IDs for individual line segments. We could use the
geometry representation of a line segment as its unique ID because two geo-
graphic line segments typically are not exactly same. However, a line segment in
the WKT format is a long string, containing commas and spaces which are in-
valid for a URI. To overcome this problem, we apply a hash function on the line
segment in WKT to obtain a relatively short string to describe the URI. Con-
sidering hash collision, especially two line segments from different maps may be
similar, we add additional metadata of individual line segments (i.e., the source
map) to the corresponding hash results.
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Relationship between line segments Since line segments are represented
by URIs, which are persistent, we can add relationships between two line seg-
ments using their corresponding URIs. The relationships between line segments
include “sameAs” to link segments across maps and “contains” to describe how
a segment is broken down into subsegments. If an existing line segment has to
be split into smaller segments to link with a new map source, the split segments
will have their own URIs and will be linked to the original line segment with the
“contains” relationship.

Metadata Most line segments from a map share the same metadata, so we only
store the metadata for map entities and link the line segments to their source
map instead of storing the metadata for each line segments.

3 Creating Vector Linked Data

To represent geographic line segments in RDF, we use the semi-automatic tool
Karma [6] to map structured data generated from the previous steps to ontologies
defined by schema.org. The output is map data stored as RDF triples in a
knowledge graph based on the ontologies.

Entity The map metadata are represented by schema:MapType, and the geo-
graphic vector data are described by schema:Map.

Relationship If two line segments from multiple maps are identified as the
same entity, their relation is schema:sameAs. If a line segment is derived from
a historical version of a segment (i.e., existing segment from a previous source),
their relation is schema:contains.

We want to avoid updating all of the existing geographic vector data. Adopt-
ing this method, we store historical version of knowledge graph first, and when a
new map comes in, we just need to handle it incrementally, i.e. just import new
vector data and their connections resulting from the steps described in Section 2.

4 Querying
PREFIX schema: <http://schema.org/>

select distinct ?a ?mapa

where {?a schema:geo ?geo.

?a schema:mapType ?mapa.

?mapa schema:releaseDate "2000".

filter not exists{

?a schema:sameAs ?b.

?b schema:mapType ?mapb.

?mapb schema:releaseDate "2005".}

minus{?a schema:contains ?x}}

Fig. 6. Query to find the changes in rail-
roads between maps

With the knowledge graph gen-
erated using Karma, we can set up
queries to solve some interesting, real-
world problems. Figure 6 provides an
example query for finding the changed
segments of railroads in two map edi-
tions (circa 2000 and 2005).

Line segments from more than one
source are also stored in the knowl-
edge graph to track the provenance.
In the query result, we only return the latest version of the line segments that
meets the query criteria, i.e., the leaf nodes, because they are the smallest line
components after the split.
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                     (a)                                             (b)                                              (c)

Fig. 7. Railroad map data of Los Angeles from three different sources

5 Case Study

To test our approach on real datasets, we used the railroad data from three
sources: 1) USGS vector data for Los Angeles, California6 (822 features), 2)
California Rail Network7 (149 features), and 3) National Atlas of the United
States8 (45 features). All the data was input in ESRI shapefile format and we
cropped them for the area of Los Angeles (Figure 7).

Line segmentation in PostGIS We transformed all data to the same Coordi-
nate Reference System (CRS), EPSG:4269,9 buffered map (a) and map (b) with
0.0005 in degrees, segmented the vector data, and generated the “sameAs” and
“contains” relationships. When we added map (c), we buffered line segments
from maps (a) and (b) as well as line segments from map (c) with 0.0015 in
degrees. This larger buffer for handling map (c) is because map (c) has a smaller
map scale compared to maps (a) and (b) due to increasing levels of generaliza-
tion in feature representation, hence the positional offsets is potentially larger
(than between maps (a) and (b)). Then we repeated the intersecting step until all
relationships of “sameAs” and “contains” among three maps were identified. It
took 36 seconds altogether to run all queries computing buffers and intersections
for processing the three maps.

Data preparation The identified relationships and segmented vector data were
stored in PostgresSQL. In this step, we exported the tables from PostgresSQL
to CSV files. We used the WKT format to represent geometries and added URI
and other metadata including map year and source so that we could perform
semantic queries to find changes of the vector data by years in the next step.
Here we recorded map (a) with the year 2000 and map (c) with the year 2005.

Create vector Linked Data CSV files were loaded into Karma to map the
data to ontologies and produce output in RDF format.

Querying RDF files were then stored in Apache Jena, where we could query to
find the difference between maps using SPARQL. Using the query in Section 4
we produced the result shown in Figure 8 in 63ms. The visualization was created
with the resulting WKT using QGIS.
6 https://viewer.nationalmap.gov/basic/
7 http://www.dot.ca.gov/hq/tsip/gis/datalibrary/Metadata/Rail_13.html
8 https://nationalmap.gov/small_scale/
9 https://epsg.io/4269
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6 Related Work

Fig. 8. Query result: railroads in
2000 but not in 2005, difference in
green

The mainstream work on geospatial data in-
tegration focuses on vector data conflation,
which is a reconciliation process of two maps
in the same area to achieve a better positional
accuracy for one of the datasets (e.g., [1]).
Ruiz et al. [10] discussed different types of
conflation methods, including vector to vector
conflation and semantic conflation. The for-
mer involves feature matching between differ-
ent datasets (e.g., [3, 8]), which is also a cru-
cial step for the automatic line segmentation
in our work. On measuring the similarity of
vector geometries, Sherif et al. [13] conducted
a survey on existing ten point-set measures in
the context of geospatial Linked Data.

Using Linked Data to integrate geospatial information is a growing topic,
which enables the data integration process to take advantage of the open and
distributed Linked Data sources with great opportunities and challenges at the
same time [7]. U.S. Geological Survey (USGS) has developed an initial approach
for The National Map to build ontologies, match features, and support Linked
Data queries [14]. Using Linked Data is also useful in semantic conflation, allow-
ing non-geometric features to play a key role in the integration process, but this
approach is mainly studied for conflating points of interest data [12, 15]. Our
approach solves the integration problem of geospatial linear feature matching
using the RDF representation published as Linked Data.

In addition, current work on geospatial change analysis (e.g. glacier change
[9] and geomorphic change [5]) were mainly accomplished with GIS software
such as PostGIS and ArcGIS. Our approach opens the possibility of analyzing
geospatial data with richer attribution and increasing detail.

7 Discussion

We presented an end-to-end approach to integrating geographic data from multi-
ple sources and publishing the integrated data as Linked Data. We demonstrated
the approach with railroad vector data extracted from three maps and showed
queries for identifying changes in the vector data over time. This approach would
also work for other types of linear features, and the case study uses railroads
to explain the idea. The resulting tools and datasets will be beneficial for geog-
raphy and social science researchers for conducting change analyses related to
transportation infrastructure, land use, and land cover.

In future work, we plan to explore the use of GeoSPARQL for querying
geographic RDF data and creating links to other existing sources to answer
other types of research questions. For example, the addition of demographic
data as Linked Data would allow us to examine relationships between changes
in population distributions and changes in transportation infrastructure.
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