
Graphless

Using Statistical Analysis and Heuristics for Visualazing

Large Datasets

Idafen Santana-Perez

Ontology Engineering Group - Universidad Politécnica de Madrid, Spain

isantana@fi.upm.es

Abstract. Data visualisation over semantic datasets and Knowledge Graphs

becomes a challenging task as the data volume increases. The amount of nodes

and edges linking them produce overwhelming diagrams in which understanding

the information displayed is cumbersome. In this work we introduce Graphless, a

visualisation interface that exploits the statistical information of the usage of

instances and relations to produce graphical summaries of entities. The system

supports several heuristics, providing different visualisations, according to

configurable parameters.

2

Keywords: Knowledge Graphs, Data Visualization, Entity Summarisation,

Statistical Analysis, Graph Exploration

1 Introduction

Graphless is an online tool

3

 that provides a user interface for graphically

exploring RDF-based datasets. The main goal of this tool is to provide a way

for summarizing entity graphs,supporting a better understanding of how

individuals and their relations are stated. In a way, our aim is to reduce big

portions of data to a more easy to digest representation, trying to preserve the

most relevant elements while doing so.

For doing so, we have to consider the data features that semantic datasets

have. In the most basic and common scenario, semantic data is represented as

a graph of individuals and properties linking them. Even when an schema,

defined as an ontology, could be expected, having it is not always the case.

Many available SPARQL endpoints hosting datasets do not contain the

ontology (or ontologies) used to generate them. In this work we aim to provide

a generic approach for producing visualization summaries. We rely only on the

statistical features that are common to RDF data graphs. We consider the

following two main features:

Connectivity degree: the number of ingoing and outgoing links from/to a

given node is an indicator of the relevance of the node in the dataset.

Central nodes (e.g Countries as birthplaces, Years for dates) tend to have

many incoming links, as they are referenced by many other instances. Also,

nodes of prominent entities usually assert many outgoing properties, either

to other entities or to literal values (e.g. Authors to the books they wrote,

Places to their names in different languages).

Property usage: the distribution of properties along the instances on a

dataset is, as expected, not strictly homogeneous. Properties such as name

or birthplace are more likely to be instantiated on instances of type Person

than others such as capital of or foundation year. Thus, classes allow us to

estimate which are the most used properties for their instances.

We use these two factors to analyze the structure of the data graph, and based

on the results obtained, the system decides which element to depict on the

final diagram. From the two explanations above, we derive the following

tentative assumptions for summarizing data visualizations, which are the base

of our system.

1. Users are more interested in exploring nodes that have more connections, as

they are more relevant.

2. Users are more interested in visualizing the most frequently used properties

for the nodes depicted, as they provide more insights.

The two assumptions that we introduce may seem quite straightforward, but

as we discuss in this work, they allow to build informative data visualizations,

by using them for analyzing the data graph. Whereas other features could be

also included (e.g. ontology taxonomy, discriminative properties), these two

ones are appropriate as they often apply to any given dataset.

Figure 1. Graphless online GUI example.

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

2

The final goal of the system presented in this work is to generate summarized

graph diagrams, to provide a better visual exploration experience. An

illustrative example of the final product is shown in Figure 1, which depicts

the Graphless GUI with a summary of an entity from a semantic dataset. This

paper will introduce how to calculate these summaries and display them,

explaining as well how the system is being currently used for the Jamendo

dataset[1], which contains a large collection of data about records, music

artists, songs, lyrics and genres. The reminder of this paper is organized as

follows. Section 2 introduces how the analysis process of the tools works. Secti

on 3 introduces the two different algorithms for exploiting the data generated

in the previous step, and Section 4 describes how the system has been

implemented. In Section 5 the results of applying our approach to the

aforementioned Jamendo dataset. Section 6 compares our approach to existing

ones. Finally, Section 7 discusses about the advantages and drawbacks of this

contribution and outlines some lines of future work.

2 Analyzing the graph

In order for the interface to be able to filter and display the data properly, the

target graph has to be analyzed according to the metrics described previously.

This process starts by retrieving the list resources and their corresponding

types from the dataset. Using this information the system counts how many

times each property is instantiated, keeping track of the type of the subject of

the triple as well as of the object (only for object properties). Only resources

with types are thus considered in the system.

In this process, the system records the statistical usage of properties, both

as ingoing and outgoing links of instances of each type. We define a property

as outgoing for a given type when an instance of such type is used as the

subject of a triple. Similarly, ingoing properties are those with a resource of a

given type as the object.

With this information, the system is able to generate a profile for each type

in the dataset, assigning weights to each type-property combination. In order

to have a relative measure, raw counts are normalized for each type,

generating a weight value from 0 to 1 (that is, dividing all weights by the

maximun one found for the given type). Values closer to 1 would imply highly

used properties, and thus highly relevant, following the discussion introduced

previous section. Those properties with weights close to 0 imply that these

properties are low in relevance as they are rarely used.

The result of this process is exemplified in Table 1 which displays the

statistic analysis of the Jamendo dataset, which we will describe in Section 5.

The table depicts the property counts for the class mo:MusicArtist

4

 in the

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

3

dataset, including the total and normalized counts for both ingoing and

outgoing properties.

Besides the property usage for each type, the system also analyzes how

many properties link to each resource in the dataset, obtaining the ingoing

and outgoing degree for each node (i.e. individual) in the graph. These

measurements indicate the connectivity degree of the node, and serve as

indicators of the relevance of the node in the graph. Intuitively, the more

connected a node is, the more relevant it is.

Table 2 shows the information generated during this process for a set of

resources belonging to different classes. As explained for the previous process,

the system normalizes the raw counts, so as to have a consistent measurement

of the importance of the node in the graph. This is achieved by dividing each

ingoing and outgoing count by the corresponding maximum value found on

the graph.

Once these two analysis (i.e. properties usage and connectivity degree) have

been conducted, their results are combined, assigning to each node on the

graph the corresponding information. That is, each node in the graph will be

annotated with the connectivity degrees and the usage weights for each

Table 1. Usage of properties for class mo:MusicArtist.

Property Prop.Type Count Normalized weight

foaf:made Outgoing 5786 1.0

foaf:based_near Outgoing 3244 0.5606

foaf:name Outgoing 3505 0.6057

foaf:homepage Outgoing 3006 0.5195

foaf:img Outgoing 2982 0.5154

mo:biography Outgoing 485 0.0838

owl:sameAs Outgoing 119 0.0206

foaf:maker Ingoing 5786 1.0

Table 2. Ingoing and outgoing degree for different resources

Resource Type Ingoing

Deg.

Outgoing

Deg.

Norm. In.

Deg.

Norm. Out.

Deg.

http://dbtune.org/jamendo/rec

ord/3280

mo:Record 1 109 0.00009 1.0

http://dbtune.org/jamendo/art

ist/1442

mo:MusicA

rtist

25 54 0.0022 0.2660

http://dbtune.org/jamendo/lyr

ics/23855

mo:Lyrics 1 1 0.00009 0.0091

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

4

property instantiated for it, both for ingoing and outgoing properties. As

discussed in Section 4 the property weights annotations are done using the

relationship features of Neo4j

5

.

As depicted in Figure 2, each property of the resource

http://dbtune.org/jamendo/artist/1442 is annotated with their corresponding

weights, along with the ingoing and outgoing degrees of the resource. These

parameters can be used to filter and reduce the elements to be displayed on

the final diagram, as we introduce in the following section.

3 Heuristics

The results obtained by the statistical analysis are the base for a set of

algorithms that explore the graph to generate a summarized visualization. The

current version of the system includes two different algorithms that can be

used to explore a dataset. The following sections introduce them. In both

cases, the algorithm requires a root node to be selected, as the starting point

to traverse the graph. Depending on the algorithm, different parameters can

be defined. As well, when selecting the properties to be displayed, the system

considers both ingoing and outgoing ones, using the different weights

associated to them.

Figure 2. Properties of http://dbtune.org/jamendo/artist/1442

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

5

3.1 Top-K heuristic

This algorithm implements an straightforward heuristic for traversing the

graph, selecting only the top relevant properties on each step. Starting on the

root node, the algorithm selects the K top properties of the node, which link

to new nodes. The process recursively executes the same steps obtaining new

nodes. In order to restrict the amount of nodes being explored, the algorithim

limits the number of steps in the process to a maximum depth, defining how

deep the graph can be explored from the starting node. Figure 3 shows an

example of the Top K algorithm, starting from the node

http://dbtune.org/jamendo/artist/7373, selecting the two top properties, with

a max depth of five, as shown on the right-hand side of the picture. That is,

for each node the system picks only the two most relevant properties, and

keeps on traversing the graph until it reaches nodes separated by five steps

from the root resource. In this case, to calculate which properties are the most

relevant, the system multiplies the weight of the property by the weight of the

node that it links to, providing a combined measure of the importance of the

property and the target node in the graph.

3.2 Threshold heuristic

This algorithm selects all the properties that have a weight higher than a

given threshold value, and retrieves all their associated nodes. In the first step,

the given threshold parameter is used to filter. After that, for all the retrieved

nodes the process is repeated, increasing the threshold value as specified by

the decay parameter. This way, the threshold is higher on each step, until it

reaches the maximum value for a property weight (i.e. 1.0), which will stop

the process. Figure 4 shows the diagram resulting of using this algorithm for

the same resource from the previous example (i.e.

Figure 3. Example of the Top K algorithm

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

6

http://dbtune.org/jamendo/artist/7373) with a base threshold of 0.8, and a

decay of 0.1. Thus, for the first iteration only properties with a value higher

than 0.8 will be selected, then only those higher than 0.9, and once the value

1.0 is reached, the system stops, as this is the maximum weight for any

property.

When comparing Figure 3 and Figure 4, we can observe how the system

provides different visualizations based on the same dataset, by applying

different heuristics. Whereas these two heuristics are rather simple and

straightforward they showcase the potential of our approach. The Top-K

heuristic provides a more consistent view along the graph, depicting always

the same amount of nodes each step. The Threshold heuristic is intented to

generate more restrictive visualizations, in which only strictly relevant nodes

are depicted.

In the coming sections we will discuss about how this system is

implemented and how the usage of a graph-oriented database allows to store

the required annotations and perform queries using them efficiently.

4 Implementation

4.1 Data management

The information extracted from the process described in Section 2 has to be

stored in a way that can be accessed efficiently. This requires a data system

able to support the annotation of properties and nodes. Both things could be

done using just RDF over the original dataset, using custom properties for

annotating nodes and reification statements for the properties. However we

decided to use a more graph-oriented solution, providing better performance

Figure 4. Example of the Threshold algorithm

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

7

and ease of use when querying the data. The use of extra properties, and

specially the use of reification, would increase the complexity of SPARQL

queries, difficulting the process of exploring the graph.

For these reasons, we selected Neo4j

5

 as our data backend solution, for

storing the dataset and the related annotations. This graph database offers

the required features for storing the nodes and the properties (known as

relationships according to Neo4j's naming conventions), with annotations for

both of them. These annotations can be used directly in Cypher

6

 queries, the

query language used in Neo4j. Listing 1, shows the two types queries used for

the Top-K and Threshold algorithms respectively. As we can see, we can

exploit the annotations over the properties ("r" in both examples) to either

sort by weight and select the top two properties (top-k heuristic) or to filter

based on the weight being higher than a given value (threshold heuristic).

4.2 User interface

The frontend of the system is developed as a web interface, which aims to

provide a clean and clear visualization experience to the final user. The graphs

visualization is supported by vis.js

7

, a popular Javascript library for drawing

statical reports, graphs and relation diagrams on the web. The interface itself

is composed by two parts, the main area, in which graphs are displayed, and

the right menu, which is hidden by default in order to maximize the

visualisation space.

As depicted in the GUI figures in this paper, the graphs are displayed in the

main area, following a shade color scheme. The root node, the one the user

queried, is displayed with the strongest red hue. As the distance from this root

node increases, the color code of the node gets lighter and lighter. This is

intended for the user to have a more clear view of which are the most relevant

nodes, assuming that those closer to the main one are more informative for it.

Circles and nodes are used to differentiate between object nodes and literal

ones respectively. In both cases, the local name or the literal value are used as

the node label. Properties are also labeled with their name and weight.

All nodes are clickable objects. On double click, the right menu is opened

and the information about the selected node is displayed, as seen in Figure 5.

MATCH (n:JARLABS)-[r:JARLABS]->(x:JARLABS) WHERE n.nodeid = '...' RETURN ... ORD

ER BY r.weight DESC LIMIT 2

MATCH (n:JARLABS)-[r:JARLABS]->(x:JARLABS) WHERE n.nodeid = '...' AND r.weight >

 0.8 RETURN ...

Listing 1. Cypher queries (shortened using "…")

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

8

The code, implemented in Java, is divided in two different projects, for the

analysis process and interface, which are available online

8,9

.

5 Jamendo Results

In this section we introduce the result of applying our approach to the

Jamendo dataset, currently available in Graphless. This dataset contains

information about records, musical artists, torrents, lyrics, signals, tags,

documents and tracks. It combines five different ontologies and contains

412,564 object nodes, 251,698 literals, and a total of 1,267,012 instantiated

relations.

The data ingestion process, undertaken during the analysis process, starts

by querying the public Jamendo endpoint

10

, from which the system retrieves

all the subjects, objects, and their related properties and types. This is done

by means of SPARQL queries, which are executed with a time delay between

them to avoid overloading the system.

Jamendo individuals and properties can be visualized on the currently

available version of Graphless, using the two exploratory algorithms described

above. The final dataset is also available as a Neo4j database

11

6 State of the art

This work is inspired by the SDType [2] system, which uses statistical analysis

of datasets to infer missing entity types. In our case, we flip this approach,

using the types of the entities as indicator of the importance of the properties

Figure 5. Right menu information panel

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

9

asserted for their individuals. This way, we can select those that are commonly

used for each type.

As discussed before, the final goal of our system is to provide visualization

summaries of entities. In this direction, several approaches have been proposed

for entity summarisation. LinkSUM [3] and [4] pursue a goal similar to the one

exposed in this work, aiming to reduce the number of properties displayed for

an entity. In this case, authors propose to use the well-known PageRank

algorithm for calculating the relevance of properties. This score is then used

for selecting the top properties of an entity, without traversing the graph, as

we do in this work. A similar approach, obtaining lower results than LinkSUM

is introduced in FACES [5]

Other systems have been proposed for graph summarisation in the context

of Linked Data [8]. This work combines graph simplification, ranking of

triples, and property selection, providing a semi-automatic way of generating

summaries by the user. A more recent approach [6] has been proposed for

summarising semantic entities in a graphical manner. Following the VOWL [7]

notation for ontology visualization, authors introduce the usage of zooming

techniques for reducing the complexity of the graph being visualized. The

system summarises the graph depending on the granularity selected, rather

than on the relevance of the elements that compose the graph. The challenge

this system faces and solves resides in preserving the meaning of the overall

graph while merging different entities into a single one.

One interesting contribution on how semantic data can be organized from a

conceptual point of view is introduced in [10]. In this work authors discuss

how extracting patterns from knowledge bases, such as Wikipedia and

DBpedia, provides meaningful data visualizations. A comprehensive review on

the state of the are on tools for graph visualization is depicted in [9], in which

authors describe different systems and compare their funtionalities, analyzing

the visualization types they provide (e.g. buuble chart, circles, graphs, etc.)

and the data types supported (e.g. spatial, graph, temporal, etc.). Our

approach falls into the graph category in both dimensions. Several systems are

described to support aggregation and sampling, which are techniques related

to summarisation, even when they differ from the approach introduced in this

work.

7 Discussion and Future Work

In this paper we introduce Graphless, a data visualization tool for semantic

datasets, which combines statistical analysis and graph traverse heuristics to

produce graph summaries. Combining these two approaches the system is able

to provide smaller diagrams, which are easier to read and interpret.

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

10

This work represents a first version of the tool, in which only the Jamendo

dataset has been included. We plan to extend the collection of datasets,

including more representative ones, such as DBpedia. Our intuition is that a

tool such as this would be of help specially in heterogeneous datasets,

containing information from different sources and with a wide range of varied

types and properties.

From the technical point of view, we plan to include new features, currently

under development, such as the generation of RDF snippets from the

visualizations. We also plan to support new algorithms implementing novel

heuristics. Our final goal is to provide a programmable interface in which

developers can integrate their algorithms based on the available data

properties.

Finally, we are currently conducting a usability evaluation with several

users, which will provide feedback for improving the tool. This will allow us to

measure how suitable the two assumptions introduced in Section 1 are, as well

as to explore new ones.

Acknowledgments

This work was partially funded by the esTextAnalytics (RTC-2016-4952-7)

project, from the Spanish State Investigation Agency of the MINECO and

FEDER Funds.

References

1. Y Raimond, MB Sandler, Q Mary: A Web of Musical Information, ISMIR,

2008

2. Heiko Paulheim and Christian Bizer: Type Inference on Noisy RDF Data.

In: Lecture notes in computer scienceThe Semantic Web - ISWC 2013 : 12th

International Semantic Web Conference, Sydney, NSW, Australia, October

21-25, 2013, Proceedings, Part I; 510-525. Springer, Berlin [u.a.], 2013.

Web of Musical Information, ISMIR, 2008

3. Thalhammer, Andreas, Nelia Lasierra and Achim Rettinger. "LinkSUM:

Using Link Analysis to Summarize Entity Data." ICWE (2016).

4. Thalhammer, Andreas and Achim Rettinger. "Browsing DBpedia Entities

with Summaries." ESWC (2014).

5. Kalpa Gunaratna, Krishnaprasad Thirunarayan, and Amit Sheth. 2015.

FACES: diversity-aware entity summarization using incremental hierarchical

conceptual clustering. In Proceedings of the Twenty-Ninth AAAI Conference

on Artificial Intelligence (AAAI'15). AAAI Press 116-122.

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

11

1

2

3

4

5

6

7

8

9

10

11

6. Vitalis Wiens, Steffen Lohmann, and Sören Auer. 2017. Semantic Zooming

for Ontology Graph Visualizations. In Proceedings of the Knowledge

Capture Conference (K-CAP 2017). ACM, New York, NY, USA, Article 4,

8 pages. DOI: https://doi.org/10.1145/3148011.3148015

7. Lohmann, S.; Link, V.; Marbach, E.; Negru, S.: WebVOWL: Web-Based

Visualization of Ontologies. Proceedings of EKAW 2014 Satellite Events,

LNAI 8982, pp. 154-158, Springer, 2015

8. Chawuthai R., Takeda H. (2016) RDF Graph Visualization by Interpreting

Linked Data as Knowledge. In: Qi G., Kozaki K., Pan J., Yu S. (eds)

Semantic Technology. JIST 2015. Lecture Notes in Computer Science, vol

9544. Springer, Cham

9. Nikos Bikakis, Timos K. Sellis: Exploration and Visualization in the Web of

Big Linked Data: A Survey of the State of the Art. EDBT/ICDT

Workshops 2016

10. Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Presutti, Paolo

Ciancarini: Encyclopedic Knowledge Patterns from Wikipedia Links.

International Semantic Web Conference (1) 2011: 520-536

Footnotes

http://dbtune.org/jamendo/

The online version of this paper can be found in http://w3id.org/people/idafensp/p

apers/graphless/

http://graphless.linkeddata.es/

The following prefixes are used throughout the text: mo

(http://purl.org/ontology/mo/), foaf (http://xmlns.com/foaf/0.1/), tag

(http://www.holygoat.co.uk/owl/redwood/0.1/tags/), owl

(http://www.w3.org/2002/07/owl#)

https://neo4j.com/

https://neo4j.com/developer/cypher-query-language/

http://visjs.org/

https://github.com/idafensp/graphless-lds

https://github.com/idafensp/graphless-ldv

http://dbtune.org/jamendo/sparql

https://doi.org/10.5281/zenodo.1284979

Graphless Using Statistical Analysis and Heuristics for Visualizing Large Datasets

12

