
Abstract.

Towards a Uniform User Interface
for Editing Data Shapes

Ben De Meester, Pieter Heyvaert, Anastasia Dimou, and Ruben Verborgh

IDLab, Department of Electronics and Information Systems, Ghent University – imec
{ben.demeester,pheyvaer.heyvaert,anastasia.dimou,ruben.verborgh}

@ugent.be

Data quality is an important factor for the success of the envisaged
Semantic Web. As machines are inherently intolerant at the interpretation of
unexpected input, low quality data produces low quality results. Recently,
constraint languages such as SHACL were proposed to assess the quality of data
graphs, decoupled from the use case and the implementation. However, these
constraint languages were designed with machine-processability in mind.
Defining data shapes requires knowledge of the language’s syntax – usually
RDF – and specification, which is not straightforward for domain experts, as they
are not Semantic Web specialists. The notion of constraint languages is very
recent: the W3C Recommendation for SHACL was finalized in 2017. Thus, user
interfaces that enable domain experts to intuitively define such data shapes are
not thoroughly investigated yet. In this paper, we present a non-exhaustive list of
desired features to be supported by a user interface for editing data shapes. These
features are applied to unSHACLed: a prototype interface with SHACL as its
underlying constraint language. For specifying the features, we aligned existing
work of ontology editing and linked data generation rule editing with data shape
editing, and applied them using a drag-and-drop interface that combines data
graph and data shape editing. This work can thus serve as a starting point for data
shape editing interfaces.

Keywords: Data Graph Validation, Data Shapes, SHACL

1 Introduction

High quality Linked Data is an important factor for the success of the envisaged
Semantic Web. As machines are inherently intolerant at the interpretation of
unexpected input, low quality data produces low quality results. In the context of
Linked Data, data quality can be measured by assessing the data graph – represented
using the Resource Description Framework (RDF) [1] – against a set of
constraints [2]. This set of constraints forms the data shape. When it is assessed that
the data graph does not adhere to the data shape, a set of constraint violations is
returned. These constraint violations in turn can guide a user how to refine the data
graph, and thus, improve its quality. For example, for a certain use case, an important
set of constraints of the data graph is that every person has a first name, last name,

13

and birth date specified. When a data graph describing people that contains a person
without first name is assessed, a constraint violation is returned pointing to that
person. By adding the first name, the data graph is of higher quality for that use case.

Ease of editing of the data shape is important. As quality is commonly defined as
“fitness for use” [3], data shapes can be different for different use cases; thus, data
shapes need to be easily editable. Hard-coded validation approaches – as opposed to
declarative approaches – are not easily editable, as each change of the data shape
would require a new development cycle of the software tool [4]. Recently, constraint
languages were proposed as a declarative means to define data shapes: this eases
editing as it decouples the definition of the data shapes from the implementations that
validate data graphs. Of these constraint languages, the Shapes Constraints
Language (SHACL) became a W3C Recommendation in 2017 [5]. Constraint
languages allow domain experts – that are familiar with the use case at hand – to
define the data shapes, and modify these at any time, without making changes in the
implementation of the validation tool.

However, constraint languages were designed with machine-processability in mind.
Similarly to manually editing other declarative, machine-processable rules –
 e.g., rules for linked data generation using the RDB to RDF Mapping
Language (R2RML) [6] –, manually editing data shapes using declarative constraint
languages requires a substantial amount of human effort [7]. When data shapes cannot
be created and edited easily, uptake of using data shapes and thus improving the
quality of data graphs might be inhibited: intuitive user interfaces are needed. As
constraint languages for describing Linked Data quality are only recently being
standardized, features for user interfaces that enable domain experts to intuitively
define such data shapes, are not thoroughly investigated yet.

In this paper, we introduce a non-exhaustive list of desired features for a user
interface for editing data shapes. They are addressed by a data shape editor, which
aims to support domain experts to improve Linked Data quality. After discussing the
related work at Section 2, we list our features at Section 3. We show how these
features were applied to the unSHACLed editor at Section 4. Finally, we conclude at
Section 5.

2 Related Work

After discussing how data shapes are commonly defined (Subsection 2.1), we discuss
Semantic Web editors and their interfaces (Subsection 2.2). We close at
Subsection 2.3.

2.1 Defining Data Shapes

Firstly, ontologies were interpreted as integrity constraints [8, 9]. However, as the
semantics of ontologies operate under the Open World Assumption, and the semantics
of data shapes under the Closed World Assumption, this requires an alternative
interpretation of the existing semantics of ontology languages [10], e.g., the Web
Ontology Language (OWL) [11]. Then, query-based approaches, such as

Towards a Uniform User Interface for Editing Data Shapes

14

Data Shape Editors

Ontology Editors

Linked Data Generation Rule Editors

RDFUnit [2], emerged where data shapes are defined using SPARQL queries. Finally,
more generic constraint languages were defined, such as Shape
Expressions (ShEx) [12] and SHACL [5]. These constraint languages provide a
declarative approach for defining data shapes without creating ambiguous semantics
for ontologies. There exist more than eighty different types of constraints [13], where
each constraint language supports a subset of these constraint types [13].

2.2 Editors

No extensive research was conducted into features for editing data shapes so far,
given the very recent standardization of constraint languages for Linked Data.
However, we argue that existing work into visualizing other types of RDF structures
is also relevant, namely, (i) ontology editors, and (ii) editors for Linked Data
generation rules. On the one hand, we can take ontology editors into account, similar
as to related work where ontologies are interpreted as integrity constraints. On the
other hand, editors for Linked Data generation rules are also related to data shape
editors: both define the shape of the data graph; however, they have different
directions [14]. For Linked Data generation rules, the data graph is the target: the
generation rules define the data graph. For constraint languages, the data graph is the
source: the constraints limit the data graph. Thus, besides only discussing the existing
work around constraint editors, we also discuss ontology editors and Linked Data
generation rules editors.

Textual data shape editors such as SHACL4P [15] – a textual
editor as plug-in for Protégé – are not intuitive for editing data shapes [16]. Defining
data shapes requires knowledge of the syntax – usually RDF – and the specification of
the constraint language. This is not straightforward for domain experts as they are not
necessarily Semantic Web specialists. Other data shape editors such as the work of
Şimşek et al. for validating Schema.org annotations [17], are typically form-based or
use-case specific. Form-based approaches enforce a linear workflow and thus hinder
the user to keep an overview of the relation between the data graph and data shapes
during editing. Use-case specific approaches are not reusable and depend on a specific
constraint language.

Visual ontology editors have largely been divided into three
groups: graph-based, indented-tree-based [18], and UML-based. Graph-based visual
notations and implementations for OWL include Graffoo [19] and AVOnEd [20].
Indented tree-based editors include the Protégé OWL plugin [21], the editor of the
NeOn Toolkit [22], Eddy [23] with Graphol [24] as visual notation, and TopBraid
Enterprise Vocabulary Net. In general, the indented-tree-based visualization is
perceived more organized and familiar to novice users, whilst the graph-based
visualization is perceived to be more controllable and intuitive without visual
redundancy, particularly for ontologies with multiple inheritance [18]. UML-based
editors include OWLGrEd [25], Menthor that uses OntoUML [26] as visual notation
that can be seen as an abstraction over, a.o., OWL, and the work by De Paepe et al. [27].

Towards a Uniform User Interface for Editing Data Shapes

15

F1. Independence of constraint language

F2. Support multiple data sources

Editors for Linked Data generation rules can largely be divided into two groups: form-
based, and graph-based. An alternative graphical user interface using a block
metaphor to edit Linked Data generation rules is Juma [28]. Form-based
approaches [7, 29] – just as for data shape editors – enforce a linear workflow and
hinder keeping an overview during editing. Graph-based approaches includes
SQuaRE [30], Map-On [31], and the RMLEditor [32]. Heyvaert et al. proposed a set
of desired features for linked data generation rules editors [33], namely: (R1)
independent of the underlying linked data generation rules language, (R2) support
multiple data sources, (R3) support heterogeneous data formats, (R4) support
multiple ontologies, (R5) support multiple alternative modeling approaches, (R6)
support non-linear workflows, and (R7) independent of mapping execution. These
features helped guide the interface of the RMLEditor, which was evaluated to be
better than related editors during a user study [32].

2.3 Discussion

An intuitive and use-case independent solution is lacking: current data shape editing
approaches either depend on the constraint language or enforce a linear workflow.
This leads to two features: Independence of constraint language and Non-linear
workflows. For applying these features to a visual editor, we can observe that on the
one hand, constraint languages have following overlapping semantic constructs: (i)
the data graph, (ii) the data shape, and (iii) the returning constraint violations (when
available). On the other hand, graph-based visualizations are the most widely used
across all editing approaches.

3 Desired Features for Data Shape Editing

In this section, we list the desired features for data shape editors. We extend the
features extracted from the related work by adapting the features for linked data
generation rules editors as proposed by Heyvaert et al. [33]. We adapt these features
given previously researched parallels between ontologies and data shapes on the one
hand, and between ontologies and linked data generation rules on the other hand.

Data shape editors should not confront
domain experts with writing the textual syntax of a specific constraint language:
domain experts are not necessarily Semantic Web experts, and constraint languages
are built with machine-processability in mind. For instance, writing Turtle files to
describe data shapes would be a laborious process for domain experts. Moreover, the
visualization of the constraints should be independent of the underlying constraint
language: generic (graphical) symbols can be used to (partially) hide language-
specific textual syntax, as constraint languages have overlapping semantic constructs.

Data shape editors should support domain
experts in defining data shapes referring to multiple data sources at the same time.
Since Linked Data is commonly used as an integration approach, the data that is
needed for a specific use case might originate from multiple data sources. For

Towards a Uniform User Interface for Editing Data Shapes

16

F3. Support different serializations

F4. Support multiple ontologies

F5. Multiple alternative modeling approaches

F6. Non-linear workflows

F7. Independence of execution

instance, two data graphs contain information about employees and projects,
respectively. Defining the data shape of the connection between employees and their
corresponding projects is only possible when definitions can be specified across the
two data sources.

Data shape editors should not restrict domain
experts to specific serializations of the data source nor the constraint language. A data
graph can be serialized in different ways without changing the actual data or structure
(e.g., RDF/XML vs Turtle). Moreover, a data shape constraints the data model and not
the format. This is adapted from Heyvaert’s original definition, as the scope of our
work is Linked Data validation. As opposed to Linked Data generation, no different
data formats need to be supported.

Data shape editors should support domain experts
in defining data shapes for data graphs annotated with multiple ontologies at the same
time. Complementary or overlapping ontologies are available, and different use cases
require different ontologies. For instance, a user’s friends are described with foaf, and
his interests with schema.org. Depending on the use case, data shapes are needed for
only the foaf-annotations, only the schema.org-annotations, or the combination of the two.

Data shape editors should enable
and support multiple alternative modeling approaches and allow domain experts to
choose the most adequate one for their needs. Two modeling approaches are put
forward, given that a validation assessment is related to both the data graph and the
data shape. Either (i) define a data shape based on a predetermined model of a use
case, and afterwards validate a data graph (model-driven, e.g., a description is given
that “every user needs a birthdate”), or (ii) define a data shape corresponding to a
given a data graph, (data-driven, e.g., an example is given of a valid data graph
describing a user). This requirement is adapted from Pinkel et al. [7], given the
parallels between ontologies and linked data generation rules.

Data shape editors should allows domain experts to
keep an overview of the relationship between the data graph and data shapes, by
providing non-linear editing. Defining data shapes involves multiple factors – the use
case at hand, data graphs, and data shapes – that have an influence on each other. A
linear workflow separates these factors and obscures their relationships, by using
ordered steps that need to be followed by the domain experts. For instance, when
adding constraints to the data shape, domain experts might find that either the data
graph has violations, or the data shape is wrongly defined. The non-linear workflow
allows to integrate information about the data graph into the data shape without the
need to redo (parts of) the definition process.

Data shape editors should allow importing and
exporting the data shapes specified by the domain experts, as editing data shapes lies
beyond the scope of their execution. Further processing or execution – outside the
data shape editor – improves the data shapes’ interoperability and reusability. For
instance, when the data shapes are created locally using an editor, they can be
executed on a server without further need of the editor.

Towards a Uniform User Interface for Editing Data Shapes

17

Overview Sidebar

4 Application to unSHACLed

In this section, we show the feasibility of supporting all proposed features by applying
them to unSHACLed, which we introduce in Subsection 4.1. Then, we elaborate on
how each desired feature is supported by unSHACLed in Subsection 4.2. A screencast
demonstrating unSHACLed can be found at https:/ /
w3id.org/imec/unshacled/screencast/voila2018, a working demo is available at https:/ /
w3id.org/imec/unshacled/app, and the source code can be found on https:/ /
github.com/dubious-developments/UnSHACLed.

4.1 unSHACLed

We present unSHACLED: a prototype interface for a visual data shape editor
configured to use SHACL as underlying constraint language. In unSHACLed, domain
experts are able to drag-and-drop loaded data graphs, loaded data shapes, and add data
shapes using templates. They can edit both the data graphs and data shapes based on
visual feedback on whether the loaded data graphs conform with the data shapes, and
export the resulting data shape. Its User Interface (UI) consists of three elements (see
Fig. 1): an Overview Sidebar (Fig. 1, a), an Action Toolbar (Fig. 1, b), and an Editing
Area (Fig. 1, c).

The Overview Sidebar shows a set of templates for data shapes.
Templates can be added: certain structures are more likely to occur, depending on the
context in which the editor is used. As unSHACLed is configured for editing data
shapes using SHACL, the default templates are currently Node shapes or Property
shapes (constraining resources or the relations(s) between resources, respectively).

Fig. 1: The unSHACLED UI, consisting of an Overview Sidebar (left), an Action
Toolbar (top), and an Editing Area (middle-right)

Towards a Uniform User Interface for Editing Data Shapes

18

Action Toolbar

Editing Area

The Action Toolbar consists of two rows: general application
actions, and specific editing area actions. General application

actions include importing and exporting data graphs and data shapes (either from
local or remote files, or synced with your GitHub account) into the current workspace
– visible in the Editing Area –, and user management. Editing area actions include
zooming in and out, under/redo, removing definitions, taking a screenshot, and
executing the validation assessment.

The Editing Area provides a visual drag-and-drop interface for
managing, connecting, and editing data shapes (Fig. 1, d). We chose a graph-based
interface, due to its widespread usage across editing approaches. Each resource within
either a data graph or data shape is depicted using a diagrammatic symbol: a rectangle
with colored header. There is a visual distinction between the data graph and the data
shapes via different colors for the resource rectangle’s header. For editing the
individual constraint rules (Fig. 1, e), each rectangle contains an editable list of rules
in the form of text fields.

Text fields are used, as there exist more than eighty different types of
constraints [13], where each constraint language supports a subset of these constraint
types. Of all visual expressiveness variables, only the shape variable would have a
large enough capacity to distinctively depict all different constraint types [34].
However, we argue that distinguishing between these shapes and remembering which
shape relates to which constraint type would put at least the same amount of cognitive
burden, as textually entering the constraint rule. Thus, the textual interface for editing
the constraint rules allows flexibility in terms of constraint languages, without
overburdening the user, similar to the interface of OWLGrEd [25]. Furthermore, the
actual RDF syntax is simplified: each text field represents a predicate-object pair,
stemmed on the Predicate Lists expressions of Turtle, the human-readable RDF
serialization format [35].

unSHACLed allows domain experts to execute the validation assessment on the
loaded sample data graph. This is automatically performed during editing, or can be
triggered manually via the Action Toolbar. The results are visualized in the Editing
Area by differently coloring the resource rectangle’s header. This allows to easily
detect constraint violations during the editing process. Thus, immediate feedback is
available, visualized on the data graph in the Editing Area.

4.2 Implementing the Desired Features
We evaluated the application of our approach within unSHACLed by using the
objectives-based evaluation method [36], i.e., a questions-oriented evaluation
approach that can be performed internally by program developers. The UI of
unSHACLed implements the desired features for data shape editors which were
presented in Section 3. Below, we elaborate on how each feature is facilitated. A
summary of which features are supported by which UI element can be found in
Table 1.

Towards a Uniform User Interface for Editing Data Shapes

19

F1. Independence of constraint language

F2. Support multiple data sources

F3. Support different serializations

F4. Support multiple ontologies

F5. Multiple alternative modeling approaches

F6. Non-linear workflows

The Overview Sidebar can be filled with
constraint language specific templates, however, the interface of the Editing Area
remains independent of the constraint language. The overlapping semantic constructs
of the constraint languages are supported by the interface: the data graph and data
shape are similarly visualized via the connected rectangles, with either predicate-
object pairs or a set of constraint rules; the constraint violations are visualized on the
data graph; the constraint rules can be edited via the textual input fields. Moreover,
the actual validation engine is modularized, i.e., other validation systems can be
plugged in to support different constraint languages.

The Action Toolbar allows importing multiple
data graphs and data shapes: all are loaded and visualized in the Editing Area.
Validation is executed on the combination of all loaded data graphs, based on the
combination of all loaded data shapes.

The Action Toolbar allows importing data
graphs and shapes from Turtle and RDF/XML, and the import engine is extensible for
other serializations. In the future, alternative serializations, such as the JSON
serialization for ShEx, could thus be included.

The textual input fields of the Editing Area are
not restricted to specific ontologies and/or vocabularies, and allow changes at any
time during the editing process.

By combining the data graph and
data shape in the Editing Area, domain experts can follow different approaches when
editing data shapes, i.e., either the model-driven or data-driven approach, or they can
employ a hybrid approach: given the immediate feedback of constraint violations in
the loaded data graph, constraint violations can be addressed immediately.

Features UI Element

Overview
Sidebar

Action
Toolbar

Editing
Area

F1. Independence of constraint language ✓ ✓
F2. Support multiple data sources ✓ ✓

F3. Support different serializations ✓
F4. Support multiple ontologies ✓

F5. Multiple alternative modeling
approaches

✓

F6. Non-linear workflows ✓ ✓ ✓
F7. Independence of execution ✓

Table 1: The features for a data shape editor, denoting which features each element of
unSHACLed’s UI supports.

Towards a Uniform User Interface for Editing Data Shapes

20

F7. Independence of execution

Domain experts keep the overview of the editing process by combining the data graph
and shape with the Editing Area, and showing all three UI elements simultaneously.
The different constraint aspects can be edited and reviewed without the need for
tracing back previously completed steps.

Domain experts export data shapes as RDF
statements at any point during the editing process, as facilitated by the Action
Toolbar. Subsequently, the definitions can be edited or executed without unSHACLed.

5 Conclusion

This paper presents a non-exhaustive list of features for a visual data shape editor, and
proves their feasibility by presenting how these features are applied to unSHACLed.
The proposed seven desired features can guide the design and implementation of a
uniform data shape editor. Ultimately, data shape editors that provide these features
help domain experts to create data shapes without manually editing them, and without
being restricted to the use case: unSHACLed does not require domain experts to
manually write syntactically correct RDF triples, and is not limited to specific use
cases.

This work is an initial step towards the novel field of data shape editing. First of all,
an evaluation based on a user study is planned, to validate the suitability of the
graphical representation of unSHACLed. Open issues include scalability: how the
interface would handle large data shapes. We foresee the management of multiple data
shapes (and accompanying data graph samples) by the use of multiple contexts within
a workspace. Within a workspace, multiple data shapes can be loaded, without
needing to visualize them simultaneously, and the user is able to switch between
contexts to visualize different data shapes within one workspace. Moreover, we could
apply different detail levels to provide interactive filtering.

Acknowledgements

The described research activities were funded by Ghent University, imec, Flanders
Innovation & Entrepreneurship (AIO), and the European Union. Ruben Verborgh is a
postdoctoral fellow of the Research Foundation – Flanders.

References

1. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
World Wide Web Consortium (W3C), http:/ / www.w3.org/TR/rdf11-concepts/
(2014).

2. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of
the 23rd international conference on World Wide Web. pp. 747–757 (2014).

3. Juran, J.M.: Juran’s Quality Control Handbook. Mcgraw-Hill, Texas, USA (1988).
4. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de

Walle, R.: RML: A Generic Language for Integrated RDF Mappings of

Towards a Uniform User Interface for Editing Data Shapes

21

Heterogeneous Data. In: Proceedings of the 7th Workshop on Linked Data on the
Web (2014).

5. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C,
https:/ / www.w3.org/TR/shacl/ (2017).

6. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
World Wide Web Consortium (W3C), http:/ / www.w3.org/TR/r2rml/ (2012).

7. Pinkel, C., Binnig, C., Haase, P., Martin, C., Sengupta, K., Trame, J.: How to Best
Find a Partner? An Evaluation of Editing Approaches to Construct R2RML
Mappings. In: The Semantic Web: Trends and Challenges. pp. 675–690 (2014).

8. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: Proceedings of WWW 2007. pp. 74–89 (2009).

9. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity Constraints in OWL. In:
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI
2010). , Atlanta, Georgia, USA (2010).

10. Arndt, D., De Meester, B., Dimou, A., Verborgh, R., Mannens, E.: Using Rule
Based Reasoning for RDF Validation. In: RuleML+RR (2017).

11. Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A.,
Sattler, U., Smith, M.: OWL 2 Web Ontology Language – Structural Specification
and Functional-Style Syntax (Second Edition). World Wide Web Consortium
(W3C), http:/ / www.w3.org/TR/owl2-syntax/ (2012).

12. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems. pp. 32–40 (2014).

13. Bosch, T., Nolle, A., Acar, E., Eckert, K.: RDF Validation Requirements –
Evaluation and Logical Underpinning. arXiv preprint arXiv:1501.03933. (2015).

14. Dimou, A., Heyvaert, P., De Meester, B., Verborgh, R.: What Factors Influence
the Design of a Linked Data Generation Algorithm? In: Proceedings of the
Workshop on Linked Data on the Web (LDOW 2018) (2018).

15. Ekaputra, F.J., Lin, X.: SHACL4P: SHACL constraints validation within Protégé
ontology editor. In: 2016 International Conference on Data and Software
Engineering (ICoDSE) (2016).

16. Dadzie, A.-S., Rowe, M.: Approaches to visualising linked data: A survey.
Semantic Web. 2, 89–124 (2011).

17. Şimşek, U., Kärle, E., Holzknecht, O., Fensel, D.: Domain Specific Semantic
Validation of Schema.org Annotations. In: Perspectives of System Informatics.
PSI 2017. pp. 417–429 (2017).

18. Fu, B., Noy, N.F., Storey, M.-A.: Indented Tree or Graph? A Usability Study of
Ontology Visualization Techniques in the Context of Class Mapping Evaluation.
In: The Semantic Web – ISWC 2013. pp. 117–134 (2013).

19. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL
Ontologies with Graffoo. In: The Semantic Web: ESWC 2014 Satellite Events.
pp. 320–325 (2014).

20. Hallay, F., Hartmann, S., Kewitz, N., Mertens, R.: An Aspect-Oriented Visual
Ontology Editor with Edit-Time Consistency Checking. In: 2017 IEEE 11th
International Conference on Semantic Computing (ICSC) (2017).

Towards a Uniform User Interface for Editing Data Shapes

22

21. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL
Plugin: An Open Development Environment for Semantic Web Applications. In:
Proceedings of the 3rd International Semantic Web Conference (ISWC). pp. 229–
243 (2004).

22. Erdmann, M., Waterfeld, W.: Overview of the NeOn Toolkit. In: Ontology
Engineering in a Networked World. pp. 281–301. Springer Berlin Heidelberg
(2011).

23. Lembo, D., Pantaleone, D., Santarelli, V., Savo, D.F.: Eddy: a graphical editor for
OWL 2 ontologies. In: Proceedings of the 25th International Joint Conference on
Artificial Intelligence. pp. 4252–4253. , New York, New York, USA (2016).

24. Console, M., Lembo, D., Santarelli, V., Savo, D.F.: Graphol: Ontology
Representation Through Diagrams. In: Informal Proceedings of the 27th
International Workshop on Description Logics. pp. 483–495. , Vienna, Austria
(2014).

25. Cerans, K., Ovcinnikova, J., Liepins, R., Sprogis, A.: Advanced OWL 2.0
Ontology Visualization in OWLGrEd. In: DB&IS (2012).

26. Guerson, J., Sales, T.P., Guizzardi, G., Almeida, J.P.A.: OntoUML Lightweight
Editor: A Model-Based Environment to Build, Evaluate and Implement Reference
Ontologies. In: 2015 IEEE 19th International Enterprise Distributed Object
Computing Workshop (2015).

27. De Paepe, D., Thijs, G., Buyle, R., Verborgh, R., Mannens, E.: Automated UML-
Based Ontology Generation in OSLO2. In: The Semantic Web: ESWC 2017
Satellite Events – ESWC 2017. pp. 93–97 (2017).

28. Junior, C.A.C., Debruyne, C., O’Sullivan, D.: Juma: An Editor that Uses a Block
Metaphor to Facilitate the Creation and Editing of R2RML Mappings. In: The
Semantic Web: ESWC 2017 Satellite Events. pp. 87–92 (2017).

29. Sengupta, K., Haase, P., Schmidt, M., Hitzler, P.: Editing R2RML mappings made
easy. In: Proceedings of the 12th International Semantic Web Conference (Posters
& Demonstrations Track). pp. 101–104. , Sydney, Australia (2013).

30. Blinkiewicz, M., Bąk, J.: SQuaRE: A Visual Support for OBDA Approach. In:
Semantic Technology – JIST 2016. pp. 47–55 (2016).

31. Sicilia, Á., Nemirovski, G., Nolle, A.: Map-On: A web-based editor for visual
ontology mapping. Semantic Web Journal. 8, 969–980 (2017).

32. Heyvaert, P., Dimou, A., De Meester, B., Seymoens, T., Herregodts, A.-L.,
Verborgh, R., Schuurman, D., Mannens, E.: Specification and implementation of
mapping rule visualization and editing: MapVOWL and the RMLEditor. Web
Semantics: Science, Services and Agents on the World Wide Web. 49, 31–50
(2018).

33. Heyvaert, P., Dimou, A., Verborgh, R., Mannens, E., Van de Walle, R.: Towards a
Uniform User Interface for Editing Mapping Definitions. In: Proceedings of the
4th Workshop on Intelligent Exploration of Semantic Data (2015).

34. Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering. 35, 756–779 (2009).

Towards a Uniform User Interface for Editing Data Shapes

23

35. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: Turtle - Terse
RDF Triple Language. World Wide Web Consortium (W3C), http:/ /
www.w3.org/TR/turtle/ (2014).

36. Stufflebeam, D.: Evaluation Models. New Directions for Evaluation. 2001, 7–98
(2001).

Towards a Uniform User Interface for Editing Data Shapes

24

