
Piggyback Profiling:
Enhancing Query Results with Metadata

Claudia Exeler1, Maria Graber3, Tino Junge1, Stefan Ramson2, Cathleen
Ramson3, Fabian Tschirschnitz1, and Felix Naumann2

1 Hasso Plattner Institute, University of Potsdam, Germany
firstname.lastname@student.hpi.de

2 Hasso Plattner Institute, University of Potsdam, Germany
firstname.lastname@hpi.de

3 Hasso Plattner Institute, University of Potsdam, Germany
firstname.lastname@hpi-alumni.de

Abstract. SQL-based data exploration is tedious. Any given query might
be followed up by another query simply to count the number of distinct
values of an interesting column or to find out its range of values. Besides
the actual query output, each result also embodies various metadata,
which are not visible to the user and not (yet) determined by the DBMS.
These metadata can be useful to understand the data, assess its quality,
or spark interesting insights.
Our approach piggybacks metadata calculation on the usual query pro-
cessing with minimal overhead, by making use of specific properties of
the query plan nodes. We describe our extension of an RDBMS and show
that its runtime overhead is usually less than 10%.

1 Statistics for Exploratory
Queries

Imagine Alice – she works as a database engineer at a major music label and
wants to integrate the Musicbrainz data dump [8] into an existing music knowl-
edge base. The dataset, which consists of various information about music re-
leases, is rather large (5 GB) and consists of 119 different relations. After creating
the tables with a provided script and loading the data into a DBMS, she now
wants to get a rough overview of the most important relations. For that reason
she starts her exploration by executing the following simple query:

SELECT *

FROM recording rec;

Apart from the query result itself, a typical DBMS-client would display only
the count of fetched rows as metadata. Alice discovers the attribute rec.length,
is now interested in the longest song, and issues a second exploratory query
with MAX(rec.length) aggregation. We suggest to automatically display such
and more metadata of any query result, including the minimum and maximum
value, number of distinct values, etc. of a column.



2 C. Exeler et al.

Next, Alice finds out that there are recordings of length −1. Probably, such
recording lengths are incorrect and a surprising edge case that she might have
overlooked. Our system responds to a query with both data and metadata – a
feat not possible with regular SQL interfaces. To further investigate the different
concepts of the track and recording table, she joins those two and aggregates a
numeric difference of their two length attributes using the query below. She
obtains the result shown in Figure 1.

SELECT rec.id , rec.name ,

rec.length - tr.length as ldiff ,

tr.id, tr.name , tr.position

FROM recording rec , track tr

WHERE rec.id = tr.recording;

Fig. 1. Output of the second query

Figure 1 shows a possible result-rendering that includes metadata annota-
tions. For instance, the dark column heading of tr.id indicates that it is a key
candidate within the result set. So Alice can deduce cardinalities: a recording
might have multiple manifestations in terms of tracks, but not vice versa (rec.id
is not shaded dark). Further, the first result rows might mislead her concerning
the computed length difference. But from the metadata in the tooltip she can
conclude that indeed there are length differences of up to 139ms.

Our solution enables the DBMS user to explore the data with fewer queries,
especially the typical aggregation-style queries on top of the original queries.
Further, it encourages the user to investigate deeper and to ask the system ques-
tions that otherwise would not have arisen. The described feedback loop between
the semantics in the mind of the developer, the queries, and the metadata about
their results is also a form of query debugging. Developers often anticipate cer-
tain properties and can now easily verify them without follow-up queries. We
thus contribute for example to the “assisted-interaction” use-case outlined in [5]
to support developers.

The basic idea of our approach is to analyze the data as they pass through
the execution plan, piggybacking the query execution plan nodes. Using the
DBMS base statistics and our knowledge of the individual operator semantics
we incur only little overhead. Our contributions are a systematic analysis of
the influence of the different SQL operators on various metadata (Section 3), a



Piggyback Profiling: Enhancing Query Results with Metadata 3

prototypical implementation as an extension of PostgreSQL (Section 4), and a
runtime evaluation on different datasets (Section 5).

2 Related Work

As Morton et al. stated, there is a rising number of users, such as data analysts
and data journalists, who deal with large data sets [7]. This fact challenges data
analysis systems to provide fast insights into large data sets. Typically, such
systems make use of visualization techniques [4], which can provide interesting
insights through the recognition of patterns. These techniques heavily rely on
the visual data mining capabilities of the human mind. In contrast, our approach
aims to generate insights by presenting the available metadata of the query in
question.

Database systems typically maintain a set of base statistics for optimization
purposes. These base statistics are typically used to optimize query execution
trees [6]. We benefit from these statistics by using them as a basis for gathering
metadata on the query result.

To keep the runtime overhead small, we collect metadata during query ex-
ecution as all necessary data is processed anyway. Related approaches of mon-
itoring metadata during query execution have been proposed. However, these
approaches focus on a different goal. For instance, Carey and Kossmann aim
to place the Limit operator as early/low as possible in the execution tree to
reduce the runtime of the overall query execution [1]. To this end, the influence
of common operators on the number of tuples is monitored during query exe-
cution. The Leo system monitors the number of tuples during query execution
measuring the actual selectivity of predicates [9]. The measured data are not
presented to the user but rather fed back into the optimizer. The introduced
feedback loop allows the optimizer to learn from its past mistakes. In contrast
to both approaches, which optimize query execution plans, our approach focuses
on metadata that are interesting to the user.

3 Piggybacking Query Processing

We investigate the collection of interesting metadata with as little extra effort as
possible during regular database query processing. The metadata we consider are
unary functional dependencies (FDs) and unique column combinations (UCCs),
as well as single column metadata, namely the number of distinct values (#Dis-
tinct), minimum (Min), maximum (Max), and most frequent value (MFV) of
each column. The collection of further metadata, such as average, number of
null values, etc., is analogous.

3.1 Information sources for metadata

Metadata about query results can come from three sources: base statistics, calcu-
lations during query processing, and finally the SQL statement itself. Schematic



4 C. Exeler et al.

T
a
b
le

1
.

In
fl

u
en

ce
o
f

co
m

m
o
n

o
p

er
a
to

rs
o
n

d
iff

er
en

t
ty

p
es

o
f

m
et

a
d

a
ta

#
D
i
s
t
i
n
c
t

#
D
i
s
t
i
n
c
t

in
o
t
h
e
r

c
o
lu

m
n
s

M
i
n

M
a
x

M
i
n
/
M
a
x

in
o
t
h
e
r

c
o
lu

m
n
s

M
F
V

M
F
V

in
o
t
h
e
r

c
o
lu

m
n
s

F
D
s

U
C
C
s

S
O
R
T

(
A
S
C
)

p
r
e
v
.
v
a
l.

p
r
e
v
.
v
a
l.

p
r
e
v
.
v
a
l.

(
fo

u
n
d

in
fi
r
s
t

r
o
w
)

p
r
e
v
.
v
a
l.

(
fo

u
n
d

in
la

s
t

r
o
w
)

p
r
e
v
.
v
a
l.

p
r
e
v
.
v
a
l.

p
r
e
v
.
v
a
l.

n
o

c
h
a
n
g
e

n
o

c
h
a
n
g
e

L
I
M
I
T

y
M

IN
(
y
,
p
r
e
v
.v

a
l.
)

a
s

b
o
u
n
d
a
r
y

n
/
a

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

n
/
a

u
n
k
n
o
w
n

n
/
a

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

S
E
L
E
C
T
I
O
N

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
.
v
a
l.

u
n
le

s
s

fi
lt
e
r
e
d

o
u
t

u
n
k
n
o
w
n

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

A
=

y
(
c
o
n
s
t
.
)

1
—

"
—

y
y

—
"

—
y

—
"

—
a
n
y

co
lu
m
n

→
A

A
n
o
t

p
a
r
t

o
f
a
n
y

m
in

im
a
l
U
C
C

A
>

=
y

(
c
o
n
s
t
.
)

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

—
"

—
M
A
X
(
y
,

p
r
e
v
.
v
a
l
.
)

a
s

b
o
u
n
d
a
r
y

p
r
e
v
.
v
a
l.

—
"

—
p
r
e
v
.
v
a
l.

u
n
le

s
s

fi
lt
e
r
e
d

o
u
t

—
"

—
p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

A
=

B
M
I
N
(
d
i
s
t
(
A
)
,

d
i
s
t
(
B
)
)

—
"

—
M
A
X
(
m
i
n
(
A
)
,

m
i
n
(
B
)
)

M
I
N
(
m
a
x
(
A
)
,

m
a
x
(
B
)
)

—
"

—
—

"
—

—
"

—
—

"
—

b
o
t
h

u
n
iq

u
e
,
if

A
o
r
B

u
n
iq

u
e

b
e
fo

r
e

A
>

=
B

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

—
"

—
M
A
X
(
m
i
n
(
A
)
,

m
i
n
(
B
)
)

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

—
"

—
—

"
—

—
"

—
—

"
—

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

D
I
S
T
I
N
C
T
/

G
R
O
U
P

p
r
e
v
.
v
a
l.

n
/
a

p
r
e
v
.
v
a
l.

p
r
e
v
.
v
a
l.

n
/
a

u
n
k
n
o
w
n

n
/
a

n
o

c
h
a
n
g
e

g
r
o
u
p

c
o
lu

m
n
s

a
r
e

U
C
C

B
=

A
G
G
R
E
G
A
T
I
O
N
(
A
)

u
n
k
n
o
w
n

n
/
a

u
n
k
n
o
w
n

u
n
k
n
o
w
n

n
/
a

u
n
k
n
o
w
n

n
/
a

G
ro

u
p

C
o
lu
m
n
s
→

B
;

p
o
s
s
ib

ly
a
d
d
i-

t
io

n
a
l

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

B
=

M
I
N
(
A
)

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

n
/
a

p
r
e
v
.
v
a
l.

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

n
/
a

—
"

—
n
/
a

B
→

X
if

A
→

X
;
X

→
B

if
X

→
A

u
n
iq

u
e

if
A

w
a
s

u
n
iq

u
e

B
=

A
V
G
(
A
)

u
n
k
n
o
w
n

n
/
a

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

—
"

—
n
/
a

—
"

—
n
/
a

X
→

B
if

X
→

A
p
o
s
s
ib

ly
a
d
d
it
io

n
a
l

J
O
I
N
S

R
.
A

=

S
.
A

M
I
N
(
d
i
s
t
(
R
.
A
)
,

d
i
s
t
(
S
.
A
)
)

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

M
A
X
(
m
i
n
(
R
.
A
)
,

m
i
n
(
S
.
A
)
)

a
s

b
o
u
n
d
a
r
y

M
I
N
(
m
a
x
(
R
.
A
)
,

m
a
x
(
S
.
A
)
)

a
s

b
o
u
n
d
a
r
y

p
r
e
v
io

u
s

a
s

b
o
u
n
d
a
r
y

p
r
e
v
.
v
a
l.

if
s
a
m

e
in

R
a
n
d

S
;
e
ls
e

u
n
k
n
o
w
n

u
n
k
n
o
w
n

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l;

a
p
p
ly

t
r
a
n
s
it
iv

it
y

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l;

U
C
C
s

in
R

r
e
m

a
in

if
f

e
a
c
h

t
u
p
le

in
R

jo
in

s
m

a
x
.
o
n
e

t
u
p
le

in
S

(
a
n
d

v
ic

e
-v

e
r
s
a
)

R
.
A

=
S
.
A

(
F
K

R

→
S
)

d
i
s
t
(
R
.
A
)

p
r
e
v
.
v
a
l.

in
c
o
lu

m
n
s

fr
o
m

R

m
i
n
(
R
.
A
)

m
a
x
(
R
.
A
)

p
r
e
v
.
v
a
l.

in
c
o
lu

m
n
s

fr
o
m

R

m
f
v
(
R
.
A
)

p
r
e
v
.
v
a
l.

in
c
o
lu

m
n
s

fr
o
m

R

—
"

—
n
o

c
h
a
n
g
e

in
R

R
.
A

=
S
.
A

(
F
K

R

→
S
)

&
A
L
L

S
.
A

in
c
lu

d
e
d

—
"

—
p
r
e
v
.
v
a
l.

—
"

—
—

"
—

p
r
e
v
.
v
a
l.

—
"

—
—

"
—

—
"

—
n
o

c
h
a
n
g
e

in
R
;

n
o

n
e
w

in
S

U
N
I
O
N

d
i
s
t
(
R
.
A
)

+

d
i
s
t
(
S
.
A
)

a
s

b
o
u
n
d
a
r
y

n
/
a

M
I
N
(
m
i
n
(
R
.
A
)
,

m
i
n
(
S
.
A
)
)

M
A
X
(
m
a
x
(
R
.
A
)
,

m
a
x
(
S
.
A
)
)

n
/
a

u
n
k
n
o
w
n

n
/
a

a
n
y

t
h
a
t

e
x
is
t

in
o
n
ly

o
n
e

r
e
la

t
io

n
b
r
e
a
k
;

o
t
h
e
r
s

m
a
y

b
r
e
a
k

p
r
e
v
io

u
s

m
a
y

b
r
e
a
k
;

p
o
s
s
ib

ly
a
d
d
it
io

n
a
l



Piggyback Profiling: Enhancing Query Results with Metadata 5

information, such as keys and other constraints, is also useful in general, but is
already reflected in the base statistics.

Base statistics. Database systems already collect valuable statistics for query
optimization. For typical exploratory SELECT * FROM table queries with-
out selection predicates these base statistics are already valid for the query
result and can be displayed directly. For more complex queries, these statis-
tics cannot be used directly but serve as a basis to efficiently calculate the
metadata of the final query result.

Calculation. In some cases metadata can be obtained only through additional
calculations. While iterating over all rows, one can keep track of values (or
value combinations) to determine certain quantities or dependencies. For
multi-column metadata, such as FDs and UCCs, additional calculations can-
not be avoided, in general. Specialized algorithms can be executed at different
nodes during query execution.

SQL. Any constant in the SQL statement can be used to derive metadata about
the query result. For example, the predicate WHERE A=3 already tells us that
the maximum, minimum, and most frequent values are all equal to 3 in the
query result, unless it is empty.

3.2 Piggyback collection strategy

The different phases of piggyback metadata collection during query execution
are illustrated in Figure 2. The steps in Phase 1 are initialization steps that are
executed in the leaves of the execution tree, Phase 2 is applied to each inner-tree
execution node, and Phase 3 includes actions performed in the root node.

When reading data from a table (Phase 1), one can read the base statistics
for the columns that are part of the result. We assume, for now, that these
statistics gathered by the DBMS are correct. If no base statistics are available,
one can either calculate them on-the-fly or continue without any base statistics.
In Phase 2, depending on the current node, previous values can be forwarded,
because the operator does not change them, or updated if their new value is
known. In the case where changes occur but the new values cannot be determined
easily, the previous values can be used as boundaries. Details on how different
nodes are handled in this phase are provided in Section 3.3 and Table 1. Finally,
Phase 3 is responsible for ensuring completeness and correctness of collected
data and finalizing any missing values directly on the query result.

3.3 Metadata modification during execution

Two observations simplify metadata calculation: First, only changes in projected
attributes, i.e., those that are part of the SELECT clause, need to be considered.
Second, with exception of union and aggregation, we assume that query pro-
cessing does not create new values in a given column; they are only removed
or duplicated. The remainder of this section describes two examples of meta-
data modification, namely join and selection, followed by an approach on how



6 C. Exeler et al.

DB

Read base 
statistics

Determine base 
statistics during scan

Set / update 
metadata

equality with constant;
join on foreign key

Set / update 
boundaries

limit; selection

No base statistics

No change

Forward metadata Calculate exact 
metadata

Results with
metadata

Ph
as

e 
1

Ph
as

e 
2

Ph
as

e 
3

Fig. 2. Phases of piggyback metadata collection

these modifications can be incorporated in the piggybacking idea. A complete
overview of how the most common operators modify result metadata is supplied
in Table 1.
Join. Consider, for example, how the maximum value in a column A changes
through a join on R.A = S.A. In general, tuples from both tables may be re-
moved, because they do not have a join partner. The maximum in the joined
column A is therefore the largest value that appears in both R.A and S.A, which
is bound by the smaller of the two previous maximums. Thus, Table 1 shows
“MIN(max(R.A), max(S.A)) as boundary”. If the join attribute R.A is a foreign
key on S.A, all values of R.A remain in the result; the maximum does not change.
Selection. In some cases the metadata cannot be determined directly. For in-
stance, a selection predicate A >= y (y being a constant value) cannot increase
the number of distinct values in any column but it can decrease. The previous
number of distinct values can be used as an upper bound. For column A, some
additional information is available through the selection predicate: There can be
only as many distinct values as exist in the range between y and the current
maximum of the column (i.e., simply the difference for integers, but infinity for
Strings and decimals). Therefore, the previous value or the range can be used as
a boundary, whichever is smaller.

To make use of such boundary information we maintain validity information
for every attribute-based metadata. That is, every node marks values that it
may have changed as a boundary, or updates the metadata if possible. At the
root node, during the final iteration over all tuples, the values of all columns



Piggyback Profiling: Enhancing Query Results with Metadata 7

where one or more metadata are marked as boundaries are examined. As soon
as the boundary value is found, the corresponding metadatum can be set to final.
It may, however, happen that the boundary value is no longer present. In that
case, when the result has finally been completely iterated, the true value has been
determined by aggregating the observed values into separate data structures. If
all metadata on the column are final, the values need not be checked anymore.

3.4 Dependencies in query results

As mentioned in Section 3.1, additional effort is needed eventually to determine
multi-column metadata. For functional dependencies (FDs), for example, we use
an approach similar to FDep [2]. Starting with all possible FDs as candidates,
a hashmap of left-hand side and right-hand side values is maintained for each
candidate, to check whether the current row contradicts it. This is the case if
the current left-hand side is already paired to a different right-hand side. If so,
the candidate is removed and no longer has to be considered. Additionally, some
pruning rules are applied: If the distinct count of a column is known, we know
it cannot functionally determine any column with a higher distinct count and
cannot functionally depend on a column with lower distinct count. For the latter
case, it is already sufficient to know that the upper bound of a column is smaller
than the known value.

Other approaches, such as TANE [3], are known for their superior efficiency,
but rely on a column-based approach, which is not well applicable for streaming
(result-)data. Unique column combinations can be calculated similarly by taking
all column combinations as candidates and removing them when a duplicate is
found.

4 Implementation in PostgreSQL

To evaluate our conceptual ideas we extended the PostgreSQL DBMS for a sub-
set of SQL. Our current implementation supports SPJ queries and determines
minimum, maximum and number of distinct values for all individual columns of
a query result, and determines all unary functional dependencies that hold for
the query result. As described in Section 3.2, the metadata can be determined
from the base statistics and/or during query execution. We prototypically im-
plemented a subset of the rules from the large set in Table 1, namely the sort-,
limit-, and selction-rules for min, max, distinct, and FDs.

Our implementation affects only the executor component of PostgreSQL’s
query processing pipeline. The executor processes the optimized query tree, made
up of operator-nodes, and itself consists of an initialization phase, an execution
phase, and a finishing phase. Our approach creates a global data structure to
store metadata for each query and extends the first two phases.

1. Initialization phase The initialization phase prepares the optimized query tree
for execution. During this phase we collect information that we can glean from



8 C. Exeler et al.

the query itself, and for now ignore the actual data. For instance, we collect
information from selection predicates with numeric constants, as mentioned in
Table 1. In the case of an equality predicate, the minimum and maximum value
are the same for all result tuples, as long as there is at least one. There are other
node types, such as sorting or hashing, that do not change any metadata.

If a node theoretically could change some of the metadata of the final result
set, all of its affected columns and their corresponding metadata can be used
only as boundaries as described in Section 3.2. In order to detect these boundary
values in the execution phase, we flag all metadata that could change during
query execution. PostgreSQL supports 31 different node types, including twelve
scan-types and three join-types. Our implementation supports 20 of these node
types; the others were not needed for any of our benchmark queries.

At the end of the initialization phase we fetch metadata from the base statis-
tics. In PostgreSQL the base statistics are determined with fixed-size samples
of the data. To obtain accurate results for all example queries, we increased the
sample size from 30k (the default) to 30m. As we rely on the potentially inaccu-
rate base statistics of PostgreSQL, the resulting metadata of our implementation
can be inaccurate, too. However, in our experiments we did not experience any
differences in the resulting metadata. To achieve perfect accuracy in the pres-
ence of inaccurate base statistics, one would have to determine the base statistics
separately. Other DBMS calculate the base statistics differently. For instance,
DB2 can be configured to calculate them accurately as well as on samples.

2. Execution phase In the execution phase each node of the optimized query
plan processes the relevant tuples of the database. In this phase we update every
metadata that was marked as “boundary” in the initialization phase. In each
node PostgreSQL iterates over the tuples. In particular, we use this iteration in
the root node for our updating process. This update is done by comparing every
tuple of the result set with the boundaries. As soon as a boundary is reached, we
cancel further comparisons for this particular attribute. For instance, if we know
that a column has at most 300 distinct values, we cancel the counting of the
distinct values as soon as we find the 300th one. We apply the same technique to
the minimum and maximum value of a column. Additionally, we now determine
all unary functional dependencies of the result set by using the incremental FD
algorithm described in Section 3.4.

5 Prototype Evaluation

This section presents the evaluation results of our prototype as described in
Section 4. First, we elaborate on the general benchmarking setup, then show the
measured results, in particular query processing overhead, and briefly discuss
them.



Piggyback Profiling: Enhancing Query Results with Metadata 9

5.1 Experimental Setup

Our tests ran on a machine with an Intel Core 2 Duo E8400, 4GB DDR2 RAM,
and a 160GB HDD. The operating system was Ubuntu 13.10 64bit and we used
PostgreSQL build 9.3.1.

We compare regular PosgreSQL with our own approach (extended Post-
greSQL), with and without the calculation of functional dependencies, as well
as with a baseline approach. As baseline we run the query itself followed by a
second SQL query with the original query as a subquery, calculating the same
metadata as our implementation. The runtime of the two queries is added. The
baseline queries are created with the following template:

SELECT min(sub.col1), max(sub.col1),

count(distinct sub.col1),

min(sub.col2), max(sub.col2),

count(distinct sub.col2), ...

FROM [subquery] as sub;

We ran those four approaches on two databases of different size, data origin
(generated vs. real), and domain: TPC-H4 (Scale factor 1 , approx. 1GB) and
the MusicBrainz database (approx. 5GB) [8].

Of the 22 standard TPC-H queries we used the 16 queries that are supported
by our implementation. We use an adjusted version of the benchmark for Post-
greSQL5, which rewrites aggregate subqueries with large tables to joins. Finally,
we removed the LIMIT statements to adapt them more to our use case and make
the queries more cumbersome.

MusicBrainz is an open-source database consisting of community-maintained
music information. It fits our use-case of a database engineer exploring an un-
known data set. For evaluation purposes we use eight different ad hoc, explorative
queries (including scans, joins, selections, and aggregation) that are applicable
for such a scenario. The list of these benchmark queries can be found in the
appendix.

Every query of our workload for both TPC-H and MusicBrainz was executed
five times, we report the average runtime. We measure the runtime for each
query with the Ubuntu time command. To simulate the exploration on freshly
acquired datasets we want to avoid caching effects and restart PostgreSQL and
delete the system cache after every query, except for the baseline approach where
we restarted after the second query.

Main memory consumption is not measured, but we acknowledge that it
is high due to the additional data structures used in our implementation. We
did perform the TPC-H benchmark with scale factor 5 (approx. 5 GB) with
the piggyback approach including functional dependency calculation and it ran
successfully on our testing machine.

4 http://www.tpc.org/tpch/default.asp
5 http://www.fuzzy.cz/download/tpch-queries.tgz



10 C. Exeler et al.

5.2 Benchmark Evaluation

The TPC-H benchmark results are shown in Figure 3. As a first observation,
the baseline approach is always the slowest, but surprisingly with less than 50%
overhead in most cases. One would expect more overhead by running two queries,
but PostgreSQL benefits from caching of the first query. This caching apparently
fails for Query 1, which includes many aggregations.

Our piggyback approach shows good results regarding the percentage over-
head compared to regular PostgreSQL and the baseline. We benefit from the
small result set sizes for most of the queries. The average execution time for the
piggyback approaches was 35s and 37s, respectively. For TPC-H we achieved a
maximum overhead of 3% without and 15% with the calculation of functional
dependencies. In average our overhead is less than 1% without and 7,5% with
functional dependencies calculation. With the 5GB TPC-H, the average over-
head is reduced to less than 1% even with functional dependency calculation.
This is due to the fact that most queries do not have a larger result set, so in
relation to the much longer query execution, the overhead decreases.

Fig. 3. TPC-H benchmarking results, showing the overhead compared to regular Post-
greSQL

The performance chart for MusicBrainz (Fig. 4) shows the overall runtime of
every query for each of the four approaches. The larger size of the MusicBrainz
database with larger result sets leads to slower runtime compared to TPC-H.
Again, the baseline approach is the slowest. Especially Query 7 with an aggrega-
tion on a large result set of more than 6 million rows has a slow runtime, similar



Piggyback Profiling: Enhancing Query Results with Metadata 11

to Query 1 for TPC-H. Regarding Query 2 the runtime for our approaches (and
the baseline) is very slow, because a join of the artists and recordings tables
creates a result set of more than 12 million rows. Calculating metadata for all
of its columns is very expensive, and in this case no base statistics can be used
to improve the performance. In contrast, Query 1, which is a projection of all
attributes from a smaller table, has a smaller result set and additionally can
make use of base statistics. Thus, its runtime is much faster.

Fig. 4. MusicBrainz benchmarking results, showing the runtime of the four approaches

Apart from Query 2, the maximum overhead for our approach is 15% with-
out and 60% with the calculation of functional dependencies compared to regular
PostgreSQL. On average over all queries we achieved an overhead of 13.8% with-
out and 20.8% with functional dependencies calculation.

We observe that the runtime depends on the result set size, data character-
istics, and the nature of the query. Smaller result sets lead to a small overhead.
Larger result sets, like that of MusicBrainz’ Query 2, increase the overhead, but
compared to the baseline it is still significantly lower. Also, even with large result
sets, like MusicBrainz’ Query 7 (all tracks, grouped by name), we can achieve
fast runtime when base statistics can be used, or boundaries are found early.

Determining the functional dependencies for the result table has some ad-
ditional overhead, which depends on the number of columns, and the existence
of base statistics that can be used for pruning. Overall the the runtime of our
approach is very good: across both benchmarks we achieved an average overhead
of only 13% compared to regular PostgreSQL. In many use-cases this small over-
head is well worth the effort, for instance when our piggyback techniques can



12 C. Exeler et al.

avoid follow-up exploratory queries altogether, or when it uncovers surprising
characteristics of the data.

6 Conclusion and Future Work

We presented theoretical and practical concepts for enhancing query results with
single- as well as multi-column metadata. The metadata can be collected from
base statistics and are modified during query execution. These ideas are imple-
mented in PostgreSQL; the average overhead of our approach is 13%. The code
is available as a branch of PostgreSQL at https://github.com/mpws2013n1/

postgres/tree/piggyback_master.
Our implementation can be extended for more metadata, such as most fre-

quent values, unique column combinations, non-unary functional dependencies,
etc. Another idea for future work is to use the collected metadata internally,
e.g., for the query optimizer or following queries in the spirit of [9]. Finally, our
approach to communicate the metadata to the client is for now ad-hoc. In gen-
eral, an extension of the database driver protocols with additional metadata per
column should be considered.

For our main use case, which is the exploration of an unknown database, the
current overhead is acceptable. Nevertheless, the performance can be further
improved, for instance by handling more special cases, calculating metadata
earlier, and by allowing approximate metadata.

References

1. M. J. Carey and D. Kossmann. On saying “Enough already!” in SQL. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages 219–230,
1997.

2. P. A. Flach and I. Savnik. Database dependency discovery: A machine learning
approach. AI Communications, 12(3):139–160, 1999.

3. Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: An efficient al-
gorithm for discovering functional and approximate dependencies. The Computer
Journal, 42(2):100–111, 1999.

4. D. A. Keim. Information visualization and visual data mining. IEEE Transactions
on Visualization and Computer Graphics (TVCG), 8(1):1–8, 2002.

5. N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Suciu. A case
for a collaborative query management system. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2009.

6. M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database
systems. ACM Computing Surveys, 20(3):191–221, 1988.

7. K. Morton, M. Balazinska, D. Grossman, and J. Mackinlay. Support the data
enthusiast: Challenges for next-generation data-analysis systems. Proceedings of the
VLDB Endowment, 7(6):453–456, 2014.

8. MusicBrainz Database – MusicBrainz. http://musicbrainz.org/doc/

MusicBrainz_Database, Feb. 2014.
9. M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO-DB2’s learning op-

timizer. In Proceedings of the International Conference on Very Large Databases
(VLDB), pages 19–28, 2001.



Piggyback Profiling: Enhancing Query Results with Metadata 13

A Musicbrainz Benchmark Queries

The following SQL queries were used for the performance evaluation on the
Musicbrainz database (Section 5.2, Figure 4).

1. SELECT *

FROM release;

2. SELECT r.name , r.length , ac.name , ac.artist_count

FROM artist_credit AS ac , recording AS r

WHERE ac.id = r.artist_credit;

3. SELECT *

FROM track

WHERE position = 10;

4. SELECT name , position , length

FROM track

WHERE position = 5

AND length < 30000;

5. SELECT *

FROM medium ,artist_credit ,release

WHERE medium.track_count < artist_credit.artist_count

AND release.artist_credit = artist_credit.id

AND release.id = medium.release;

6. SELECT (track.length -recording.length) AS diff

FROM track , recording

WHERE track.id = recording.id

AND track.id < 10000;

7. SELECT name , max(position) AS max_position

FROM track

GROUP BY name;

8. SELECT name , position , number

FROM track

WHERE length < position;


