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Abstract. The parameter space transform has been utilized over decades
in context of edge detection in the computer vision domain. However the
usage of the parameter space transform in context of clustering is a more
recent application with the purpose of detecting (hyper)linear correlated
clusters. There are various representations of the linear parameter space.
Yet there is one representation which has not been used yet - the Hessian
Normal Form (HNF) representation. This work reveals the properties of
the HNF representation in comparison to its competitors.

Keywords: Parameter Space Representation · Hessian Normal Form ·
Clustering.

1 Introduction

With Paul V.C. Hough introducing the first application of parameter space trans-
formation for detecting lines on images, he used the slope-intercept representa-
tion of the linear parameter space. This representation has its drawbacks. Within
the following decades more representations were developed. However all of the
representations have been designed with the domain of edge detection on images
in mind. The purpose of this work is to introduce and elaborate on the advantages
and disadvantages of each linear parameter space representation in context of
clustering. In the clustering context (hyper)linear correlated clusters are detected
by using parameter space transformation. Using this type of transformation is
especially for higher dimensional data sets useful. By scanning the parameter
space for intersections of lines or (hyper)planes we avoid the computation of dis-
tances which become useless in the high-dimensional setting. Regarding related
work, the first parameter space transform used a slope-intercept representation
of the parameter space. One of the inherent drawbacks of this representation is
its unboundedness regarding its dimensions in parameter space and with verti-
cal lines or in higher dimensions, hyperplanes. For overcoming the issues of the
slope-intercept form, Duda and Hart provided in [2] a polar normal-form. On
the slope-intercept, polar and the other representation, which are not suitable in
the context of clustering, the authors in [4] have elaborated on their advantages
and disadvantages in context of edge detection on images.
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2 Linear Parameter Space Representations

In this section we describe four representations of the linear parameter space and
elaborate on their properties and advantages as well as disadvantages in context
of data mining.

2.1 Slope intercept Representation

The very first representation of the linear parameter space is the slope intercept
form which has been introduced first by the work of Paul V.C. Hough. Given
a data point p := (x, y) The core intuition of this representation is that a line
can be expressed through its slope m and its intercept t. The slope intercept
equation is therefore:

y = mx+ b (1)

The slope intercept variant provides so called point-to-line mappings (PTLM)
which means that a point in data space corresponds to a line in parameter space
and a point in parameter space corresponds to a line in data space. This duality
can be seen in figure1. This property is favorable as it facilitates to map the
actions made in data space to parameter space and vice versa.

Fig. 1. data-parameter-space duality. left: data space, right: parameter space

This representation of a linear parameter space comes with the advantage of
being easy to understand and providing the afore mentioned PTLM property.
It is quite comprehensive to see the duality between data and parameter space.
However the slope intercept form comes with several limitations. First, given the
case that we have an infinite slope, we can not represent vertical lines. Second, if
we extend this form to higher dimensions, let’s say to three dimensional dataset,
the equation extends to z = m1x+m2y+ t. Here the question emerges, which of
the axis to select as intercept, and as more slopes are introduced, there are more
axis to which a plane can be vertical to, limiting the method to detect several axis
parallel linear correlations. And finally the method fails by its unboundedness



Linear Parameter Space Representations 3

in parameter space. We do not have any limitation of the slope and intercept
axis. As a consequence one can set an arbitrarily high initial boundary, which
may result in many additional computations. On the other side of the coin, one
may set the initial boundaries quite small, which can lead to a loss of regions of
interest and thus to loosing potential (hyper)linear correlated clusters.

2.2 Polar Representation

As a solution to the issues of unboundedness and the case of axis parallel lines
Duda and Hart introduced in [2] a polar representation of the parameter space.
The parameter space is defined by an inclination angle α which describes the
angle between a coordinate axis and the line L which is orthogonal to the line
we aim to detect. The length d of L is the second parameter of our parameter
space. We thus obtain the following equation:

d = y · sin(α) + x · cos(α) (2)

The consequence of using polar coordinates regarding the unboundedness can
be seen in equation 2 as well as in figure 2. The angle is limited between [0, 2π].
However the distance axis d is unbounded. The gain of the boundedness comes
however at an cost. First, the functions in parameter space are no longer lines but
sinusoidal curves, this implies that the PTLM property is no longer maintained,
as a point in data space corresponds to a sinusoidal curve in parameter space, but
a point in parameter space does not correspond to a curve in data space. Second,
it is difficult to get the semantics of the curves in parameter space. The meaning
of the curves extrema is not convertible to a semantics which leads to the third
issue. It is difficult to compute the intersection of a sinusoidal curve with an
bounding box. On the challenges of detecting intersections with a bounding box,
the authors in [3] have elaborated on.

Fig. 2. left: data space, right: polar parameter space
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2.3 Hessian Normal Representation

The disadvantages of the polar representation can be overcome by our third
representation which, to our surprise, hasn’t been used yet in the context of
parameter space transformation. We take again a closer look at equation 2 and
represent it as follows:

x · cos(α) + y · sin(α) = d

x · a+ y · b = d
(
x
y

)
·
(
a
b

)
= d

−→p · −→n = d

(3)

In equation 3 it can be seen that the polar representation is just the polar
coordinate form of the so called hessian normal form (HNF). Just like in the
polar form, d describes the distance between the origin to the line to which it is
orthogonal. The vector −→n is the normal vector which provides the direction to
the orthogonal line as it can be seen in figure 3.

Fig. 3. left: data space, right: polar parameter space

This representation however seems to be unbounded. For this purpose the
normal vector is normalized as −→n 0 =

−→n
|−→n | . As by now the length of the vector

is normed to unit length. By this each of the dimensions of −→n 0 are bounded to
the interval [0, 1]. Also the issue with axis parallel slope is not a problem in the
HNF. While the vector −→n 0 would point to the direction of the x-axis, in case we
have an y-axis parallel line, we would not have any undefined normal vector, as
we have in the case of the slope intercept form, where the slope is undefined as
we would divide by zero in the denominator. The only difference and probably
disadvantage of the HNF is that our parameter space has one dimension more
than our data space as seen in figure 3. Also the PTLM property is given,
as a data point in data space is mapped to a linear data point function in
parameter space and a normal point in parameter space represents a line in data
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space. Further, the check if a plane intersects with a bounding box in parameter
space is computationally less intensive. Regarding higher dimensional data and
detecting hyperlinear correlated clusters, this representation is simple to extend,
as the normal vector gets one feature more as the data points have an increased
dimensionality.

2.4 Overview

Taking the information from the previous subsections we can distill the following
table with the properties:

Representation PTLM property bounded intersection cost vertical lines
Slope-Intercept 3 7 low 7

Polar Normal Form 7 3(except d) high 3

Hessian Normal Form 3 3(except d) low 3

3 Conclusion

In this work we have elaborated on two representations of linear parameter space,
the slope-intercept and the polar normal form. Both of them come with their own
strengths but also weaknesses. However there is a third representation which, as
it can be seen in the table in subsection 3.4, has all of the strengths of the
previously mentioned two forms but none of their weaknesses. It has the PTLM
property, is bounded among all dimensions except the distance d, is low in its
costs for checking if a bounding box is intersected by such a data point function
and has the capability of detecting vertical lines. It is surprising why the HNF
has not been utilized so far as the representation of choice for linear parameter
spaces. We’d like to conclude this work with an answer to the question posed
by our title: It is the HNF representation, bringing advantages to the parameter
space transformation.
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