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Abstract. Clustering methods like Mean Shift or k-Means are executed
and if necessary, re-started with different parameters. This standard
approach of providing input data, executing an algorithm, observing
the outcome and re-running the method with different parameters com-
pletely neglects the insights which can be gained considering to look at
the core of an clustering algorithm. In this work we provide an approach
to analyze the trajectories of data points within a run of a clustering
method. Thereby we also introduce the concept of data point entangle-
ment, revealing if subsets of data points have common trajectories over
the iterations of an clustering algorithm. Further we introduce the idea
of data point resilience, whose intuition is to reflect if a subset of data
points maintains its entanglement even at different hyperparameter set-
tings.

Keywords: Clustering · Cluster Member Entanglement · Cluster Tra-
jectories Alignment · Cluster Entanglement Resilience.

1 Introduction

Within the past decades a rich set of various clustering methods has been devel-
oped, aimed at different tasks such as detecting convex clusters such as k-means
[1], detecting densely connected clusters as in e.g. DBSCAN [3] or detecting
relevant subspaces (axis parallel or arbitrarily oriented) such as CLIQUE [4] or
4C [5]. Few of the algorithms have been put into interactive context revealing
the inner changes and therefore revealing to the users a wealth of information
on which basis decisions, e.g. the choice of hyperparameters can be performed
as in PARADISO [6]. Especially in context of clustering algorithms where in
an iterative fashion points are re-assigned to their clusters such as in k-means
or where the points roam to their modes, we are convinced that within the
trajectories of their point movements information can be gained regarding the
connection between data points and their robustness towards different hyper-
parameters. In this work we use the Mean Shift[2] algorithm as utilized in the
interactive framework PARADISO. The core idea of the Mean Shift algorithm
is that each data point roams towards the center (mode) accounting other data
points within a specific window, which is in literature referred to as a band-
width. The whole process is executed in an iterative fashion until convergence
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is achieved. PARADISO uses the Mean Shift algorithm as a basis and provides
the users access to the algorithms internals, rendering it possible to set differ-
ent bandwidths at different iterations steps, moving back and forth. Further the
users can explore alternative paths in the sense of choosing different bandwidths
over different iterations yielding different results. As the major contribution of
this work, we introduce concepts and definitions for entanglement of data point
trajectories and the resilience of the entanglement regarding different hyper-
parameters (here the bandwidth). Although plenty of related work regarding
trajectory alignment and similarity measure exist, best to our knowledge no
other work is yet published which elaborates on cluster iteration trajectory and
entanglement resilience computation.

2 Data Point Entanglement

We take as an example to explain the concept of data point entanglement the
two-moons data set consisting of fifty data points. The two-moons data set con-
sists of two opposing moon-shaped two-dimensional figures as it can be seen in
figure 1 top left figure. We execute the Mean Shift algorithm with a bandwidth
of 0.3. In figure 1 it can be seen how the points are dragged into two modes over
the ten iterations.

Fig. 1: two-moons Mean Shift intermediate results at different iterations
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Definition 1. Storing the position of each of the data points p ∈ D at all itera-
tions i ∈ I yields a trajectory θ ∈ T for each data point. Two data points pi, pj
are entangled if dDTW (θpi , θpj ) ≤ τ where the smaller the threshold τ is chosen,
the more entangled are the two data points.

The core intuition behind definition 1 is that the more similar the trajectories
of two data points are, the more entangled the two observed data points. As a
measure of similarity of trajectories we have utilized dynamic time warp (DTW).
In context of time series analysis DTW is widely used to determine how well given
time series align. Due to the brevity of this paper, we remain using here DTW
for the rest of this work, yet want to emphasize that further research regarding
other distance measures is a vital topic. Having the DTW distance between two
data point iteration trajectories, we define a distance matrix as follows:

Definition 2. An entanglement matrix MMM is a distance matrix where each of
its elements mij ∈ MMM is a pairwise distance dDTW (θpi , θpj ) between two data
point trajectories θpi , θpj as stated in definition 1.

Such an entanglement matrix can be seen in figure 2 which is based on the
two-moons data set mentioned before. Here we can see all pairwise data point
trajectory similarities, where a dark color implies a high similarity between two
data point trajectories and a bright color means the opposite. As the entan-
glement matrix is symmetric, we can omit either the lower or upper triangle.
Further we can also exclude the diagonal from our observations as a data point
trajectory is always maximum similar to itself.

Fig. 2: An entanglement matrix
Fig. 3: Trajectories of each of the two-
moons data points

Visualizing the trajectories of each data point results in a pattern as seen in
figure 3 where the movement of the data points is directed towards two centers
(modes).
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3 Entanglement Resilience

Based on the data from the entanglement matrix from figure 2 we have selected
three tuples of data points which have an very low DTW distance on their trajec-
tories, namely p38 = (0.5,−0.366025404), p39 = (0.965925826, 0.258819045), p40 =
(0.617316568,−0.423879533). We computed their scores at a bandwidth of 0.5,
0.4, 0.3, 0.2, 0.1 and 0.05 on the two-moons data set. In figure 4 it becomes
immediately visible that the low DTW distance and thus the high entangle-
ment between (p38, p40) remains mostly the same while on the other two data
point pairs the DTW distance increase massively at lower bandwidths weakening
their entanglement. This phenomenon of a stable level DTW distance we define
as follows:

Fig. 4: DTW distance of data point tuples at different bandwidth runs of the
Mean Shift algorithm on the two-moons data set.

Definition 3. The entanglement between two data points pi, pj is coined with
the term resilience ρ if the variance of the DTW distance of their respective
trajectories at different hyperparameter settings λ ∈ Λ is small, meaning that
the resulting value ρ is close to zero.

ρ(θpi ,θpj )Λ = var(dDTW (θpi , θpj )Λ) =
1

|Λ|
∑

λ∈Λ
(dDTWλ

(θpi , θpj )− µΛ)2 (1)

Based on the equation above the resilience of the entanglement between
two data point trajectories can be computed. Intuitively spoken, it reflects
the variance of the distance of two data point trajectories at different hyper-
parameters λ regarding the mean which is defined as the average of the dis-
tance of two data point trajectories over all chosen hyperparameters λ: µΛ :=



Identifying Entangled Data Points on Iteration Trajectories of Clusterings 5

1
|Λ|

∑
λ∈Λ dDTWλ

(θpi , θpj ). Having such a measure, the immediate question is

what it can be used for. The entanglement resilience can serve as an indication
for a subset of data points which have a strong relation to each other regardless
the choice of different hyperparameters. Applying definition 3 to our example of
the data points trajectory tuples (p38, p39), (p39, p40) and (p38, p40)leads to the
following values: ρ(p38,p39) = 13.51, ρ(p39,p40) = 13.66 and ρ(p38,p40) = 0.23. This
small value supports our observation from figure 4 that the trajectories of the
data points 38 and 40 remain similar to each other at different hyperparameters.

4 Conclusion

In our work we have introduced two core concepts, namely the data points en-
tanglement and the entanglement resilience. Both are primarily aimed to be used
in context of interactive clustering tools such as PARADISO. They can be either
used to automate steps within an algorithm or to provide additional informa-
tion to the users, serving as a basis for their decisions in the interactive setting.
Future work encompasses the extension and application on high-dimensional
settings and a broader range of clustering algorithms at which this concept is
applicable. Further the choice of the threshold τ as mentioned in definition 1
requires further investigations approaching questions such as: How τ should be
chosen, and if this parameter can be learned or estimated. One of the major
motivations of this work is to catalyst the development of methods which reveal
patterns that take place ’under the hood’ of the clustering algorithms, leveraging
the understanding of such methods.
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