
Informed Machine Learning
Through Functional Composition

C. Bauckhage, C. Ojeda, J. Schücker, R. Sifa, and S. Wrobel

Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
Fraunhofer IAIS, Sankt Augustin, Germany
B-IT, University of Bonn, Bonn, Germany

Abstract. Addressing general problems with applied machine learning,
we sketch an approach towards informed learning. The general idea is to
treat data driven learning not as a parameter estimation problem but as
a problem of sequencing predefined operations. We show by means of an
example that this allows for incorporating expert knowledge and leads
to traceable or explainable decision making systems.

1 Introduction

Recent progress in artificial intelligence has been largely driven by deep neural
networks [1] which are trained using vast amounts of data and high performance
hardware. This way, deep networks can now solve demanding tasks in computer
vision [2], speech recognition [3], text understanding [4], medical diagnosis [5],
or game AI [6]. Nevertheless, data science practitioners outside the IT industry
are increasingly dissatisfied with deep learning, mainly because of:

1) Lack of training data. Vapnik-Chervonenkis theory [7] establishes that
it takes substantial training data for machine learning to work well. Since details
depend on a system’s VC dimension which is hard to pinpoint, Widrow’s rule of
thumb (see [8]) suggests to train with at least ten times more data than there are
system parameters. Modern deep networks with millions of parameters therefore
need tens if not hundreds of millions of representative examples to learn robustly.

At first sight, this does not seem problematic, after all this is the age of big
data. However, reliable supervised machine learning actually requires thick data,
i.e. large amounts of annotated data, which are rarely available where business
models do not revolve around digital services. Even in contexts such as Internet
of things or industry 4.0 where data accumulate en masse, we still frequently
face thin data scenarios where appropriate training data for machine learning
are inaccessible.

2) Lack of traceability. Trained connectionist architectures are black boxes
whose inner computations (non-linear activations of synaptic summations) are
abstracted away from conceptual information processing. As a consequence, their
decision making processes are often unaccountable so that data scientists in, say,
finance or industrial system control are wary of deep learning because regulatory
guidelines demand automated decision making to be comprehensible.

Indeed, a growing body of literature shows that silly mistakes made by deep
networks could be avoided if they had “common sense” or, even more alarmingly,
that silly mistakes can be provoked using adversarial inputs [9, 10]. Hence, while
the need for explainable AI has been recognized early on [11, 12] corresponding
research has been reinvigorated recently [13–16].

In this paper, we address both these issues and propose an approach towards
informed machine learning that copes with thin data and leads to traceable
systems. Our basic observation is that domain experts in industry know a lot
about the data they are dealing with and that this knowledge is often procedural,
i.e. there is experience as to what to do with data in order to achieve a certain
goal. Assuming training data and a database of procedures to be given, our main
idea is thus to use Monte Carlo tree search [17] or reinforcement learning [18] to
determine sequences of operations that map input to desired outputs.

2 Deep Learning as Functional Composition

To motivate our idea, we point out two facts about neural networks: First, a
trained, feed-forward neural network of L layers that maps inputs x to outputs
y computes a composite function

y(x) = fL

(
. . . f2

(
f1(x)

))
= fL ◦ . . . f2 ◦ f1(x) (1)

where the functions fl represent the computations of layer l of the network. To
be more precise, letting zl denote the output of layer l, we typically have

zl = fl
(
zl−1

)
= σ

(
Wl zl−1

)
(2)

where Wl are the input weights of layer l and σ(·) is an activation function.
Second, recall that number and sizes of layers as well as activation functions

are usually chosen by hand so that neural network training is to estimate those
weight parameters W1, . . . ,WL that minimize a loss function such as

E =
n∑

i=1

∥∥yi − y(xi)
∥∥2 (3)

where
{

(xi,yi)
}n
i=1

is a sample of labeled training data.
Given these observations regarding the design and training of deep architec-

tures, it then seems natural to ask: Q1: When building a deep system, do the
functions fl it consists of have to be of the form in (2) or are there other basic
building blocks? Q2: When training a deep system, does it necessarily have to
be a parameter estimation problem or are there other ways of adapting it to a
task at hand?

Especially the soft computing community has answered both these question
affirmatively before. For instance, recent work in [19] present a deep fuzzy logic
system assembled via genetic programming that shows superhuman capabilities

Table 1: Functional building blocks for a classifier for the problem in Fig. 1(a)

R2 → R2 R2 → R R→ R

f0(x) = id(x) f6(x) =
∑
i xi f11(x) = 2x

f1(x) = Rx f7(x) =
∏
i xi f12(x) = −x

f2(x) =
(
wT
a x
)
·wa f8(x) =

∑
i x

2
i f13(x) = x− 1

f2(x) =
(
wT
b x
)
·wb f9(x) = wT

a x f14(x) = x + 1

f4(x) =
(
waw

T
a − I

)
x f10(x) = wT

b x f15(x) = |x|
f5(x) =

(
wbw

T
b − I

)
x f16(x) = sign(x)

f17(x) = tanh(x)

f18(x) = e−
1
2
x2

where R =

[
0 1
−1 0

]
wa =

[
sin π

4

cos π
4

]
wb =

[
− sin π

4

cos π
4

]

in an air defense scenario. Here, however, we are interested in answers based on
statistical machine learning and illustrate our idea by means of a simple example.

Figure 1(a) shows labeled training data {(xi, yi)}ni=1 where the data xi ∈ R2

come from two classes and the labels yi ∈ {+1,−1} indicate class membership.
Given this XOR-type data, the goal is to learn a binary classifier y(x) such that

y(x) =

{
−1 if x1 ≈ x2
+1 otherwiese.

(4)

Table 1 shows a set of functions F = {f1, f2, . . . , fn} compiled by a domain
expert who —based on long term experience— supposes that there might be a
sequence of operations y(x) = fiT ◦ . . . ◦ fi2 ◦ fi1(x) that can solve the above
problem.

In order to determine such a sequence automatically, we let s0 = [x1, . . . ,xn]
be the initial state of an abstract state space S and search for a sequence of states
s′ = f(s) = [f(s1), . . . , f(sn)] that eventually leads (close) to the target state
sT = [y1, . . . , yn] where closeness to the target can, for instance, be measured in
terms of 0-1 loss or accuracy.

Figures 1(b)–(f) show different examples of sequences that come close to the
target state and could be considered solutions to our problem.

In the language of game AI, our problem is to determine an optimal sequence
of moves µ∗ : S ×F → S and, in the language of reinforcement learning, it is to
find an optimal policy π∗ : S → F . Both problems can be solved using Monte
Carlo tree search or Q-learning, respectively, and in both cases we may consider
the following reward function

r
(
f(s)

)
=

{
accuracy

(
f(s)

)
if f ∈ R→ R

−0.1 otherwise.
(5)

−1 0 1

−1

0

1

(a) training data

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) f17 ◦ f12 ◦ f7(x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) f14 ◦ f12 ◦ f11 ◦ f18 ◦ f8 ◦ f4(x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) f13 ◦ f11 ◦ f18 ◦ f8 ◦ f5(x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) f12 ◦ f17 ◦ f13 ◦ f15 ◦ f6(x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(f) f13 ◦ f11 ◦ f18 ◦ f13 ◦ f7 ◦ f1(x)

Fig. 1: XOR problem and classifiers composed of the building blocks in Tab. 1.

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Fig. 2: Classifier found via MCTS:

f16 ◦ f7 ◦ f1(x) = sign
(∏

i

(
Rx

)
i

)

Figure 2 shows a solution found through
Monte Carlo tree search. It achieves perfect
accuracy on the given training data but also
generalizes well.

Moreover, the classifier found this way
it traceable in the sense that its internal
computations are transparent to domain ex-
perts. Here, for instance, the 2D data are
first rotated clockwise by 90◦, then the two
components of each data point are multi-
plied, and finally the sign of this product is
determined and returned as the output of
this “deep” system.

3 Research Directions

We sketched a deep learning technique that can incorporate world knowledge
and work in thin data scenarios. Yet, while there are first efforts on properties of
functional composition for machine learning [20], many questions regarding our
idea are still open. Two pressing ones are: How to systematically formalize expert
knowledge to fit into this framework? Are there universal functional building
blocks from which to compose solutions for arbitrary problems?

References

1. Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in
Machine Learning 2(1) (2009)

2. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet Classification with Deep Con-
volutional Neural Networks. In: Proc. NIPS. (2012)

3. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N.: Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four
Research Groups. IEEE Signal Processing Magazine 29(6) (2012)

4. Conneau, A., Schwenk, H., Barrault, L., LeCun, Y.: Very Deep Convolutional
Networks for Text Classification. arXiv:1606.01781 [cs.CL] (2016)

5. Cireşan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Mitosis Detection in
Breast Cancer Histology Images with Deep Neural Networks. In: Proc. MICCAI.
(2013)

6. Silver, D., et al.: Mastering the Game of GO with Deep Neural Networks and Tree
Search. Nature 529(7587) (2016)

7. Vapnik, V., Chernovenkis, A.: On the Uniform Convergence of Relative Frequencies
of Events to Their Probabilities. Theory of Probabilities and its Applications 16(2)
(1971)

8. Morgan, N., Bourland, H.: Generalization and Parameter Estimation in Feedfor-
ward Nets: Some experiments. In: Proc. NIPS. (1990)

9. Ribeiro, M., Singh, S., Guestrin, C.: “Why Should I Trust You?”: Explaining the
Predictions of Any Classifier. arXiv:1602.04938 [cs.LG] (2016)

10. Brown, T., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial Patch.
arXiv:1712.09665 [cs.CV] (2017)

11. Tickle, A., Andrews, R., Golea, M., Diederich, J.: The Truth Will Come to Light:
Directions and Challenges in Extracting the Knowledge Embedded within Trained
Artificial Neural networks. IEEE Trans. Neural Networks 9(6) (1998)

12. van Lent, M., Fisher, W., Mancuso, M.: An Explainable Artificial Intelligence
System for Small-unit Tactical Behavior. In: Proc. IAAI, AAAI (2004)

13. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.:
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation. PLoS ONE 10(7) (2015)

14. Wahabzada, M., Mahlein, A.K., Bauckhage, C., Steiner, U., Oerke, E.C., Kersting,
K.: Metro Maps of Plant Disease Dynamics – Automated Mining of Differences
Using Hyperspectral Images. PLoS ONE 10(1) (2015)

15. Belle, V.: Logic Meets Probability: Towards Explainable AI Systems for Uncertain
Worlds. In: Proc. IJCAI. (2017)

16. Sifa, R., Ojeda, C., Cvejoski, K., Bauckhage, C.: Interpretable Matrix Factorization
with Stochasticity Constrained Nonnegative DEDICOM. In: Proc. KDML. (2017)

17. Browne, C., et al.: A Survey of Monte Carlo Tree Search Methods. IEEE Trans.
Computational Intelligence and AI in Games 4(1) (2012)

18. Sutton, R., Barto, A.: Reinforcement Learning an Introduction. MIT Press (1998)
19. Ernest, N., Carroll, D., Schumacher, C., Clark, M., Cohen, K., Lee, G.: Genetic

Fuzzy based Artificial Intelligence for Unmanned Combat Aerial Vehicle Control
in Simulated Air Combat Missions. Journal of Defense Management 6(1) (2016)

20. Bohn, B., Griebel, M., Rieger, C.: A Representer Theorem for Deep Kernel Learn-
ing. arXiv:1709.10441 [cs.LG] (2017)

