
Explorations into Belief State Compression

Ali Elhalawaty1 and Haythem Ismail2,1

1 German University in Cairo, Cairo, Egypt
2 Cairo University, Cairo, Egypt

Abstract. We explore variants of belief state compression which is an
intuitive, weak form of knowledge base size reduction. It di↵ers from
previous approaches in at least three aspects. First, it takes its objects
to be support-structured sets of unconstrained, rather than flat sets of
syntactically-constrained, logical formulas. Second, classical notions of
minimality and redundancy are replaced by weaker, resource-bounded
alternatives based on the support structure. Third, in “lossy” variants
of compression, the compressed knowledge base logically implies only a
practically-relevant subset of the original knowledge base.

1 Introduction

Several factors a↵ect the complexity of automated reasoning and knowledge base
maintenance. One obvious, and long-recognized, such factor is the sheer size of
the knowledge base [6,16,18,1]. The size of the knowledge base is particularly
crucial for logic-based acting agents which roam the world for extended periods
of time with their knowledge bases continually expanding by sensory inputs.
Such inputs are often not simply added to the knowledge base; they also result
in expanding the knowledge base by conclusions about the environment that
follow from them and that may be crucial for directing future timely actions
of the agent [17,9]. Many approaches to knowledge base size reduction, such as
knowledge base minimization and redundancy elimination, have been discussed
in the literature [8,11,7,1]. Such approaches typically either impose some re-
strictions on the structure of the knowledge base or demand possible drastic
changes to it, which may impede their applicability to many practical reasoning
systems. Herein, we investigate variants of an approach to knowledge base size
reduction which we dub “belief state compression.” We take a belief state to
be a set of logical formulas structured by a “support” relation, akin to classical
(assumption-based) reason maintenance systems [4,2].3 Loosely speaking, com-
pression only requires the information in the compressed belief state to be (a
possibly improper) part of the information in the original one. The notion of
“information” here is, generally, not the classical notion of the set of logical con-
sequences. Rather, we adopt a resource-bounded notion of information, limiting
it to the set of formulas which were actually derived.
3 While it may be true that many knowledge-based systems lack a reason mainte-
nance component, knowledge-based acting agents mandate some way of handling
inconsistency (cf. [9]). Moreover, interest in reason maintenance never faltered and
has recently been strengthened [10,13, for example].

13

2 Belief States

We assume a language L with a classical consequence operator Cn. It will help,
as is common, to construe formulas of L as representing (possible) beliefs of a
cognitive agent. Henceforth, we refer to this agent as A.

Definition 1. A belief state is a triple S = hK,B,�i where K ⇢ L is finite,

B ✓ K and � : K ! 22
B�;, such that

1. � 2 Cn(s), for every s 2 �(�);
2. � /2 s, for every s 2 �(�); and
3. �(�) 6= ;, whenever � 2 K �B.

The size |S| of S is defined as |K|+
P

�2K

P
s2�(�) |s|.

Intuitively, K is the set of all (explicit) beliefs of A and B is a distinguished
subset of base beliefs. Members of B are those formulas which A came to believe
by some means other than logical reasoning. Typically, they are formulas which
result from sensory input or from communication with other agents. We often
refer to members of B as hypotheses. Formulas in K � B are believed only as
a result of A’s doing some reasoning. Hence, � provides, to each member of K
a set of supports. Each support of a formula � is a set of hypotheses that were
used to derive �.

Intuitively, belief state compression reduces the size of the belief state while
not adding any new information to it.

Definition 2. Let S = hK,B,�i be a belief state. A compression S0 of S is a
belief state hK 0, B0,�0

i with

1. K 0
✓ K;

2. for every � 2 K 0, �0(�) ✓ �(�); and
3. |S0| < |S|.

Instead of the classical, strong notions of irredundancy and minimality [8,11],
we adopt weaker, more practical ones based on the support relation.

Definition 3. If S is a belief state and H ✓ L, we say that � 2 K is supported
by H in S if (i) � 2 H or (ii) there is some s 2 �(�) with every 2 s supported
by H in S. Hence, a compression S0 of S is lossless if every � 2 B is supported by
B0 in S, otherwise it is lossy. If S0 is lossless, then it is irredundant (respectively,
minimal) if there is no lossless compression S00 of S with B00

⇢ B0 (respectively,
|S00| < |S0|).

In what follows, we explore some variants of compression. We start with a
brief discussion of a simple, obvious variant.

14

3 K-Only Compression

A K-only compression of belief state S is a compression S0 with B0 = B and
�0 = �|K0 . Such compressions are clearly lossless. An extreme case of K-only
compression is the compression SK0 = hB,B,�Bi which only retains hypotheses
and gives up all derived formulas. This compression operator can be e�ciently
implemented (in time O(|S|)) and may result in significant size reduction if agent
A is an introspective agent whose set of beliefs is dominated by inferred beliefs
rather than beliefs with independent standing. This, of course, may come with
a heavy price. For it is possible that beliefs in B are mostly useless and the
given up derived beliefs are the interesting ones. Although, since SK0 is lossless,
all retracted beliefs may be re-derived, this will still be on the expense of A’s
(possibly valuable) time.

4 B-Compression

A B-compression is a compression which necessarily changes B. The exploration
to follow of B-compression relies heavily on the notion of a base-support graph.
Henceforth, let ⌃(S) = ['2K�('), where S is a belief state.

Definition 4. For a K0-compressed belief state S = hB,B,�i, a base-support
graph is a bipartite graph G(S) = (V1, V2, E), where

– V1 = B
– V2 = ⌃(S)
– for n1 2 V1 and n2 2 V2,

1. (n1, n2) 2 E if and only if n1 2 n2

2. (n2, n1) 2 E if and only if n2 2 �(n1)

In the sequel, we refer to nodes in V1 as hyp nodes (or just hyps) and to nodes
in V2 as support nodes (or just supports). Figure 1 is an example of the base-
support graph G(S), with S = h{1, 2, 3}, {1, 2, 3},�i where �(1) = {{2}}, �(2) =
{{1}}, and �(3) = {{1, 2}}. (Hyp nodes are circular and generically denoted by
numerals while support nodes are rectangular and denoted by letters.)

Fig. 1. A base-support graph

15

Given the construction of the base-support graph, the following properties
immediately follow.

Observation 1 Let G(S) = (V1, V2, E) be a base-support graph.

1. For every n 2 V2, deg�(n) > 0 and deg+(n) > 0.
2. For every n1, n2 2 V2, if {n|(n, n1) 2 E} = {n|(n, n2) 2 E}, then n1 = n2.
3. E is asymmetric. (That is, if (n1, n2) 2 E, then (n2, n1) /2 E.)

4.1 Trimming

To conveniently discuss B-compression operators, we introduce the following
piece of notation. If G = (V1, V2, E) is a base-support graph with N ✓ V1, then
G�N is the sub-graph of G induced by (V1�N)[(V2�{n 2 V2| if (n0, n) 2 E or
(n, n0) 2 E, then n0

2 N}). Simply, G�N is the sub-graph of G with N removed
from V1 and with every support node that has edges only to nodes in N or edges
only from nodes in N removed from V2 (to save the first clause of Observation
1). Our first B-compression operator, the B trimming operator BTrim, is based
on algorithm GTrim (see Algorithm 1) which operates on a directed bipartite
graph (V1, V2, E) with deg�(n) 6= 0, for every n 2 V2. (Possibly a base-support
graph.)

Algorithm 1: Base trimming algorithm

Function GTrim(G):

if there is n 2 V1 with deg
+(n) = 0 and deg

�(n) 6= 0 then

return GTrim (G� {n})
end

return G

Figure 2 shows the result of trimming the graph in Figure 1. Node 3 is the
only node satisfying the condition in Algorithm GTrim and is, hence, removed
together with node b. This results in no nodes satisfying the condition and the
algorithm terminates.

Fig. 2. The graph resulting from applying Algorithm GTrim on the graph of Figure 1

16

It is easy to show that trimming is an instance of B-compression. If G is
the base-support graph of some K0-compressed belief state S and GTrim(G) =
(V1, V2, E), then the trimming of S, denoted Tr(S) is the structure hV1, V2,�i,
where, for every n1 2 V1 and every n2 2 V2 with (n2, n1) 2 E, n2 2 �(n1).

Corollary 1 If S is a K0-compressed belief state, then Tr(S) is a belief state.
Moreover, if S 6= Tr(S), then Tr(S) is a lossless compression of S.

Trimmed base-support graphs have an interesting property which we prove
next. First, a piece of notation. For a graph G, we say that a path P in G ends
(respectively, begins) with a cycle if P = n1, . . . , nk with ni = nk (respectively,
ni = n1) for some 1 i < k (respectively, 1 < i k). In the sequel, a node n
in graph G is G+-trapped (respectively, G�-trapped) if (i) deg�(n) = 0 (respec-
tively, deg+(n) = 0) or (ii) n is on a path in G that ends (respectively, begins)
with a cycle. If n is G+-trapped and G�-trapped, then it is G-trapped.

Proposition 1 If G = (V1, V2, E) is a directed bipartite graph with deg�(n) 6= 0,
for every n 2 V2, then GTrim(G) is a graph G0 = (V 0

1 , V
0
2 , E

0) where every n 2 V 0
1

is G0+-trapped.

Proof. We prove the proposition by induction on |V1|.

Base Case. If |V1| = 0, then, trivially, no nodes satisfy the condition of the if-
statement and GTrim(G) = G. Hence, |V 0

1 | = 0 and the proposition trivially
holds.

Induction Hypothesis. If G = (V1, V2, E) is a directed bipartite graph with
|V1| = k, for some k 2 N, and deg�(n) 6= 0, for every n 2 V2, then GTrim(G)
is a graph G0 = (V 0

1 , V
0
2 , E

0) where every n 2 V 0
1 is G0+-trapped.

Induction Step. Suppose that G = (V1, V2, E) is a directed bipartite graph
with |V1| = k+1 and deg�(n) 6= 0, for every n 2 V2. We consider two cases.
1. There is a node n 2 V1 with deg� 6= 0 and deg+ = 0. Thus, GTrim(G) =

GTrim(G� {n}) = G0. By construction, G� {n} contains exactly k hyp
nodes. Hence, by the induction hypothesis, every node in V 0

1 is G0+-
trapped.

2. There is no node n 2 V1 with deg� 6= 0 and deg+ = 0. Hence, GTrim(G) =
G. Consider an arbitrary n 2 V1. If deg�(n) = 0, then n is G+-trapped.
Otherwise, deg�(n) 6= 0 and deg+(n) 6= 0. Thus, there must be a path
P that starts with n and on which every node n0 has deg�(n0) 6= 0 and
deg+(n0) 6= 0. Since G is finite, it follows by the pigeonhole principle that
there is at least one node r which appears on P at least twice. Hence,
the sub-path of P which ends with the second occurrence of r ends with
a cycle. Consequently, n is G0+-trapped.

As an immediate corollary, trimming sometimes gives rise to a minimal com-
pression. In what follows, for a belief state S = hB,K,�i, we refer to the set
{� 2 B|�(�) = {}} as max(B).

17

Corollary 2 If S = hB,B,�i is a K0-compressed belief state such that G(S) is
acyclic, then Tr(S) = hmax(B),max(B),�|max(B)i which is a minimal compres-
sion of S.

Another variant of trimming is what we call reverse trimming. Again, we
start with a transformation of the base-support graph. In particular, if G is a
base-support graph, then the reverse-trimming of G is given by RGTrim(G) =
(GTrim(GR))R, where GR is the reverse of G (i.e., the graph resulting from
reversing all edges ofG). Similar to trimmed graphs, a reverse-trimmed graph has
a distinctive structure: Every node in a reverse-trimmed graph is G0�-trapped.
The similarity ends right here, however. In particular, a reverse-trimmed base-
support graph is not itself necessarily a base-support graph. Nevertheless, one
can construct a belief state from the reverse-trimmed graph.

Definition 5. Let G be the base-support graph of a K0-compressed and trimmed
belief state S = hB,B,�i and let RGTrim(G) = (V1, V2, E). The reverse-trimming
of S, denoted RTr(S), is a triple hB0, B0,�0

i where

1. B0 = V1 [max(B);

2. �0 : B0
! 22

B0
�; is such that, for every � 2 B0, �0(�) = {H|H is a smallest

subset of B0 such that � is supported by H in S}.4

Corollary 3 If S is a K0-compressed and trimmed belief state, then RTr(S) is
a belief state. Further, if S 6= RTr(S), then RTr(S) is a lossless compression of
S.

It should be clear that, if S is a K0-compressed belief state, then every node
in G = RGTrim(GTrim(G(S))) is G-trapped.

4.2 Towards Minimal B-Compression

Trimming, reverse-trimming, and their composition do not secure a minimal
(or even an irredundant) compression if the base-support graph is cyclic. It is
to the problem of constructing minimal, irredundant, or tighter-than-trimmed
compressions that we now turn.

Definition 6. Let G(S) = (V1, V2, E) be a base-support graph of some K0-
compressed, trimmed, and reverse-trimmed belief state S and let N ✓ V1. The
closure of N in G(S), N⇤

G(S),
5 is the largest set such that there is a sequence

(Hi, Si), i = 1 . . . n for some n 2 N, where

1. H0 = N ;

4 Instead of constructing �0 this way, a less expensive, but less tight, construction may
be given thus:

�0(�) = {n2 [max(B)|(n2,�) 2 E}

5 We drop the subscript if it is clear from the context.

18

2. Si = {s 2 V2|s ✓ Hi�1}

3. Hi = Hi�1 [{h 2 V1|(s, h) 2 E for some s 2 Si}

4. N⇤
G(S) = Hn

The problem ofminimal B-compression can be described as a graph problem.

– Instance: A base-support graph G(S) = (V1, V2, E) of some K0-compressed,
trimmed, and reverse-trimmed belief state S.

– Question: What is a minimum set N ✓ V1 such that N⇤ = V1?

This problem is formally identical to the optimization variants of the minimum
axiom-set problem [5], the candidate-key problem in database [12], and the in-
verse scope problem in bio-informatics [14]. These problems are NP-complete,
which means that finding e�cient, exact algorithms for minimal B-compression
is unlikely. Candidate exact algorithms, mostly based on a breadth-first-search
step, are discussed in the database literature in the context of candidate keys
[12,15,20]. Herein, we introduce an approximation algorithm, which provides
promising results. In a nutshell, the algorithm uncovers the smallest cycles of
dependency in the base-support graph and selects an arbitrary node from each.
We show below that the selection thus constructed is guaranteed to have the
entire set of hyp nodes as its closure. Graphically, the “smallest cycles of dep-
dendency” are what are known as chordless cycles [21,3,19]. A chordless cycle
in a graph G is an induced sub-graph of G which is a cycle. Equivalently, it
is a cycle C in G such that no edge connecting two nodes of C is not itself
in C. (If it exists, such an edge is called a chord.) To illustrate how the algo-
rithm works, consider Figure 3 which displays a possible (perhaps trimmed and
reverse-trimmed) base-support graph. The graph contains two chordless cycles
(1, a, 2, b) and (2, c, 3, d). Considering the set of hyps on each chordless cycle,
we have the two sets {1, 2} and {2, 3}. We now solve a hitting-set problem and
select a node from each set while minimizing the size of the selection. Thus, we
select {2}, and, given Definition 6, we have {2}⇤ = {1, 2, 3}. Although, in this
example, we get a minimal compression of the belief state, the approach often
yields redundant compressions. For example, in a belief state with three hyps
where each hyp individually supports the other two, the base-support graph will
have three chordless-cycles, and our algorithm will select no less than two hyps.
Clearly, however, a single hyp is su�cient.

Fig. 3. A base-support graph with two chordless cycles

19

Though not every hyp selected by the algorithm is necessary, the selected
set is su�cient. To reach that conclusion, we first make the following simple
observation.

Observation 2 Any cycle of a graph G has a chordless sub-cycle.

In the sequel, if G is a base-support graph, let C(G) = {N |N is the set of
hyp nodes on a cycle in G}; similarly, let CH(G) = {N |N is the set of hyp nodes
on a chordless cycle in G}. A hitting set of a family of sets F is a set H such
that H \ S 6= {} for every S 2 F .

Lemma 1. Let G = (V1, V2, E) be a trimmed and reverse-trimmed base-support
graph. If H is a hitting set of C(G), then H⇤ = V1.

Proof. By induction on the number of cycles in G.

Base Case. Since G has a single cycle and since every node in G is G-trapped,
then deg�(n) = deg+(n) = 1, for every node n in G. Thus, by Definition 6,
{n}⇤ = V1 for any node n 2 V1.

Induction Hypothesis. For G with k or fewer cycles, if H is a hitting set of
C(G), then H⇤ = V1.

Induction Step. Let G have k + 1 cycles. Pick a cycle C and a hyp n 2 C.
Let G1 be the graph resulting from removing all edges ending at n in G.
Given G-trapping, n is the only node in G1 with a zero in-degree. Now, let
G2 = RGTrim(GTrim(G1)) = (V 2

1 , V
2
2 , E2). By Corollary 3, (V 2

1 [{n})⇤ =
V1. Since G2 has at least one cycle, namely C, fewer than G, then by the
induction hypothesis, H⇤

2 = V 2
1 , for any hitting set H2 of C(G2). Thus, from

Definition 6, it follows that (H2 [{n})⇤ = V1. Since, C(G2) ⇢ C(G), then,
for every hitting set H of C(G), there is some hitting set H2 of C(G2) such
that (H2 [{n}) ✓ H. Thus, H⇤ = V1.

Theorem 1. Let G = (V1, V2, E) be a trimmed and reverse-trimmed base-support
graph. If H is a hitting set of CH(G), then H⇤ = V1.

Proof. By Observation 2, a hitting set of CH(G) is also a hitting set of C(G).
Hence, by Lemma 1, the theorem follows.

Now, the algorithm to construct a compression which is either minimal (if
the base-support graph is acyclic) or strictly smaller in size than trimmed and
reverse-trimmed compressions comprises the following steps, given a belief state
S = hK,B,�i.

1. Construct the base-support graph G of the K0-compression of S.
2. Construct Gtr = RGTrim(GTrim(G)).
3. Construct CH(Gtr). (This is done using the algorithm of [3] appropriately

modified for directed, bipartite graphs.)
4. Construct a smallish hitting set H of CH(Gtr). (This is done using a greedy

approximation hitting set algorithm.)

20

5. Construct the belief state hH [max(B), H [max(B),�i, where �(�) = {},
for every � in H [max(B).

Note that at no point does the algorithm check if some subset N of V1 is such
that N⇤ = V1. Instead, the algorithm selects nodes from V1 which are known a
priori to satisfy the closure check. Of the above four steps, only the third takes
exponential time in the worst-case, which occurs if the graph has exponentially-
many chordless cycles. Fortunately, such cases are not very common (cf. [19]).
The redundancy of the resulting compression is rooted both in the third step
and the approximation made in the fourth step.

Tables 1 and 2 display some results, comparing three B-compression algo-
rithms. The first is our approximation, chordless-cycles-based algorithm, the sec-
ond is a brute-force breadth-first search (BFS), and the third is a composition
of both in which we run BFS-compression on the result of the approximation
algorithm. Note that the first algorithm results in compressions which, in general
are neither minimal nor irredundant; the second is guaranteed to yield minimal
compressions; and the third is guaranteed to result in irredundant, but possibly
not minimal, compressions. Table 1 displays the average time taken by each al-
gorithm on randomly generated base-support graphs with varying numbers of
nodes. (Around fifty graphs for each size range.) For relatively small graphs with
fewer than 20 nodes, BFS has the best run time; but for larger graphs the other
two algorithms (especially the first, naturally) dominate. (MLE is a shorthand
for “memory limit exceeded.”) Table 2 displays the average sizes of the compres-
sions resulting from each algorithm (on the same set of graphs used in Table 1).
As expected, BFS gives the smallest compressions (as long as it produces some
compression) and the approximation algorithm is the worst in this regard. The
composition algorithm, however, provides what could be an interesting compro-
mise since the compression sizes it produces are comparable to those provided
by BFS.

Nodes Approximation algorithm BFS Composition
1 to 10 12.7 ms 1.3 ms 29.4 ms
11 to 20 103.2 ms 17 ms 115.6 ms
21 to 40 362.9 ms 2833.2 ms 563.7 ms
41 to 50 679.9 ms 20999.2 & MLE 1163.1 ms
51 to 60 1099.3 ms MLE 24783.2

Table 1. Average run times for the approximation algorithm, a breadth-first-search
algorithm, and a composition of both

21

Nodes Approximation algorithm BFS Composition
1 to 10 1 1 1
11 to 20 4 2 2
21 to 40 12 4 5
41 to 50 13 5 5
51 to 60 18 MLE 9

Table 2. Average compression sizes for the approximation algorithm, a breadth-first-
search algorithm, and a composition of both

5 A Use-Based Lossy Compression

The final compression operator we consider generally yields lossy compressions;
it contracts members of B which are not very useful in a sense defined below.
To define such an operator, we need to revise our notion of support and, hence,
belief state; we enrich the support structure with information about the exact
chain of reasoning used to derive a formula, not just the hypotheses underlying
the derivation. For example, consider a belief state S = hK,B,�i with B =
{Q,Q ! P, P ! R,P ! T}, K = B [{P,R, T}, and

– �(P) = {{Q,Q ! P}}

– �(R) = {{Q,Q ! P, P ! R}}

– �(T) = {{Q,Q ! P, P ! T}}
– �(�) = {}, for every � 2 B

Assuming some standard proof theory, Q was used to derive P and was never
used again in any derivations. Intuitively, P seems to be the most important
formula in this example since it is used to derive both R and T . The presence of
Q, and the absence of P , from the supports of R and T is merely a side-e↵ect
of Q’s being a hypothesis; but it is P , together with the respective material
implication, that was used in actually deriving R and T . It, thus, may be fine to
forget Q in this belief state and to lift P to become a hypothesis. The definition
of support in a belief state (�) does not, however, provide su�cient information
to allow us to simulate such useful forgetfulness.

Definition 7. Let B ✓ K ✓ L. A layered support for � 2 K is a finite set
s = {C1, C2, ..., Cn} where:

– for 1 i n, Ci = h i1, . . . , i|Ci|i with ij(6= �) 2 K and i1 2 B; and
– � 2 Cn(si(�)), for 1 i m with m = maxi{|Ci|} and si(�) = { | there

are Cl, Cr such that Cl � h i �Cr 2 s and either |Cr| = i� 1 or |Cr| < i� 1
and |Cl| = 0}.6

6 Henceforth, we use � to denote sequence concatenation.

22

The definition of belief state is now revised with a layered support replacing
the original, flat support and with two “integrity” conditions.7

Definition 8. A layered belief state is a triple S = hB,K,�i with B ✓ K ✓ L
and � a function mapping each � 2 K to a set of layered supports for � such that
for every 2 K if there is s 2 �() with a chain C such that C = Cl�h�i�Cr 2 s
and |Cl| 6= 0, then there is s

0
2 �(�) with Cl 2 s

0
and for every C 0

2 s
0

C 0
� h�i �Cr 2 s. The size |S| of S is defined as |K|+

P
�2K

P
s2�(�)

P
C2s |C|.

Given this new notion of support, we introduce a suitably-tailored definition
of compression.

Definition 9. Let S = hK,B,�i be a layered belief state. A compression S0 of
S is a layered belief state hK 0, B0,�0

i with

1. K 0
✓ K;

2. for every � 2 K 0 and s0 in �0(�), there is some s in �(�) such that every
chain C 0 in s0 is a su�x of some chain C in s; and

3. |S0| < |S|.

Using layered supports we can determine if a hypothesis is useful in its own
right or if it is interesting only because it was once used to derive some formu-
las that are the ones frequently involved in reasoning processes. This way we,
intuitively, replace members of B by members of K �B to retain the possibility
of deriving interesting propositions. Of course, this is, generally, lossy since we
retract unsupported, albeit insignificant, hypotheses.

A layered belief state representing the situation discussed in the above ex-
ample will have the following support function.

– �(P) = {{hQi, hQ ! P i}}

– �(R) = {{hQ,P i, hQ ! P, P i, hP ! Ri}}

– �(T) = {{hQ,P i, hQ ! P, P i, hP ! T i}}
– �(�) = {}, for every � 2 B

Intuitively, Qmay be forgotten since the number of chains in which it appears
on its own is less than the number of chains in which it is followed by at least
one other proposition.

Definition 10. Let S = hK,B,�i be a layered belief state and let ↵ 2 Q. A
formula � 2 B is ↵-disposable if |{s 2 ⌃(S)|h�i � C 2 s}| = 0 or

|{s 2 ⌃(S)|h�i 2 s}|

|{s 2 ⌃(S)|h�i � C 2 s}|
< ↵

Towards capturing our intuitions about the proposed lossy compression, we
introduce the following terminology.

7 The layered support may be constructed from the flat support together with infor-
mation about the formulas directly used in derivations (akin to justification-based

reason maintenance systems [4].

23

Definition 11. Let s be a layered support, S = hK,B,�i a layered belief state,
and ↵ 2 Q.

– A tree in s is a set s0 ✓ s such that there is a chain r(s0) such that s0 =
{C|C = Cl �r(s0), for some Cl}. A tree s0 in s is an ↵-disposable tree if there
is some Cl � r(s0) 2 s such that Cl ends with an ↵-disposable formula.

– D(S,↵) = {� 2 B|� is ↵-disposable}.
– Base(S,↵) = {� 2 K �B|�(�) contains an ↵-disposable tree}.
– R(S,↵, s) = {r(s0)|s0 is a maximal ↵-disposable tree of s} [{C|C 2 s is not

in any ↵-disposable tree}.

Definition 12. For a layered belief state S hK,B,�i, the ↵-cut of S, denoted
cut(S,↵), is a triple hK

0
, B

0
,�

0
i, where

– K
0
= K �D.

– B
0
= B �D [Base(S,↵).

– �
0
(�) = {R(S,↵, s)|s 2 �(�) and hi /2 R(S,↵, s)}.

Thus, insignificant hypotheses, deemed as such by the parameter ↵, are for-
gotten and significant non-hypotheses are promoted to hypothesis status.

Corollary 4 If S is a layered belief state and ↵ 2 Q, then cut(S,↵) is a layered
belief state. Further, if D(S,↵) 6= {}, then cut(S,↵) is a compression of S.

6 Conclusions and Future Work

Belief state compression is a variant of knowledge base size reduction which does
not put any syntactic constraints on the form of the knowledge base, but assumes
a support-structured set of formulas akin to classical reason maintenance sys-
tems. We have explored various approaches to belief state compression. In par-
ticular, varieties of base compression which can sometimes be minimal have been
pointed out, and an e�cient, tight, but not necessarily minimal nor redundant,
compression technique has been proposed. An example of a lossy compression
which disposes of insignificant pieces of information has also been described.

We have experimented with variants of our chordless-cycles-based approxima-
tion algorithm. In particular, we have some preliminary results with iteratively
applying the algorithm on its own output until a fixed-point is reached. The
results are promising, and we conjecture that the method yields irredundant
compressions. We save the proof and further experiments to future work.

References

1. Anton Belov, Mikolas Janota, Ines Lynce, and Joao Marques-Silva. Algorithms for
computing minimal equivalent subformulas. Artificial Intelligence, 216:309–326,
2014.

2. Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–162,
1986.

24

3. Elisângela Silva Dias, Diane Castonguay, Humberto Longo, and Walid Ab-
dala Rfaei Jradi. E�cient enumeration of chordless cycles. arXiv preprint

arXiv:1309.1051, 2013.
4. John Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
5. Michael Garey and David Johnson. Computers and Intractability. W. H. Freeman

and Company, 1979.
6. Allen Ginsberg. Knowledge base reduction: A new approach to checking knowledge

bases for inconsistency and redundancy. In Proceedings of AAAI-88, pages 585–
589, 1988.

7. Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Complexity of DNF
minimization and isomorphism testing for monotone formulas. Information and

Computation, 206:760–775, 2008.
8. Edith Hemaspaandra and Gerd Wechsung. The minimization problem for boolean

formulas. SIAM Journal on Computing, 31:1948–1958, 2002.
9. Haythem O. Ismail and Nasr Kasrin. Focused belief revision as a model of fal-

lible relevance-sensitive perception. In Proceedings of the 33rd Annual German

Conference on Artificial Intelligence (KI-2010), pages 126–134. Springer, 2010.
10. Jakub Kotowski, François Bry, and Simon Brodt. Reasoning as axiom change:

Incremental view maintenance reconsidered. In Proceedings of the 5th Interna-

tional Conference on Web Reasoning and Rule Systems (RR-2011), pages 139–154.
Springer, 2011.

11. Paulo Liberatore. Redundancy in logic I: CNF propositional formulae. Artificial

Intelligence, 163:203–232, 2005.
12. Cláudio L. Lucchesi and Sylvia L. Osborn. Candidate keys for relations. Journal

of Computer and System Sciences, 17(2):270–279, 1978.
13. Hai H. Nguyen, Natasha Alechina, and Brian Logan. Axiom pinpointing using

an assumption-based truth maintenance system. In Proceedings of the 25th In-

ternational Workshop on Description Logics (DL 2012), pages 290–300. CEUR
Workshop Proceedings Vol-846, 2012.

14. Zoran Nikoloski, Sergio Grimbs, Joachim Selbig, and Oliver Ebenhöh. Hardness
and approximability of the inverse scope problem. In International Workshop on

Algorithms in Bioinformatics, pages 99–112. Springer, 2008.
15. Hossein Saiedian and Thomas Spencer. An e�cient algorithm to compute the

candidate keys of a relational database schema. The Computer Journal, 39(2):124–
132, 1996.

16. James Schmolze and Wayne Snyder. Detecting redundant production rules. In
Proceedings of AAAI-97, pages 417–423, 1997.

17. Stuart C. Shapiro and Haythem O. Ismail. Anchoring in a grounded layered archi-
tecture with integrated reasoning. Robotics and Autonomous Systems, 43:97–108,
2003.

18. Abhishek Sharma and Kenneth Forbus. Automatic extraction of e�cient axiom
sets from large knowledge bases. In Proceedings of AAAI-13, pages 1248–1254,
2013.

19. Takeaki Uno and Hiroko Satoh. An e�cient algorithm for enumerating chordless
cycles and chordless paths. In International Conference on Discovery Science,
pages 313–324. Springer, 2014.

20. Ralf Wastl. Linear derivations for keys of a database relation schema. Journal of

Universal Computer Science, 4(12):883–897, 1998.
21. Marcel Wild. Generating all cycles, chordless cycles, and hamiltonian cycles with

the principle of exclusion. Journal of Discrete Algorithms, 6:93–102, 2008.

25

