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Abstract. Especially in the field of stream reasoning, there is an in-
creased interest in reasoning about temporal data in order to detect
situations of interest or complex events. Ontologies have been proved a
useful way to infer missing information from incomplete data, or simply
to allow for a higher order vocabulary to be used in the event descriptions.
Motivated by this, ontology-based temporal query answering has been
proposed as a means for the recognition of situations and complex events.
But often, the data to be processed do not only contain temporal informa-
tion, but also probabilistic information, for example because of uncertain
sensor measurements. While there has been a plethora of research on
ontology-based temporal query answering, only little is known so far
about querying temporal probabilistic data using ontologies. This work
addresses this problem by introducing a temporal query language that
extends a well-investigated temporal query language with probability
operators, and investigating the complexity of answering queries using
this query language together with ontologies formulated in the description
logic EL.

Keywords: Ontology-Based Query Answering · Temporal Query An-
swering · Probabilistic Reasoning

1 Introduction

Ontology-mediated query answering (OMQA) recently attracted considerable
attention as a technique to query incomplete data. In OMQA, queries are evalu-
ated with respect to an ontology, which specifies background knowledge about
the current domain using a formal language such as a description logic (DL), so
that, using reasoning procedures, also implicit information can be queried from
the data. In the standard OMQA setting, the data to be queried is assumed to
be both static and precise. However, a lot of applications encounter situations
where this assumption fails, yet using ontologies could prove useful. The inter-
net has become highly dynamic, with information being frequently added and
changed, and new data being generated from a variety of sources. In addition,
new technologies such as smartphones and the internet of things (IoT) frequently
encounter a data environment that is constantly changing. To make use of these
ı Supported by the DFG within the collaborative research center SFB 912 (HAEC).
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data, there has been an increasing interest in investigating semantic and reasoning
techniques that process not only static data, but streams of data, such as in
the semantic stream reasoning paradigm [24]. As [24] illustrate, frequently, the
data encountered in stream reasoning applications is not only temporal, but also
probabilistic in nature.

As an example, consider a health or fitness monitoring application, for which
one may want to use concepts from a medical ontology such as SNOMED CT [14]
or Galen [25] to describe information about the health status of a patient.
Specifically, such an application could be used on a smartphone in combination
with a sensor that measures the diastolic blood pressure of the patient while
he is exercising [21]. As the sensor might be imprecise in its measurements, it
might report information about whether the blood pressure of the patient is high
with an associated probability, and provide this information to the application
in regular time intervals. If a too high blood pressure was observed for several
times during a short period, the app should give a warning to the patient, and
advise him to take a break from his exercise.

In order to properly take both the temporal and the probabilistic aspects into
account when querying streams of data, we propose a query language for OMQA
that comes with both temporal and probabilistic operators. For this, we assume a
representation of the data in form of a sequence of probabilistic data sets, which
may have been obtained using further preprocessing and windowing operations.
An ontology expressed in a description logic (DL) gives additional background
information about the domain to be queried, so that implicit information can
be queried from incomplete data through reasoning. In the above scenario, the
following query could for example be used to detect whether the patients blood
pressure was at least twice recorded as high during the last 10 minutes.

P>.8(#≠10⌃(HighBloodPressure(x) · ⌃HighBloodPressure(x)))

While there has been a lot of research on querying temporal data [1] and
probabilistic data [7,19] using ontologies, we are not aware of any research were
both aspects are combined in the specific setting we described. In this work,
we focus on the setting where the ontology is formulated in EL, a DL that is
known for its good computational properties, such as polynomial decidability
for most common reasoning problems. This DL, which underlies the OWL EL
profile of the web ontology language standard OWL, is used for many large scale
ontologies, especially in the bio-medical domain and for the semantic web, such
as for the ontologies SNOMED CT and Galen mentioned above. However, our
hardness results already apply for simpler description logics such as DL-Lite, as
well as for the case where no ontology is used.

Related Work Our language is an extension of the temporal query language
investigated in [3,8], which extends conjunctive queries with LTL operators.
Other authors considered using these operators also as part of the DL, either
to describe temporal concepts [16], or to make the axioms of the ontology itself
temporal [4]. Recently, this work has been extended also to metric temporal logics,
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in which temporal operators are annotated with numerical time intervals [2,9,18].
Temporal reasoning for streams of data has recently also been considered in the
context of datalog [26]. Surveys on temporal reasoning and query answering with
ontologies can be found in [1,23].

Our probabilistic query-answering framework is based on the OMQA frame-
work for probabilistic data presented in [19]. Since this publication, several authors
investigated OMQA in similar settings [7,6,12]. To our knowledge, the only work
that combines both temporal and probabilistic query answering in the presence of
description logic ontologies is [11]. Albeit, the authors consider a di�erent setting,
in which the flow of time is modelled by a Markov-process. In contrast, we consider
temporal data that are provided as a sequence of probabilistic ABoxes. In addition
to settings based on probabilistic databases, there is also research on extending
DLs with probability operators, such as in P-SHIF(D)/P-SHOIN (D) [22] or
Prob-ALC/Prob-EL [17]. While our DL does not support probability operators,
the probability operator used in our query language syntactically and semantically
corresponds to the probability operator in Prob-ALC and Prob-EL.

Formal details of the proofs can be found in the extended version of the
paper [20].

2 Preliminaries

We recall the DL EL [5] studied here. Let NC,NR and NI be countably infinite and
pair-wise disjoint sets of respectively concept names, role names and individual
names. An EL concept is of one of the forms

€ | A | C1 Ù C2 | ÷r.C

where A œ NC, r œ NR, and C1, C2 and C are EL concepts. An EL axiom is of
the form C1 ı C2, where C1 and C2 are EL concepts. An EL TBox is a set of EL
axioms. An ABox A is a set of assertions of the form A(a) and r(a, b), where
A œ NC, r œ NR and a, b œ NI. An EL knowledge base (KB) is a tuple K = ÈT , AÍ,
where A is an ABox and T an EL TBox.

The semantics of KBs is defined in terms of interpretations, which are tuples
I = È∆I , ·IÍ, ∆I being a set of domain elements, and ·I an interpretation function
that maps each a œ NI to an element aI œ ∆I s.t. for a ”= b œ NI, aI ”= bI (unique
name assumption, UNA), each A œ NC to a subset AI ™ ∆I , each r œ NR to a
subset rI ™ ∆I ◊ ∆I . The interpretation function ·I is extended to concepts
and roles as follows:

€I = ∆I (C1 Ù C2)I = CI
1 fl CI

2

(÷r.C1)I = {d œ ∆I | ÷(d, e) œ rI , e œ CI
1 },

where C1, C2 are concepts and r œ NR . An interpretation is a model of a KB
ÈT , AÍ (of an TBox) if for every C ı D œ T , CI ™ DI , for every A(a) œ A,
aI œ AI , and for every r(a, b) œ A, (aI , bI) œ rI .
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A conjunctive query (CQ) takes the form q = ÷y.„(x, y), where x, y are
vectors of variables and „(x, y) is a conjunction over atoms of the forms A(t1)
and r(t1, t2), where A œ NC, r œ NR, and t1 and t2 are terms taken from NI, x or
y. x are the answer variables of q. Given an interpretation I and a CQ q with
answer variables x1, . . . , xn, the vector a1 . . . an ™ NI

n is an answer of q in I if
there exists a mapping fi : term(q) æ ∆I s.t. fi(xi) = ai for i œ J1, nK fi(b) = bI

for b œ NI, fi(t) œ AI for every A(t) in q, and Èfi(t1), fi(t2)Í œ rI for every r(t1, t2)
in q. a1 . . . an is a certain answer of q in a KB K if it is an answer in every model
of K. If a query does not contain any answer variables, it is a Boolean CQ, and
we say it is entailed by a KB K (an interpretation I) if it has the empty vector
as answer.

3 Temporal Probabilistic Knowledge Bases and Queries

We introduce temporal probabilistic knowledge bases (TPKBs) and temporal
probabilistic queries (TPQs).

Temporal Probabilistic Knowledge Bases. Probabilistic information about a single
time point is represented using a probabilistic ABox as introduced in [19]. For
simplicity, we focus on assertion-independent probabilistic ABoxes (ipAboxes),
though all results should easily extend to the more general case. ipABoxes are the
ABox equivalent of tuple-independent probabilistic databases [13]. An ipABox
is a set of probabilistic ABox assertions of the form – : p, where – is an ABox
assertion and p œ [0, 1]. Intuitively, – : p describes that the assertion – holds
with a probability of at least p. Instead of – : 1, we may just write – if the
meaning is clear from the context. ipABoxes only specify a lower bound on the
probability, to conform with the open-world semantics common in ontology-based
representations.1

An EL TPKB is now a tuple ÈT , (Ai)iœJ1,nKÍ, where T is an EL TBox and
(Ai)iœJ1,nK is a sequence of n ipABoxes. Given a TPKB K = ÈT , (Ai)iœJ1,nKÍ, the
set œK of possible worlds of K contains all sequences w = (AÕ

i)iœJ1,nK of classical
ABoxes such that for every i œ J1, nK and – œ AÕ

i, Ai contains an axiom of the
form – : p. Each TPKB uniquely defines a probability space ÈœK, µKÍ, where
µK : 2œK æ [0, 1] satisfies

µK({(AÕ
i)iœJ1,nK}) =

Ÿ

iœJ1,nK
–:pœAi

–œAÕ
i

p ·
Ÿ

iœJ1,nK
–:pœAi

–”œAÕ
i

(1 ≠ p)

and for W ™ œK, µK(W ) =
q

wœW µ({w}). Intuitively, µK(W ) gives the proba-
bility of being in one of the possible worlds in W , by summing up the probabilities
of each possible world. The definition of µK(W ) reflects the assumption that all
probabilities in the TPKB are statistically independent.
1 Note that this is di�erent to the open-world semantics for probabilistic databases

suggested in [10], which assumes a fixed upper probability for facts absent in the
data.
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œK A
Õ
1 A

Õ
2 A

Õ
3 A

Õ
4 A

Õ
5 µK

w1 {hasBP(p, b), HighBP(b)} ÿ {HighBP(b)} {HighBP(b)} ÿ 0.378
w2 {hasBP(p, b)} ÿ {HighBP(b)} {HighBP(b)} ÿ 0.162
w3 {hasBP(p, b), HighBP(b)} ÿ ÿ {HighBP(b)} ÿ 0.042
w4 {hasBP(p, b)} ÿ ÿ {HighBP(b)} ÿ 0.018
w5 {hasBP(p, b), HighBP(b)} ÿ {HighBP(b)} ÿ ÿ 0.252
w6 {hasBP(p, b)} ÿ {HighBP(b)} ÿ ÿ 0.108
w7 {hasBP(p, b), HighBP(b)} ÿ ÿ ÿ ÿ 0.028
w8 {hasBP(p, b)} ÿ ÿ ÿ ÿ 0.012

Table 1. Probability space of example TPKB.

Example 1. We define the TPKB K = ÈT , (Ai)iœJ1,5KÍ where T contains the GCI

HighBloodPressurePatient © ÷hasBloodPressure.HighBloodPressure

and the ABoxes A1 = {hasBP(p, b), HighBP(b) : 0.7}, A2 = ÿ, A3 = {HighBP(b) :
0.9}, A4 = {HighBP(b) : 0.6} and A5 = ÿ, where BP is short for BloodPressure.
Every possible world w = (AÕ

i)iœJ1,5K with hasBP(p, b) ”œ AÕ
1 has probability

µK(w) = 0. The remaining possible worlds are shown in Table 1, with the
probability measure µK shown in the last column.

A model of a TPKB K = ÈT , (Ai)iœJ1,nKÍ is a mapping ÿ from possible worlds
w = (AÕ

i)iœJ1,nK œ œK to sequences (ÿ(w)i)i>0 of (classical) models of T s.t. for
all i œ J1, nK, ÿ(w)i is a model of the classical knowledge base ÈT , AÕ

iÍ, and all
ÿ(w)i have the same set ∆ÿ of domain elements (constant domain assumption).

Rigid Names. As typical for temporal knowledge bases, we may assume in
addition a set Nrig of rigid names, containing the set NCrig ™ NC of rigid concept
names and the set NRrig ™ NR of rigid role names. Rigid names denote names
whose interpretation is independent of the flow of time. We say that a model ÿ of
a TPKB K = ÈT , (Ai)iœJ1,nKÍ respects rigid names i� for all w œ œK, i, j œ J1, nK
and X œ Nrig, Xÿ(w)i = Xÿ(w)j . Allowing for rigid names often has a direct impact
on complexity and decidability of common reasoning problems, which is why
typically di�erent cases based on whether NCrig = ÿ or NRrig = ÿ are studied for
complexity.
Example 2. In the above example, the relation hasBP is rigid, as its interpretation
should be independent of time, while the concept HighBP is not rigid, as the
blood pressure of a patient can change from high to not high. As a consequence,
the individual p will be related to the blood pressure b at all time points, even
though the assertion hasBP(p, b) is only placed in the ipABox A1.

Temporal Probabilistic Queries. A temporal probabilistic query (TPQ) is of one
of the following forms, where q is a CQ, „1 and „2 are a TPQs and p œ [0, 1].

q | ¬„1 | „1 · „2 | „1 ‚ „2 | #„1 | ⌃„1 | 2„1 | „1 U„2

#≠„1 | ⌃≠„1 | 2≠„1 | „1S„2 | P>p„1 | P=p„1 | P<p„1
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„ ÿ, w, i |= „ i� „ ÿ, w, i |= „ i�
÷y.Â(y) ÿ(w), i |= ÷y.Â(y) ¬„ ÿ, w, i ”|= „

„1 · „2 ÿ, w, i |= „1 and ÿ, w, i |= „2 „1 ‚ „2 ÿ, w, i |= „1 or ÿ, w, i |= „2

#„1 ÿ, w, i + 1 |= „1 ⌃„1 ÿ, w, j |= „1 for some j Ø i
2„1 ÿ, w, j |= „1 for all j Ø i „1 U„2 ÿ, w, j |= „2 for some j Ø i and

ÿ, w, k |= „1 for all k œ Ji, j ≠ 1K

#≠„1 ÿ, w, i ≠ 1 |= „1 and i > 0 ⌃≠„1 ÿ, w, j |= „1 for some j Æ i
2≠„1 ÿ, w, j |= „1 for all j Æ i „1S„2 ÿ, w, j |= „2 for some j Æ i and

ÿ, w, k |= „1 for all k œ Jj + 1, iK

P≥p„ µK({w œ œK | ÿ, w, i |= „}) ≥ p,
where ≥ œ {<, =, >}

Table 2. Entailment of Boolean TPQs in the possible world w at time point i under
interpretation ÿ.

The operators # (next), ⌃ (eventually), U (until) and their inverses are
temporal operators of LTL, while P>, P= and P< are the probability operators
that we add to this language. TPQs without probability operators corresponds
to temporal queries (TQs) investigated in [8]. Note that due the disjunction
operator, we can also express unions of conjunctive queries (UCQs), which are
simply disjunctions of CQs. The answer variables of a TPQ „ are the answer
variables of the CQs occurring in „. A TPQ „ is Boolean if every variable in „ is
bound by an existential quantifier.

We define the semantics of TPQs. Note that each possible world w œ œK has
its own time line, while a model of K contains a sequence of models for every
possible world. For a given model, we define the semantics of temporal operators
with respect to a single time line, that is, with respect to a current possible world.
Probabilistic expressions P≥p„ are the only expressions that are interpreted with
respect to other possible worlds.

Let ÿ be a model of K, and „ a Boolean TPQ. For a single possible world
w œ œK and a time point i, we say that „ is satisfied at w, i under ÿ, in symbols
ÿ, w, i |= „ i� the conditions in Table 2 are satisfied. Note that the temporal
operators refer to the time line of a single possible world, for which they are
defined as in [8]. In contrast, the probabilistic operator refers to the current
time point in multiple possible worlds, and is defined similar to the probabilistic
concept constructor in the DL Prob-ALC [17]. A Boolean TPQ „ is satisfied in
an interpretation ÿ at i, in symbols ÿ, i |= „, i� ÿ, w, i |= „ for all w œ œK. It is
entailed by the TPKB K at i i� ÿ, i |= „ for all models ÿ of K. „ is satisfiable in K
at i i� there exists a model ÿ of K s.t. ÿ, i |= „.

Now given a TPKB K, a TPQ „ with answer variables x, a time point i > 0,
and a mapping ‡ : x æ NI, ‡ is a certain answer for „ in K at i i� K, i |= „Õ,
where „Õ is the result of applying ‡ on „. As common, since computing answers
for TPQs can be seen as a search problem that uses Boolean TPQ entailment,
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we focus on the decision problem of query entailment, and may refer to Boolean
TPQs simply as TPQs.

Example 3. If we consider a slight variation of the query from the introduction.

P>.8(#≠5⌃(HighBPPatient(x) · ⌃HighBPPatient(x)))

For x = p and time point 5, the query below the probability operator is entailed
in every model of the possible worlds w1, w2, w3 and w5, which together have a
probability of 0.834. Consequently, b is an answer to the query at time point 5.
Now consider the variation where the probability operators are moved inside:

#≠5⌃(P>.8(HighBPPatient(x)) · ⌃P>.8(HighBPPatient(x)))

This corresponds to the situation where at least twice in the last 5 minutes, the
probability of having a high blood pressure was above 0.8. As this probability is
only once above this bound, this query is not entailed.

4 Lower Complexity Bound

Temporal query answering without probabilities is PSpace-complete in combined
complexity if NRrig = ÿ, and otherwise coNExpTime-complete [8]. On the other
hand, computing the probability of a CQ from an ipABox is PPNP-complete (see
extended version of the paper), and thus also in PSpace [27]. It turns out that,
if both the temporal and the probabilistic dimension are combined, we obtain an
increase to ExpSpace in complexity. This complexity increase already happens
without any rigid symbols, and for TPKBs without TBox and with only one
ABox, so that the DL is in fact irrelevant for this result.

A query „ is entailed by a TPKB K i� ¬„ is not satisfiable in K. As the
complexity class ExpSpace is closed under complement, we can therefore focus on
the problem of query satisfiability. We obtain ExpSpace-hardness by reduction
of the exponential variant of the corridor tiling problem [15]. In this problem, we
are given a set T of tile types, two special tile types ts,te œ T , a natural number n,
and two functions v and h of compatibility constraints v : T æ 2T (vertical) and
h : T æ 2T (horizontal). The input is an instance of the exponential corridor tiling
problem if there exists a number m œ N and a tiling f : J0, mK ◊ J0, 2n ≠ 1Kæ T
such that f(0, 0) = ts, f(m, 0) = te, and for all x œ J0, mK and y œ J0, 2n ≠ 1K, if
x < m, f(x + 1, y) œ h(f(x, y)) and if y < 2n ≠ 1, f(x, y + 1) œ v(f(x, y)).

We only sketch the idea of the construction here, and leave the details to
the long version of the paper. We use n concept names Ai to mark the di�erent
possible worlds w œ œK with a counter, such that in interpretations ÿ that satisfy
both the TPQ and the TPKB, ÿ, w, j |= Ai(a) i� the ith bit of the counter is 1 at
time point j, and ÿ, w, j ”|= Ai(a) i� the ith bit is 0 at time point j. Furthermore,
we make sure that each possible world is at each time point uniquely determined
by its counter value. For this, we use the ipABox A1 = {Ai(a) : 0.5 | i œ J1, nK}.
The query then makes sure that the counter values are increased for each time

74



0
1
2
3

1
2
3
0

2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

2
3
0
1

3
0
1
2

· · ·

Fig. 1. Illustration of the tilings represented by the possible worlds.

point. Figure 1 illustrates this idea. Intuitively, each possible world corresponds
to a row in the tiling, with its counter value at time point 1 denoting the row
number.

At each time point, there are two possible worlds that can be most easily
recognised by a query: the one whose counter value is 0 (which satisfies the queryw

1ÆiÆn ¬Ai(a)), and the one whose counter value is 2n ≠ 1 (which satisfies the
query

w
1ÆiÆn Ai(a)). Unless the latter one represents the last row, both these

possible worlds correspond to neighbouring rows, which means at each time point
we can recognise the vertical neighbour relation for two rows easily, and thus
enforce tiling conditions in that direction with the following query, where L(a) is
an assertion that marks the last row, and for a tile type t œ T , Bt(a) expresses
that the current cell has a tile of type t.

2
fi

t1œT

Q

a

Q

aBt1(a) ·
fi

iœJ1,nK
Ai(a) · ¬L(a)

R

b

æ
fl

t2œv(t1)
P=1

Q

a

Q

a
fi

iœJ1,nK
¬Ai(a)

R

b æ Bt2(a)

R

b

R

b

As we can only check the vertical tiling conditions for one pair of rows at a
time, we represent each cell by up to 2n succeeding time points in each possible
world, performing a switch only when the counter reaches 2n ≠ 1. The remaining
reduction is described in the extended version of the paper.

Lemma 1. Entailment of TPQs is ExpSpace-hard in combined complexity,
even for TKBs ÈT , (Ai)iœJ1,nKÍ where T = ÿ, n = 1 and NCrig = NRrig = ÿ.

5 Upper Complexity Bound

We show that the complexity result presented in the last section is indeed tight,
even if NRrig ”= ÿ. We sketch here only the case without rigid symbols. How rigid
symbols are integrated is then discussed in the extended version of the paper. Our
construction is based on an abstraction of a temporal probabilistic model, which
we call quasi-model, which collects for each time point and possible world the CQs
occurring in the input query that are entailed, as well as the CQs that are not
entailed. We focus on satisfiability of a TPQ „ in a TPKB K = ÈT , (Ai)iœJ1,nKÍ,
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where we say „ is satisfiable in K i� „ is satisfiable in K at 1. In other words, we
ignore the time point to make things simpler. Since „ is satisfiable in K at i i�
#i≠1„ is satisfiable, this is su�cient for our complexity analysis.

We can assume without loss of generality that „ contains only the operators
·, ¬, U , S and P≥p, since the remaining operators can be linearly encoded
using known equivalences. Denote by sub(„) the sub-queries of „ and set T („) =
{Â, ¬Â | Â œ sub(„)}. A quasi-state is a mapping Q : œK æ T („) that satisfies
the following conditions:

S1 ¬Â œ Qi(w) i� Â ”œ Qi(w),
S2 for all Â1 · Â2 œ T („): Â1 · Â2 œ Qi(w) i� Â1 œ Qi(w) and Â2 œ Qi(w), and
S3 for all P≥p(Â) œ T („): P≥p(Â) œ Qi(w) i� µK({w | Â œ Qi(w)}) ≥ p.

The quasi-state abstracts probabilistic interpretations at a single time point by
assigning queries to each possible world according to the semantics of the atempo-
ral operators in our query language. To incorporate the temporal dimension, we
consider unbounded sequences of quasi-states (Qi)iØ1, which we call quasi-models
for „ in K, and which have to satisfy the following conditions for i Ø 1 and
w = (AÕ

i)iœJ1,nK œ œK.

Q1 „ œ Q1(w),
Q2 if i œ J1, nK, AÕ

i |=
w

ÂœX Â, where X = {Â œ Qi(w) | Â is a CQ or a negated
CQ}.

Q3 for all #Â œ T („), #Â œ Qi(w) i� Â œ Qi+1(w),
Q4 for all #≠Â œ T („), #≠Â œ Qi+1(w) i� Â œ Qi(w),
Q5 for all Â1 UÂ2 œ T („), Â1 UÂ2 œ Qi i� there exists j Ø i s.t. Â2 œ Qj(w) and

for all k œ Ji, j ≠ 1K, Â1 œ Qk(w), and
Q6 for all Â1SÂ2 œ T („), Â1SÂ2 œ Qi i� there exists j Æ i s.t. Â2 œ Qj(w) and

for all k œ Jj ≠ 1, iK, Â1 œ Qk(w).

Again, the intuition behind these conditions follows directly from the semantics
of the temporal operators. As we show in the extended version of the paper,
quasi-models are indeed su�cient to witness the satisfiability of a TPQ in a
TPKB. Moreover, it is su�cient to consider quasi-models that are of a certain
regular form, which is the crucial element for our complexity bound.

Lemma 2. „ is satisfiable in K with NCrig = NRrig = ÿ i� there exists a quasi-
model for „ in K wrt. S and a which is of the form

Q1, . . . Qm(Qm+1, . . . Qm+o)Ê,

where m and o are both double-exponentially bounded in the size of K and „.

Exploiting the fact that ExpSpace = NExpSpace, we obtain our space
bounds by a non-deterministic decision procedure that can be roughly sketched
as follows. We first guess the numbers m and o. While m and o are double-
exponentially bounded, they can be stored in exponential space using binary
encoding. We now guess the quasi-states Q1, . . ., Qm+o one after the other,
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where we carefully make sure that all conditions of quasi-models are satisfied. In
particular, we keep track of U - and S-formulae that have to be satisfied, and we
keep the state Qm+1 in memory to test that it is compatible to Qm+o, and that
all U-formulae in Qm+1 are satisfied before we reach Qm+o.

In the extended version of the paper, we present a refined version of quasi-
models, which also have the above regularity property, but additionally take into
consideration rigid predicates. The main idea is to use for each possible world an
additional structure that determines which sets of CQs and their negations can
be entailed at any time point under the rigidity constraints. This structure takes
exponential space per possible world, and can be computed in non-deterministic
exponential time.

Theorem 1. Entailment of TPQs from EL-TPKBs can be decided in ExpSpace,
even if NRrig ”= ÿ and NCrig ”= ÿ.

6 Removing Negation

The complexity increase discussed in the last sections can be avoided if we restrict
ourselves to positive TPQs, which are TPQs that do not use the operators ¬,
P<p and P=p. Note that the probability operators P<p„ and P=p„ can be seen
as implicit negation operators, as they express the non-entailment of „ in some
possible worlds, whereas P>p„ only expresses the positive entailment of „ in
possible worlds. The example queries shown in this paper are all positive queries.

In the absence of negation, it is possible to evaluate the probabilities of sub-
queries “inside-out”, starting from queries of the form P>p„ where „ contains no
probabilistic operators. For non-probabilistic temporal queries, it can be decided
in P data and NP combined complexity whether they are entailed. This allows to
decide the entailment of P>p„ at any time point in PP, by using a probabilistic
Turing machine that guesses all possible worlds of the TPKB. Using closure
properties of the complexity class PP, we can thus obtain tight complexity bounds
for the case where the nesting depth of probability operators is bounded, and
otherwise inclusion in PPP, a complexity class that is still contained in PSpace.

Theorem 2. Entailment of positive TPQs from EL-TPKBs is PP-complete
wrt. data complexity. Regarding combined complexity, it is PPNP-complete if
the nesting depth of probability-operators in the query is bounded, and otherwise
in PPP. The results already hold for NRrig ”= ÿ.

7 Conclusion

We investigated the complexity of querying temporal probabilistic data using a
combination of LTL and conjunctive queries with probability operators. While
pure temporal and pure probabilistic query answering are both in PSpace for
most cases, combining both dimensions yields completeness for ExpSpace. This
increase in complexity already happens without TBoxes and just with a single
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ABox, so that the hardness result is in fact independent of DL reasoning. This
increase of complexity can be avoided if we restrict ourselves to positive TPQs, in
which case the temporal dimension comes at no cost or almost no cost compared
to pure probabilistic query answering. While this paper presented a theoretical
study of the setting of temporal probabilistic query answering, the methods
presented give no clear idea how a practical implementation would look like. For
description logics that enjoy first-order rewritability such as DL-Lite, a solution
could be to rewrite temporal queries into SQL and use a probabilistic database
system to compute their probabilities. However, this approach would only work
for queries that do not use negation, and it is not clear whether it can be used
with rigid symbols [8]. Another open question is how the data complexity looks
like in the case where we allow for negation, and whether the complexities further
change if we admit more expressive DLs, or even DLs that support temporal and
probabilistic operators themselves.
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