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Abstract. In the early days of machine learning, Donald Michie intro-
duced two orthogonal dimensions to evaluate performance of machine
learning approaches – predictive accuracy and comprehensibility of the
learned hypotheses. Later definitions narrowed the focus to measures of
accuracy. As a consequence, statistical/neuronal approaches have been
favoured over symbolic approaches to machine learning, such as inductive
logic programming (ILP). Recently, the importance of comprehensibil-
ity has been rediscovered under the slogan ‘explainable AI’. This is due
to the growing interest in black-box deep learning approaches in many
application domains where it is crucial that system decisions are trans-
parent and comprehensible and in consequence trustworthy. I will give a
short history of machine learning research followed by a presentation of
two specific approaches of symbolic machine learning – inductive logic
programming and end-user programming. Furthermore, I will present
current work on explanation generation.

Die Arbeitsweise der Algorithmen, die über uns entscheiden, muss transparent

gemacht werden, und wir müssen die Möglichkeit bekommen, die Algorithmen

zu beeinflussen. Dazu ist es unbedingt notwendig, dass die Algorithmen ihre

Entscheidung begründen!

Peter Arbeitsloser zu John of Us, Qualityland, Marc-Uwe Kling, 2017

1 Introduction

Machine learning research began in the 1950s with roots in two di↵erent scientific
communities – artificial intelligence (AI) and signal processing. In signal pro-
cessing research mainly statistical methods to generalisation learning from data
were developed under the label of pattern recognition. In AI machine learning
was investigated under this label as a crucial principle underlying general intel-
ligent behaviour along with other approaches such as knowledge representation,
automated reasoning, planning, game playing, and natural language processing
(Minsky, 1968). Over the next decades, research between these two commu-
nities began to overlap, mainly with respect to neural information processing
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research, especially artificial neural networks. An early important domain of in-
terest outside the machine learning community itself was data bases research
which recognised the usefulness of machine learning methods for the discovery
of patterns ins large data bases (data mining).

In the early days of machine learning, Donald Michie introduced two or-
thogonal dimensions to evaluate performance of machine learning approaches
– predictive accuracy and comprehensibility of the learned hypotheses (Michie,
1988). Michie proposed to characterise comprehensibility as operational e↵ective-
ness – meaning that the machine learning system can communicate the learned
hypothesis (model) to a human whose performance is consequently increased to
a level beyond that of the human studying the training data alone (Muggleton,
Schmid, Zeller, Tamaddoni-Nezhad, & Besold, 2018). Later definitions (Mitchell,
1997), narrowed their focus to measures of accuracy. As a consequence, statis-
tical/neuronal approaches have been favoured over symbolic approaches to ma-
chine learning, such as inductive logic programming (ILP) (Muggleton & De
Raedt, 1994).

However, in recent years, there is a growing recognition that the holy grail
of performance is not su�cient for successful applications of machine learning in
complex real world domains. Under the label of ‘explainable AI’ (Ribeiro, Singh,
& Guestrin, 2016) di↵erent approaches are proposed for making classification
decisions of black box classifiers such as (deep) neural networks more transparent
and comprehensible for the user. Such explanations are mostly given in form of
visualisations. However, alternatively or additionally, verbal explanations might
be helpful, similar to the approaches to explanation generation developed in early
AI (Clancey, 1983). There explanations were generated based on the execution
traces of rules during inference. While most current machine learning methods
rely on implicit black box representations of the induced hypotheses, symbolic
machine learning approaches allow to induce rules from training examples.

In the following, I will argue that symbol level approaches to machine learn-
ing, such as approaches to inductive programming, o↵er an interesting comple-
ment to standard machine learning. I will present ILP and end user programming
as two specific approaches of interest. Furthermore, I will present current work
on explanation generation.

2 Approaches to Inductive Programming

A classic white-box approach which allow the generation of hypotheses in form of
symbolic representations are decisions trees and variants such as decision rules or
random forests. There is empirical evidence that such machine learned hypoth-
esis can be understood and applied by humans (Lakkaraju, Bach, & Leskovec,
2016; Fürnkranz, Kliegr, & Paulheim, 2018). Other approaches to symbol-level
learning are grammar inference (Angluin, 1980; Siebers, Schmid, Seuß, Kunz, &
Lautenbacher, 2016), inductive functional programming (Gulwani et al., 2015;
Schmid & Kitzelmann, 2011; Kitzelmann & Schmid, 2006), and the already
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Fig. 1. Recursive functional program to solve Tower of Hanoi problems learned from
a small set of examples, taken from Gulwani et al., 2015.

mentioned inductive logic programming. An example for a learned functional
program is given in Figure 1, an example for ILP is given in Figure 2

In contrast to standard machine learning, these approaches are strongly re-
lated to formalisms of computer science. The expressiveness of learned hypothe-
ses goes beyond conjunctions over feature values. In principle, arbitrary com-
puter programs – for instance in the declarative language Haskell (for inductive
functional) or Prolog (for inductive logic programming) can be induced from
training examples (Gulwani et al., 2015; Muggleton et al., 2018). The learned
programs or rules are naturally incorporable in rule-based systems. Because the
learned hypotheses are represented in symbolic form they are inspectable by hu-
mans and therefore provide transparency and comprehensibility of the machine
learned classifiers. In contrast to many standard machine learning approaches,
learning is possible from few examples. This corresponds to the way humans
learn in many high-level domains (Marcus, 2018). However, there are also some
draw-backs for these symbolic approaches to machine learning: They are inher-
ently brittle and are not designed to deal well with noise and it is in general
not easy to express complex non-linear decision surfaces in logic. While (deep)
neural networks and other black box approaches often reach high predictive ac-
curacy, symbolic approaches such as inductive functional or logic programming
are superior with respect to comprehensibility. Consequently, research on hy-
brid approaches combining both methods seems a promising domain of research
(Rabold, Siebers, & Schmid, 2018).

2.1 Inductive Logic Programming

Inductive logic programming has been established in the 1990ies as a symbol-
level approach to machine learning where logic (Prolog) programs are used as
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Background Knowledge (Observations):

father(jake,alice). mother(matilda,alice).
father(jake,john). mother(matilda,john).
father(bill,ted). mother(alice,ted).
father(bill,megan). mother(alice,megan).
father(john,harry). mother(mary,harry).
father(john,susan). mother(mary,susan).

mother(mary,andy).
father(ted,bob). mother(jill,bob).
father(ted,jane). mother(jill,jane).
father(harry,sam). mother(liz,sam).
father(harry,jo). mother(liz,jo).

Target Concepts (Rules):
% grandparent without invented pred.
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), father(Z,Y).

% ancestor without invented predicate
p(X,Y) :- father(X,Y).
p(X,Y) :- mother(X,Y).
p(X,Y) :- father(X,Z), p(Z,Y).
p(X,Y) :- mother(X,Z), p(Z,Y).

Target Concepts (Rules):
p(X,Y) :- p1(X,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

% ancestor with invented predicate
p(X,Y) :- p1(X,Y).
p(X,Y) :- p1(X,Z), p(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

Fig. 2. An example family tree and two possible target predicates which can be learned
from a small set of positive and negative examples, taken from Muggleton et al., 2018.

a uniform representation for examples, background knowledge and hypotheses.
In Figure 2 the well-known family tree example is shown. Here the father and
mother relations are given as background knowledge as observed/known facts
concerning a specific family. Target predicates can be as simple as grandfather
which can be described as the father of a parent of a person or a bit more
general such as grandparent or more complex, such as the ancestor relation
which involves recursion. For learning, some positive and negative examples for
the target predicate are presented. For example ancestor(Jake, Bob) is a positive
example and ancestor(Harry, Mary) is a negative example for ancestor. Given
this information, an ILP system can derive a hypothetical logic program which
entails all the positive and none of the negative examples. Some relaxation of
this brittle criterion is possible (Siebers & Schmid, 2018).

One of the main advantages of ILP over other symbolic approaches to ma-
chine learning is that it allows to consider n-ary relations. Although it is possible
to transform relations into features, such a transformation can be tedious, result
in sparse feature vectors, and cannot be performed without loss of information.
The advantage of ILP in structural domains such as chemistry has for example
been demonstrated for the identification of mutagenic chemical structures (King,
Muggleton, Srinivasan, & Sternberg, 1996). That humans can comprehend and
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Fig. 3. Flashfill as example for a successful application of inductive programming to
end-user programming. Here a user edits the first line of column 2 and Flashfill can
infer the intended transformation, taken from Gulwani et al., 2015.

successfully apply ILP learned rules has been demonstrated in two experiments
(Muggleton et al., 2018)

2.2 End-user Programming

Inductive programming approaches typically are defined in a generic way. In the
context of end-user programming, Gulwani and colleagues demonstrated that
such techniques can be highly e�cient in complex practical applications if they
are restricted for a specific domain (Gulwani et al., 2015). For example, since
2013 the system Flashfill is included in Excel. It can learn table manipulations
from observing user actions.

Flashfill is a convincing example for end-user programming which gives users
without background in computer programming the possibility to work more ef-
ficiently with their software applications (Cypher, 1995; Schmid & Waltermann,
2004). Users with a background in computer programming have the possibil-
ity to inspect the programs induced by Flashfill. For end-users, transparency is
gained by the possibility to directly observe the e↵ect of giving an example on
the actions of the program.

3 Explanation Generation

Over the last years there is a growing interest in artificial intelligence from in-
dustry and it became a topic of discussion in politics and society in general.
Mostly AI is used a label for machine learning – ignoring all other subject do-
mains which constitute AI, among them knowledge representation and learning.
Furthermore, machine learning is mostly exclusively referring to artificial neural
networks, especially variants of deep learning. Following the big bang of deep
learning (LeCun, Bengio, & Hinton, 2015), there is a growing recognition from
practitioners, for example in medicine, in connected industry, and in automotive,
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Fig. 4. Illustration of an explanation of the classifier decision that the person is in
pain.

that back box classifiers have the disadvantage of being intransparent. Evalua-
tion of the safety of software involving such classifiers is problematic and naive
as well as expert users will ultimately hesitated to trust such systems.

It is widely recognized that explanations are crucial for comprehensibility and
trust (Tintarev & Mastho↵, 2015; Ribeiro et al., 2016). For image classification,
explanations are typically given in a visual form. For example, the system LIME
provides an explanation interface where such parts of an image are highlighted
which are relevant for the classification decision (Ribeiro et al., 2016). However,
visual explanations are restricted to conjunctions of isolated information. Verbal
explanations in addition allow for the use of relational information, for recursion,
and even negation:

– This is a grave of the iron age because there is one stone circle within another
one.

– This is a correct Tower of Hanoi because starting with the largest disk at
the bottom, each disk is smaller then the previous one.

– This is a peaceful person because he/she is not holding a weapon (but a
flower).

Often, it might be especially helpful to combine visual and verbal explana-
tions. An example is given in Figure 4. Here the explanation involves distortions
of specific regions of the face which are typically characterized by so called ac-
tion units used in the facial action coding systems (FA CS) (Ekman & Friesen,
1971; Siebers et al., 2016). The explanation can be given either in generally
understandable terms or for an expert knowledgeable in FA CS coding.

Explanations are important for transparency of a machine learned classifier.
Experts might demand an explanation if their own decision deviates from that
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Fig. 5. Illustration of an explanation of the classifier decision that the person is in
pain.

of the classifier. The explanation might be convincing for the expert or not and
consequently, the expert might revise his decision or override the classification.

Explanations can also be helpful in education and training. Here, contrasting
examples might be helpful to make explanations more comprehensible. In many
realistic contexts, it is not so easy to relate ones perception to a specific feature
value. For example, to classify a mushroom it might be necessary to decide
whether the cap has the shape of a bell or whether it is conical (Schlimmer,
1987). To understand the di↵erence between these feature values, contrasting
examples might be helpful. Similarly, facial expressions for pain and disgust share
a number of action units. Consequently, sometimes an observer might confuse
these states and might profit from an explicit contrast (see Fig, 5.

It is an open research question which type of contrast is helpful to support
understanding. In cognitive science research on similarity and analogy it is rec-
ognized that alignment is an important aspect for concept acquisition (Markman
& Gentner, 1996; Goldwater & Gentner, 2015). Exemplars must be su�ciently
similar that di↵erences between them are helpful: To understand the concept
of a bottle, it might be helpful to contrast it with some other receptacle such
as a mug but it will not be helpful to contrast it with an arbitrary object, say
a chair. To understand the concept of a grandparent (see Fig. 2) it might be
helpful to replace one attribute, such as male – contrasting with grandmother –
or to invert relations, contrasting with grandchild.

4 Conclusions and Further Work

It is my strong conviction that future applications of machine learning should
not aim at replacing human decision makers but at supporting them in com-
plex domains. It is still desirable, in my opinion, to develop machine learning
approaches which fulfill the ultra-strong machine learning criterion proposed by
Michie. Thereby, rather than creating autonomous systems which replace hu-
mans, we can create intelligent companion systems (Forbus & Hinrichs, 2006).
Such companions might make it possible that humans can perform better when
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supported by the system than when they are on their own. ‘Better’ might address
e�ciency, correctness, or simply feeling more secure or more relaxed. I hope that
approaches to inductive programming will be a useful building block in such an
endeavour.
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