
A Chart Parsing implementation in Answer Set
Programming

Ismael Sandoval Cervantes

Ingenieria en Sistemas Computacionales
ITESM, Campus Guadalajara

elcoraz@gmail.com

Rogelio Dávila Pérez
Departamento de Sistemas de Informacion

CUCEA, Universidad de Guadalajara
rdav90@gmail.com

Abstract. The present document presents an attempt to develop an Answer-
Set Prolog program to implement a well-known strategy for natural language
parsing, known as chart parsing. It is important to notice that the program
presented is an end-term project for a course in natural language processing,
even though we believe there are interesting insights that can be extracted
from this effort.

1 Introduction
An important language for knowledge representation and programming, called
Answer-Set Programming (ASP) [1] has been developed and offers interesting
possibilities for natural language processing. With the aim of exploring the
capabilities of ASP in this area, it was decided to build an experimental program for
undertaking the parsing of a natural language sentence using a well-known technique,
called chart parsing. The results are presented in this document. The program was
built from some ideas taken form [4], and important insights extracted from the
experience are included.

The rest of the paper is organized as follows: section 2 introduces the preliminaries of
Chart Parsing; in section 3 the implementation of the program is discussed and in
section 4 some conclusions are presented.

2 Chart Parsing
Natural languages are characterized by presenting a high degree of structural
ambiguity, for example:
(a) Mary and John hear the report on the travel

The sentence (a) is ambigous since two different syntactic structures can be assigned
to it, as it is shown in Figure-1.

In the representation (b) Mary and John hear the report while they were traveling. In
the second one (c) Mary and John hear a report about a travel; two different meanings
for the same sentence!

Figure 1: Parsing a sentence

Syntactic structures are generated by the following grammar defined by the context
free rules that express the way in which different components of language are
combined to build sentences:

 (1) S  NP VP (5) NP  PropName
 (2) VP  V NP (6) NP  NP Conj NP
 (3) VP  VP NP PP (7) Noun  Noun PP

 (4) NP  Det Noun (8) PP  Prep NP

and the lexicon rules which attach to each word its corresponding category:

 L1 Det  the
 L2-3 Noun  report  travel
 L4 Verb  hear
 L4-5 PropName  Mary  John
 L6 Conj  and
 L7 Prep  on

The application of a parsing process to the sentence (a) using the grammar presented
above conveys the syntactic structures shown in (b) and (c).

The main desirable for a parsing algorithm is to avoid rebuilding substructures that
have already been recognized during the parsing process. An important method for
natural language parsing is called Chart Parsing [3,5]. It consists of a tabular based
bottom-up parsing algorithm. The basic idea is to keep a table containing each
substructure generated during the parsing process in different iterations until all
possible structures for the sentence are obtained.
The input for the method consists of a sentence seen as a string of words and a
grammar, espressed as a set of production rules.

An example of the (partial) structure generated after applying a chart parsing
algorithm to our sample sentence (a) is shown below:

 (b) S

 NP VP

 V NP PP

 Det Noun

Mary and John hear the report on the travel

 (c) S

 NP VP

 NP

 V Det Noun

 Noun PP

Mary and John hear the report on the travel

The point is that once we have recognized a substructure to say, a noun phrase (NP),
we never come back an remake that analysis.

In the next section the actual implementation of the program is discussed.

3 Implementation
The implementation of the algorithm in AS Prolog is given in four steps:
Step 1. Create the initial table including an arc for each word in the sentence.
Step 2. Add a self_arc for each grammar rule whose first left-most element of the
right-hand side is already in the table.
Step 3. Extend every self_arc into an arc of the same category where the full right-

 hand of the rule has been found.
Step 4. Iterate from Step 2 to 4 incrementing the time until the given limit.

Now we will show the way in which the following simple sentence is processed:

 A dog bite the girl

There is a C interface which given the grammar and the sentence generates the
following program.:

3.1 Step 1
Each word is mapped to a predicate called word/3 whose arguments are the actual
word, the initial and ending nodes.

word(a,0,1).
word(dog,1,2).
word(bite,2,3).
word(the,3,4).
word(girl,4,5).

init(0).
end(5).
time_goal(5).

range(0..5).
time(0..5).

Mary and John hear
1 2 3 4 5 …

PropName PropName Conj V

NP VP
S

NP NP

Det

NP

ASP requires the initial and the last node to be expressed so we used the predicates
init/1 and end/1. Another parameter that needs to be considered is the limit for the
iteration process. This limit is introduced by the time_goal/1 predicate.

A rule has to be introduced for initiating the table holds/2, whose arguments are the
arc/3 and the time/1, starting to the value 0.

holds(arc(X,A,B),0):-
 word(X,A,B), range(A), range(B).

Then the lexicon is introduced in the following way:

verb(bite).
dete(a). % determiner
dete(the).
noun(girl).
noun(dog).
rule(v). % verb
rule(np). % noun phrase
rule(s). % sentence
rule(vp). % verb phrase
rule(noun).
rule(det). % determiner

3.2 Step 2

Now the rules that have a chance to be applied are introduced. The decision on
whether a rule will be applied or not depends on having detected that the left-most
element of the right hand part of the rule has been recognized, as stated below:

holds(self_arc(sentence,A),T+1):- holds(arc(np,A,B),T),
 time(T),range(A),range(B).

holds(self_arc(np,A),T+1):- holds(arc(det,A,B),T),
 time(T),range(A),range(B).

holds(self_arc(vp,A),T+1):- holds(arc(v,A,B),T),
 time(T),range(A),range(B).

holds(self_arc(v,A),T+1):- holds(arc(X,A,B),T),word(X,A,B),v_t(X),
 time(T),range(A),range(B).

holds(self_arc(det,A),T+1):- holds(arc(X,A,B),T),word(X,A,B),dete(X),
 time(T),range(A),range(B).

holds(self_arc(noun,A),T+1):- holds(arc(X,A,B),T),word(X,A,B),noun(X),
 time(T),range(A),range(B).

3.3 Step 3
The context free grammar rules are introduced for each of the syntactic categories. An
arc labeled with this category will be introduced in the table whenever the
constituents of the category are reached. These new arcs correspond to the expanded
arcs in the model.

holds(arc(s,A,B),T+1):- holds(self_arc(s,A),T),
 holds(arc(np,A,C),T),
 holds(arc(vp,C,B),T),
 range(A),range(B),range(C),time(T).

holds(arc(np,A,B),T+1):- holds(self_arc(np,A),T),
 holds(arc(det,A,C),T),
 holds(arc(noun,C,B),T),
 range(A),range(B),range(C),time(T).

.

3.4 Step 4
The result of the process is given by collecting an arc with category ″S″ sentence)
which goes from the initial to the final node. The presence of this arc means that a
sentence has been recognized to belong to the language generated by the provided
grammar. If more than one arc like this one are found, it means that different
syntactic structures where found for the same sentence and it is structurally ambiguos.

If it happens that none of the arcs satisfied the previous conditions then the sentence
was not recognized.

We define two rules, called the inertia rules [4], they basically state that ″actions
normally do not affect fluents″ or ″things remain unchanged unless something change
them. ″ Theses rules preserve any arc which exists in time T at the new time T+1.

holds(arc(X,A,B),T+1):-
holds(arc(X,A,B),T),

 not -holds(arc(X,A,B),T+1),
 range(A),range(B),
 time(T),rule(X).

holds(arc(X,A,B),T+1):-

holds(arc(X,A,B),T),
 not -holds(arc(X,A,B),T+1),
 range(A),range(B),
 time(T),word(X,A,B).

These rules prevent an arc for been inserted if it is already inside.

3.5 Sample Output (formatted)

////////// tiempo 0

holds(arc(a,0,1),0) %
holds(arc(dog,1,2),0) % The inicial arcs are introduced
holds(arc(bite,2,3),0) %
holds(arc(the,3,4),0) %
holds(arc(girl,4,5),0) %

////////// tiempo 1

holds(arc(a,0,1),1) % these arcs are introduced by the
holds(arc(dog,1,2),1) % inertial rule
...

holds(self_arc(v,2),1) % A self_arc is an arc that points
holds(self_arc(det,0),1) % to the same node
...

And it goes on until the final table generated in time 6, shown below:

////////// tiempo 6

holds(arc(a,0,1),6) % block found in time 0
holds(arc(dog,1,2),6) %
...

holds(self_arc(v,2),6) % block found in time 1
holds(self_arc(det,0),6) %
...

holds(arc(v,2,3),6) % block found in time 2
holds(arc(det,0,1),6)
...

holds(self_arc(np,0),6) % block found in time 3
holds(self_arc(np,3),6)
holds(self_arc(vp,2),6)

holds(arc(np,0,2),6)
holds(arc(np,3,5),6) % block found in time 4

holds(self_arc(s,0),6)
holds(self_arc(s,3),6) % block found in time 5
holds(arc(vp,2,5),6)

holds(arc(s,0,5),6) % The sentence arc is generated
 % from node 0 to node 5

As shown in the final table the solution for the sentence was finally found. The
process should keep running until no more arcs are generated as another solution may
came out.

4 Conclusions
A program build under the ASP model to accomplish a chart parsing of sentences of
natural language has been developed. Even when the application was developed as the
final project for a course in natural language processing,

Some positive conclusions from the experience:

a) It became to be a challenging and interesting project that provided us of a
deeper understanding of the ASP model.

b) Once you have realized the way in which the knowledge has to be represented
in ASP it is more intuitive to model the problem.

c) An interesting feature of the software is that it keeps track of all events that
had happen during the developing of the solution which is very helpful to
debugging.

Some reflections on the resulting program and the AS Programming model are:

a) At each step of the iteration every arc from the previous one, T, is copied into
the new one, T+1. This fact implies that much information is redundant.

b) In this first attempt the grammar is encoded inside the program and not just a
different input to it. The most diserable configuration would be for the
grammar to be independent of the program.

c) It was not easy to find out the way in which the algorithm had to be developed
in ASP, there are interesting material [1,2] but they were not written in order
to introduce the newcomers into this programming area.

References
[1] M. Gelfond and V. lifschitz. The stable model semantics for logic programming.

In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International
Logic Programming Confernce and Symposium, pp 1070-1080, 1988.

[2] M. Gelfond and V. lifschitz. Classial Negation in Logic Programs and

Disjunctive Databases. New Generation Computing, vol. 9. pp 365-385, 1991.

[3] Gerald Gazdar and Chris Mellish, Natural Language Processing in Prolog: An

Introduction to Computational Linguistics, Addison-Wesley Publishers, 1989.

[4] Mónica Nogueira, Building Knowledge Systems in A-Prolog. Ph. D. Thesis,

Computer Science Department, University of Texas at El Paso, 2003.

[5] Christer Samuelsson and Mats Wirén, Parsing Thechnics, in Handbook on

Natural Language Processing, Marcel Dekker Publishers, NY, 2000.

