
Expressing the Stable semantics in terms of the
Pstable semantics

Mauricio J. Osorio Galindo and Alejandra López Fernández
Email: osoriomauri@gmail.com

Universidad de las Américas-Puebla

Abstract. We show that with a simple translation for normal programs,
we can use the pstable model semantics to get the stable models of a
normal program. We present the formal proof of this statement.

1 Introduction

The stable model semantics for logic programming lies within the context of
nonmonotonic reasoning, [GL1]. It has been widely used and it is perhaps the
most well known semantics for knowledge representation. The pstable model
semantics, introduced in [NM05] shares several properties with stable model
semantics, but it is closer to classical logic than stable.

We show in Section 3 a simple translation for normal programs, and later in
Section 4 we show the proof of the equivalence between these two semantics in
the context of normal programs and our translation. Finally, Section 5 concludes
the paper and offers future work.

We assume that the reader has familiarity with logic and nonmonotonic rea-
soning.

2 Background

We introduce some concepts which are needed for further understanding of the
work and the results presented on this document. We present the definitions of
the stable and pstable model semantics that are the main topics of this paper,
more basic definitions can be found in [NM05].

2.1 Normal program

As we have already said in the introduction we have a particular interest in the
class of normal programs. These are programs formed by normal rules for which
the body is a conjuntion of literals.

Definition 1. [GL1] The programs under consideration are sets of rules of the
form:

a← l1 ∧ l2 ∧ ∧ ln (1)

where a is an atom, l1, l2, ..., ln is a set of literals and n ≥ 0. We say that
l1 ∧ l2 ∧∧ ln is the body of the rule and a is the head of the rule. When every
literal in the body is an atom, we say that the rule is positive.

2.2 Reduction

Before we present the stable and pstable model semantics definitions, we show
the reduction defined in [NM05].

Definition 2. Let P be a normal program and M a set of atoms:

RedM (P) = {a← β+ ∧ ¬(β− ∩M) | a← β+ ∧ ¬β− ∈ P} (2)

where β+ and β− are sets containing, respectively, the positive and negative
atoms that occur in the body of the clauses of P .

In other words, with this reduction every atom that is not in the model M
and is negated at the body of a rule is deleted.

Definition 3. Let P be a normal program. We define: Pos(P) as the set of
positive rules in P .

Example 1. Take the following logic program P :

b←¬a.
a←¬b.

Given M = {a}, it follows that RedM (P) is the program:

b←¬a.
a.

Finally Pos(RedM (P)) is the program:

a.

2.3 The Stable and Pstable model semantics

The Stable semantics was originally defined in [GL1] as follows:

Definition 4. Let P be a normal program, for any set M of atoms from P , M
is a stable model of P if M is a minimal model of Pos(RedM (P)).

It is well known that this definition is equivalent to saying that M is a model
of P and Pos(RedM (P)) |= M ; from now on we use this altenative characteri-
zation. We write P1 ≡stable P2 to denote that P1 and P2 have the same set of
stable models.

The definition of the pstable model semantics was shown in [NM05] and is
the following:

Definition 5. Let P be a normal program, and M a set of atoms. We say that
M is a pstable model of P if M is a model of P and RedM (P) |= M .

3 Relating stable and pstable models semantics

Now we can talk about the relation between stable and pstable models. In order
to get stable models using the pstable model semantics, we propose a polynomial
transformation, we use Trans(P) to denote this operation. In this section we
formally define this transformation and show some examples. Later in Section 4
we will formally prove the soundness and completeness of this transformation;
but first we show some definitions.

Definition 6. Let P be a normal program and LP the set of atoms in P . We
define δ←P as follows:

δ←P = {x′← x | ∀x ∈ LP } (3)

Definition 7. Let L be a set of literals {l1, ..., lm}. We define the operation L′

as the result of adding an apostrophe symbol to each literal of the set L. So
L′ = {l′1, ..., l′m}

Definition 8. Let P be a normal program. We define P ′ as:

P ′ = {a← β+ ∧ ¬β−
′ | a← β+ ∧ ¬β− ∈ P} (4)

and where β+ and β− are sets containing, respectively, the positive and negative
atoms that occur in the body of the clauses of P .

Definition 9. Let P be normal program and LP the alphabet of P . We define
a program R as:

R =

u← x′ ∧ ¬x. ∀x ∈ LP

x←¬ y ∧ u.

y←¬ z ∧ u.

z ←¬ x ∧ u.

(5)

where u, x, y, z are new atoms (not in LP).

Definition 10. Let P be normal program we define Trans(P) as:

Trans(P) = P ′ ∪ δ←P ∪R. (6)

As we will show soon, the resulting program can be used to obtain the stable
semantics. We will understand better this transformation with an example.

Example 2. Take the following program P.

a←¬b.
b←¬a.
p←¬a.
p←¬p.

Observe that {p, b} and {p, a} are pstable models of P . But {p, b} is the
unique stable model of P . We apply the transformation Trans(P) as follows:

a←¬b′. b←¬a′. p←¬a′. p←¬p′.
a′← a. b′← b. p′← p.
u← a′ ∧ ¬a. u← b′ ∧ ¬b. u← p′ ∧ ¬p.
x←¬y ∧ u. y←¬z ∧ u. z ←¬x ∧ u.

Note that {p, b, p′, b′} is the unique pstable model of Trans(P). If we intersect
this model with LP we obtain {p, b}, the unique stable model of P .

4 Proof

We show through a simple transformation, that the pstable model semantics can
express the stable model semantics. Let us define Trans1(P) := P ′∪ δ←P , it uses
only three types of rules, namely:

1. a← α+.
2. b← α+ ∧ ¬β−′.
3. c′← c.

Trans1(P) is very similar to Trans(P) already defined, but in Trans1(P)
we do not consider the rules of part R defined in Definition 9 because these only
work as a filter of the stable models, these rules filter those models that have an
atom x′ and do not have the atom x.

Example 3. Take the following program P :

a←¬a.

The program Trans1(P) would be:

P ′ = a←¬a′.
δ←P = a′← a.

R =

u← a′ ∧ ¬a.

x←¬y ∧ u.

y←¬z ∧ u.

z ←¬x ∧ u.

The part R filters those models where the atom a′ is in the model and a is
not. For example M = {a′} is a model of P ′∪δ←P but in R this atom is eliminated
as a possible model of Trans1(P).

As the result of our above discussion we hope that the reader could see that
the we should concentrate in Trans1(P) for our main proof.

Recall that P and Trans1(P) have the following types of rules:

P Trans1(P)
1.a← α+. 1.a← α+.
2.b← α+ ∧ ¬β−. 2.b← α+ ∧ ¬β−′.

3.c′← c.

Lemma 1. Let P be a normal program, and M be a set of atoms. If M is a
model of P then M ∪M ′ is a model of Trans1(P).

Proof. First assume that M is a model of P .
Both Trans1(P) and P has the rules type 1, so if M models those rules in

P then M ∪M ′ models them in Trans1(P).
For the rules type 3 we have two cases:

– If c ∈ M then c′ ∈ M ∪M ′ by construction of M ∪M ′. So M ∪M ′ models
rules type 3 in Trans1(P).

– If c /∈ M then the body of the rule type 3 is false. So M ∪M ′ models rules
type 3 in Trans1(P).

Hence M ∪M ′ models rules type 3 in Trans1(P).
There are also two cases for the rules type 2:

– If b ∈ M ∪M ′ then M ∪M ′ models the rules type 2 in Trans1(P).
– If b /∈ M ∪M ′, we will prove by contradiction that M ∪M ′ models the rules

type 2 in Trans1(P).

Assume, by contradiction, that the rule of type 2 is false when b /∈ M ∪M ′.
This means that ¬β−′ is true, therefore β−′ is false.

On the other hand by Definition 8 of P ′, we know that rules type 2 of
Trans1(P) came from rules type 2 of P : b← α+ ∧ ¬β−.

M is a model of P , this means that b←α+∧¬β− was true in P , but b /∈ M so
¬β− had to be false and β− true; this means β− ⊆ M , and β−∪β−′ ⊆ M ∪M ′,
this is a contradiction. Therefore M ∪M ′ models the rules type 2 in Trans1(P).

Hence M ∪M ′ is a model of Trans1(P).

Lemma 2. Let P be a normal program, and M be a set of atoms. If Pos(RedM (P)) |=
M then Pos(RedM∪M ′(Trans1(P))) |= M ∪M ′

Proof. First we assume that Pos(RedM (P)) |= M . Then following Definition 2,
when RedM (P) is applied, the rules with the form b ← α+ ∧ ¬β−, and where
β− ∩M = ∅ are reduced to b← α+.

On the other hand, according to Definition 8, when doing Trans1(P) that
type of rule is translated into b ← α+ ∧ ¬β−′ and because β− ∩ M = ∅, also
β−′ ∩ M ′ = ∅. Then when RedM∪M ′(Trans1(P)) is done, this type of rule is
replaced by b← α+; just like in RedM (P).

Definition 3 states that when Pos(RedM (P)) is done, the rules with the form:
b← α+ ∧ ¬β− and where β− ⊆ M , are erased from the program RedM (P). On
the other hand, according to Definition 8, that type of rules are translated in
Trans1(P) to b← α+ ∧ ¬β−′, and because β− ⊆ M also β−′ ⊆ (M ∪M ′).

Then when Pos(RedM∪M ′(Trans1(P))) is done this type of rule is also
erased, just like in Pos(RedM (P)).

Summarizing Pos(RedM∪M ′(Trans1(P))) has the same rules as Pos(RedM (P))
plus rules of the form c′←c that P does not have. Therefore if Pos(RedM (P)) |=
M then Pos(RedM∪M ′(Trans1(P))) |= M ∪M ′

Lemma 3. Let P be a normal program, and M be a set of atoms.
If Pos(RedM∪M ′(Trans1(P))) |= M ∪ M ′ then RedM∪M ′(Trans1(P)) |=

M ∪M ′

Proof. Assume that Pos(RedM∪M ′(P)) |= M ∪ M ′, then by monotonicity it
follows that RedM∪M ′(Trans1(P)) |= M ∪M ′.

Theorem 1. If M is a stable model of P then M ∪ M ′ is a Pstable model of
Trans1(P)

Proof. We assume that M is a stable model of P . By definitions 4 and 5 we can
express Theorem 1 as:

If M is a model of P and Pos(RedM (P)) |= M then M ∪M ′ is a model of
Trans1(P) and RedM∪M ′(Trans1(P)) |= M ∪M ′.

According to Lemma 1 and Lemma 3 we conclude that M ∪M ′ is a Pstable
model of Trans1(P).

Now we move to prove the other half of the proof, namely that If M ∪M ′ is
a Pstable model of Trans1(P) then M is a stable model of P . We need to prove
some partial results first.

Lemma 4. If RedM∪M ′(Trans1(P)) |= M then Pos(RedM∪M ′(Trans1(P))) |=
M .

Proof. Given an atom a ∈ M we will prove that if RedM∪M ′(Trans1(P) |= {a}
then Pos(RedM∪M ′(Trans1(P))) |= a, this is equivalent to prove that if

Pos(RedM∪M ′(Trans1(P))) ∪ {¬a} is consistent then
RedM∪M ′(Trans1(P)) ∪ {¬a} is consistent.
We assume that I is a model of Pos(RedM∪M ′(Trans1(P))) ∪ {¬a} and we

define an interpretation J as follows:

J(x) =

{
I(x) if x ∈ LP ,
1 x ∈ LP ′ .

We will prove that J models RedM∪M ′(Trans1(P))∪{¬a}. First we can see
that J models {¬a}. Now we want to prove that J models RedM∪M ′(Trans1(P)).
Given the program RedM∪M ′(Trans1(P)) we have these rules:

1. a← α+.
2. b← α+ ∧ ¬β−′.
3. a′← a.

According to the definition of J , it models the three types of rules. So we have
proved that there exists an interpretation that models RedM∪M ′(Trans1(P))∪
{¬a}. Hence Pos(RedM∪M ′(Trans1(P))) |= M .

Lemma 5. If M ∪M ′ is a pstable model of Trans1(P) then M ∪M ′ is a stable
model of Trans1(P).

Proof. We want to prove that M ∪M ′ is a model of Trans1(P) and
Pos(RedM∪M ′(Trans1(P))) |= M∪M ′. We assume that M∪M ′ is a pstable

model of Trans1(P), so we know that M ∪M ′ is a model of Trans1(P) and
RedM∪M ′(Trans1(P)) |= M ∪ M ′, taking this we can write the proof as

follows:
E1 RedM∪M ′(Trans1(P)) |= M
E2 Pos(RedM∪M ′(Trans1(P))) |= M by Lemma 4 of E1
E3 Pos(RedM∪M ′(Trans1(P))),M |= M ′ by rules x′← x where x ∈ M
E4 Pos(RedM∪M ′(Trans1(P))) |= M ′ by CUT of E2 and E3
E5 Pos(RedM∪M ′(Trans1(P))) |= M ∪M ′ by E4 and E2
We conclude that M ∪M ′ is a stable model of Trans1(P).

It is well known that the following property holds in the stable model seman-
tics.

Lemma 6. Let P be a normal program, M be a stable model of P , and x be an
atom ∈ M then ∃x ← α ∈ P and M |= α.

Definition 11. Let P be a normal program, we define HEAD(P) as a set with
all the atoms at the heads of its rules.

Lemma 7. Let P be any normal program and a← α ∧ ¬x′ be any normal rule.
Let P1 = P ∪ {a←α∧¬x′} ∪ {x′← x}. Let P2 = P ∪ {a←α∧¬x} ∪ {x′← x}.
If x′ /∈ HEAD(P ∪ {a}) then P1 ≡stable P2.

Proof. Let M be a stable model of P1 we have two cases:

– x ∈ M then x′ ∈ M and Pos(RedM (P1)) = Pos(RedM (P2)) so M is a
stable model of P2.

– x /∈ M then x′ /∈ M by Lemma 6, so Pos(RedM (P1)) = Pos(RedM (P2)).
Hence M is a stable model of P2.

We have proved that every stable model of P1 is a stable model of P2. The proof
that every stable model of P2 is a stable model of P1 is analogous.

The following proposition is given in [LF1].

Proposition 1. Let P1 be a program and Q be a set of atoms that do not occur
in P1. Let P2 be a program that consists of rules of the form

q← F (7)

where q ∈ Q, and F does not contain any element of Q in the scope of negation
as failure. Then Z → Z \ Q is a 1 − 1 correspondence between the answer sets
for P1 ∪ P2 and the answer sets for P1.

Lemma 8. Let P be a normal program P ∪ δP
← ≡stable Trans1(P).

Proof. Follows by a direct generalization of Lemma 7.

Lemma 9. If M ∪M ′ is a stable model of Trans1(P) then M is a stable model
of P

Proof. Suppose that M ∪M ′ is a stable model of Trans1(P), by Lemma 8 then
M ∪M ′ is a stable model of P ∪ δP

←. But by Proposition 1, (M ∪M ′) \M ′ is
a stable model of P. Therefore M is a stable model of P

Theorem 2. If M ∪ M ′ is a Pstable model of Trans1(P) then M is a stable
model of P

Proof. Assume that M ∪M ′ is a pstable model of Trans1(P) then by Lemma 5
M ∪M ′ is a stable model of Trans1(P). Then by Lemma 9 M is a stable model
of P .

5 Conclusions

The main contributions of this work are Theorem 1 and Theorem 2. We were
able to prove that Pstable model semantics can express the Stable model se-
mantics, within the class of normal programs, although we conjecture that the
expressiveness of pstable model semantics is even greater than that of Stable.

For further research work, we can explore the possibility to extend the theo-
rem to the context of disjunctive programs.

References

[GL1] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Robert A. Kowalski and Kenneth Bowen, edi-
tors, Proceedings of the Fifth International Conference on Logic Programming,
pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press, URL cite-
seer.ist.psu.edu/gelfond88stable.html.

[LF1] Selim T. Erdogan and Vladimir Lifschitz. Definitions in Answer Set Program-
ming: (Extended Abstract). Proceedings ICLP 2003, pages 483-484.

[NM05] Mauricio Osorio Galindo and Juan Antonio Navarro Pérez and José R. Arra-
zola Rodŕıguez and Verónica Borja Maćıas”. Logics with common weak completions.
Journal of Logic and Computation, 2006. URL doi: 10.1093/logcom/exl013

