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Abstract
In this work, we focus on a lightweight convolu-
tional architecture that creates fixed-size vector em-
beddings of sentences. Such representations are
useful for building NLP systems, including con-
versational agents. Our work derives from a re-
cently proposed recursive convolutional architec-
ture for auto-encoding text paragraphs at byte level.
We propose alternations that significantly reduce
training time, the number of parameters, and im-
prove auto-encoding accuracy. Finally, we evaluate
the representations created by our model on tasks
from SentEval benchmark suite, and show that it
can serve as a better, yet fairly low-resource alter-
native to popular bag-of-words embeddings.

1 Introduction
Modern conversational agents often make use of retrieval-
based response generation modules [Ram et al., 2018], in
which the response of the agent is retrieved from a curated
database. The retrieval can be implemented as similarity
matching in a vector space, in which natural language sen-
tences are represented as fixed-size vectors. Cosine and Eu-
clidean distances typically serve as similarity measures. Such
approaches have been applied by participants of recent chat-
bot contests: The 2017 Alexa Prize [Pichl et al., 2018; Liu
et al., 2017; Serban et al., 2017], and The 2017 NIPS Con-
versational Intelligence Challenge [Chorowski et al., 2018;
Yusupov and Kuratov, 2017]. Retrieval-based modules are
fast and predictable. Most importantly, they enable soft
matching between representations. Apart from this straight-
forward application in dialogue systems, sentence embed-
dings are applicable in downstream NLP tasks relevant to di-
alogue systems. Those include sentiment analysis [Pang and
Lee, 2008], question answering [Weissenborn et al., 2017],
censorship [Chorowski et al., 2018], or intent detection.

Due to the temporal nature of natural languages, recurrent
neural networks gained popularity in NLP tasks. Active re-
search of different architectures led to great advances and
eventually a shift towards methods using the transformer ar-
chitecture [Vaswani et al., 2017] or convolutional layers [Bai
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et al., 2018; van den Oord et al., 2017a; van den Oord et
al., 2017b] among researchers and practitioners alike. In this
work, we focus on a lightweight convolutional architecture
that creates fixed-size representations of sentences.

Convolutional neural networks have the inherent ability to
detect local structures in the data. In the context of conver-
sational systems, their speed and memory efficiency eases
deployment on mobile devices, allowing fast response re-
trieval and better user experience. We analyze and build on
the recently proposed Byte-Level Recursive Convolutional
Auto-Encoder (BRCA) for text paragraphs [Zhang and Le-
Cun, 2018], which is able to auto-encode text paragraphs into
fixed-size vectors, reading in bytes with no additional pre-
processing.

Based on our analysis, we are able to explain the behav-
ior of this model, point out possible enhancements, achieve
auto-encoding accuracy improvements and an order of mag-
nitude training speed-up, while cutting down the number of
parameters by over 70%. We introduce a balanced padding
scheme for input sequences and show that it significantly im-
proves convergence and capacity of the model. As we find
byte-level encoding unsuitable for embedding sentences, we
demonstrate its applicability in processing sentences at word-
level. We train the encoder with supervision on Stanford
Natural Language Inference corpus [Bowman et al., 2015;
Conneau et al., 2017] and investigate its performance on var-
ious transfer tasks to assess quality of produced embeddings.

The paper is structured as follows: in Section 2 we intro-
duce some of the notions that appear in the paper. Section 3
discusses relevant work for sentence vector representations.
Details of the architecture can be found in Section 4. Sec-
tion 5 presents the analysis of the auto-encoder and motiva-
tions for our improvements. Section 6 demonstrates super-
vised training of word-level sentence encoder, and evaluates
it on tasks relevant to conversational systems. Section 7 con-
cludes the paper.

2 Preliminaries
An information retrieval conversational agent selects a re-
sponse from a fixed set. Let D = {(ik, rk)}k be a set of
conversational input-response pairs, and q be a current user’s
input. Two simple ways of retrieving a response rk from
available data are [Ritter et al., 2011; Chorowski et al., 2018]:
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• return rk most similar to user’s input q,
• return rk for which ik is most similar to q.

Utterances ik, rk, q may be represented (embedded) as real-
valued vectors.

Many NLP systems represent words as points in a continu-
ous vector space using word embedding methods [Mikolov et
al., 2013; Pennington et al., 2014; Bojanowski et al., 2016].
They are calculated based on co-occurrence of words in large
corpora. The same methods were applied to obtain sentence
embeddings only with partial success, due to the combinato-
rial explosion of all possible word combinations, which make
up a sentence. Instead, Recurrent Neural Networks (RNNs),
autoregressive models that can process input sequences of an
arbitrary length, are thought to be a good method for handling
variable-length textual data, with Long Short-Term Memory
network (LSTM) [Hochreiter and Schmidhuber, 1997] being
the prime example of such.

Recently, RNNs have been reported to be successfully
replaced by convolutional architectures [Bai et al., 2018;
van den Oord et al., 2017a; van den Oord et al., 2017b]. Con-
volutional neural networks are traditionally associated with
computer vision and image processing [Krizhevsky et al.,
2012; Redmon et al., 2015]. They primarily consist of con-
volutional layers that apply multiple convolutions to the in-
put, followed by pooling layers that are used for reducing the
dimensionality of the hidden state. Convolutional networks
are efficient during training and inference: they utilize few
parameters and do not require sequential computations, mak-
ing hardware parallelism easy to use. Due to their popularity
in image processing, there are efficient implementations that
scale well.

Residual connection [He et al., 2015] is a connection that
adds an unchanged input to the output of the layer or block
of layers. During the forward pass it provides upper layers
with undistorted signal from the input and intermediate lay-
ers. During the backward pass it mitigates vanishing and ex-
ploding gradient problems [Hochreiter et al., 2001].

Batch Normalization [Ioffe and Szegedy, 2015] (BN) ap-
plies normalization to all activations in every minibatch.
Typical operations used in neural networks are sensitive to
changes in the range and magnitude of inputs. During train-
ing the inputs to upper layers vary greatly due to changes in
weights of the model. Normalization of the signal in each
layer has the potential to alleviate this problem. Both BN
and residual connections enable faster convergence by help-
ing with forward and backward flow of information. They
were also crucial in training our models.

3 Related Work
There are many methods for creating sentence embeddings,
the simplest being averaging word-embedding vectors of a
given sentence [Joulin et al., 2016; Le and Mikolov, 2014].
SkipThought [Kiros et al., 2015] generalizes idea of unsu-
pervised learning of word2vec word embeddings [Mikolov et
al., 2013]. It is implemented in the encoder-decoder setting
using LSTM networks. Given a triplet of consecutive sen-
tences (si−1, si, si+1), the encoder creates a fixed-size em-
bedding vector of the sentence si, and the decoder tries to
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Figure 1: Structural comparison of Byte-Level Recursive Convolu-
tional Auto-Encoder (BRCA) and our model. Dark boxes indicate
input padding. BRCA pads the input form the right to the nearest
power of two. We pad the input evenly to a fixed-size vector. Our
model does not have postfix/prefix groups with linear layers and uses
Batch Normalization (BN) after every layer.

generate sentences si−1 and si+1 from this representation.
SkipThought vectors have been shown to preserve syntactic
and semantic properties [Kiros et al., 2015], so that their
similarity is represented in the embedding space.

InferSent model [Conneau et al., 2017] shows that training
embedding systems with supervision on a natural language
inference task may be superior to an unsupervised training.
Recently, better results were obtained by combining super-
vised learning on an auxiliary natural language inference cor-
pus with learning to predict the correct response on a conver-
sational data corpus [Yang et al., 2018].

4 Model Description
Our model builds on the Byte-Level Recursive Convolutional
Auto-Encoder [Zhang and LeCun, 2018] (BRCA). Both mod-
els use a symmetrical encoder and a decoder. They encode a
variable-length input sequence as a fixed-size latent represen-
tation, by applying a variable number of convolve-and-pool
stages (Figure 1). Unlike in autoregressive models, the recur-
sion is not applied over the input sequence length, but over the
depth of the model. As a result, each recursive step processes
all sequence elements in parallel.

4.1 Encoder
Our encoder uses two operation groups from the BRCA: a
prefix group and a recursive group. The prefix group consists
of N temporal convolutional layers, and the recursive group
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consists of N temporal convolutional layers followed by a
max-pool layer with kernel size 2. For each sequence, the
prefix group is applied only once, while the recursive group
is applied multiple times, sharing weights between all appli-
cations. All convolutional layers have d = 256 channels,
kernels of size 3 and are organized into residual blocks, with
2 layers per block, ReLU activations, residual connections,
and Batch Normalization (see Section 5.5 for details).

The encoder of our model reads in text, by sentence or
by paragraph, as a sequence of discrete tokens (e.g. bytes,
characters, words). Each input token is embedded as a fixed-
length d-dimensional vector. Unlike [Zhang and LeCun,
2018], where input sequence is zero-padded to the nearest
power of 2, we pad the input to a fixed length 2K , distributing
the characters evenly across the input. We motivate this deci-
sion by the finding that the model zero-padded to the nearest
power of 2 does not generalize to sentences longer than those
seen in the training data (see Section 5.2).

First, the prefix group is applied, which retains the dimen-
sionality and the number of channels, i.e., sequence length
and embedding size. Let d · 2r be the dimensionality of the
latent code output by the encoder. The encoder then applies
the recursive group K − r times. Note that with r one may
control size of a latent vector (the level of the compression).
With the max-pooling, every application halves the length of
the sequence. Weights are shared between applications. Fi-
nally, the encoder outputs a latent code of size d · 2r. Un-
like [Zhang and LeCun, 2018], we do not apply any linear
layers after recursions. Our experiments have shown that they
slightly degrade the performance of the model, and constitute
the majority of its parameters.

4.2 Decoder
The decoder acts in reverse. First, it applies a recursive
group consisting of a convolutional layer which doubles the
number of channels to 2d, which is followed by an expand
transformation [Zhang and LeCun, 2018] and N − 1 convo-
lutional layers. Then it applies a postfix group of N temporal
convolutional layers. Similarly to the encoder, the layers are
organized into residual blocks with ReLU activations, Batch
Normalization, and have the same dimensionality and ker-
nel size. We double the size of input in the residual connec-
tion, which bypasses the first two convolutions of the recur-
sive group, by stacking it with itself. We found it crucial for
convergence speed to use only residual blocks in the network,
also in the expand block.

The decoder applies its recursive group K − r times. Each
application doubles the numbers of channels, while the ex-
pand transformation reorders and reshapes the data to effec-
tively double the length of the sequence while the number of
channels is unchanged and equals d. The postfix group pro-
cesses a tensor of size 2K × d and retains its dimensionality.
The output is interpreted as 2K probability distributions over
possible output elements. Adding an output embedding layer,
either tied with input embedding layer or separate, slowed
down training and did not improve the results. At the end,
a Softmax layer is used to compute output probabilities over
possible bytes. Note that output probabilities are independent
from one another conditioned on the input.

5 Model Analysis
In this section we justify our design choices through a series
of experiments with the BRCA model and report their out-
comes.1

5.1 Data
In order to produce comparable results, we prepared an En-
glish Wikipedia dataset with similar sentence length distribu-
tion to [Zhang and LeCun, 2018]. Namely, we took at ran-
dom 11 million sentences from an English Wikipedia dump
extracted with WikiExtractor2, so that their length distribu-
tion would roughly match that of [Zhang and LeCun, 2018]
(Table 1). In experiments with random data, we generate ran-
dom strings of a-zA-Z0-9 ASCII characters.

Table 1: Lengths of paragraphs in the English Wikipedia dataset

Length Percentage
4-63 B 35%

64-127 B 14%
128-255 B 20%
256-511 B 18%

512-1023 B 14%

5.2 Model Capacity
Natural language texts are highly compressible due to their
low entropy, which results from redundancy of the lan-
guage [Levitin and Reingold, 1994]. In spite of this, the con-
sidered models struggle to auto-encode 1024-byte short para-
graphs into 1024-float latent vectors, which are 4096-byte
given their sheer information content. Transition from dis-
crete to continuous representation and inherent inefficiency
of the model are likely to account for some of this overhead.

One can imagine an initialization of weights that, given the
over-capacitated latent representation, would make the net-
work perform identity for paragraphs up to 128 bytes long3.
We confirmed those speculations experimentally, training
models on paragraphs of random printable ASCII characters,
namely random strings of a-zA-Z0-9 symbols (Table 2).
The empirical capacity of our model is 128 bytes, which
sheds light on the amount of overhead. This model has to
be trained on paragraphs longer than 512 bytes in order to
learn useful, compressing behavior given a 1024-float latent
representation.

5.3 Generalization to Longer Sequences
Auto-encoding RNN models such as LSTM are known to de-
teriorate gradually with longer sequences [Cho et al., 2014;
Chorowski et al., 2015]. We trained a BRCA model (N = 2)
and a LSTM encoder-decoder network with hidden size 256.

1Source code of our models is available:
https://github.com/smalik169/
recursive-convolutional-autoencoder

2https://github.com/attardi/wikiextractor
3When max-pooling is replaced by convolution with stride 2 and

kernel size 2
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Table 2: Learning identity by training on random sequences of
ASCII characters of different length. Accuracy is presented for
BRCA (N=8) model.

Training Lengths Test Length Accuracy
4 – 128 128 99.81%

4 – 512
128 60.79%
256 22.99%
512 9.81%

Table 3: Comparison of the ability of BRCA and LSTM encoder-
decoder to learn an identity function and generalize to unseen data.
Values represent byte-level decoding accuracy. Note that the LSTM
decoder has the advantage of always being primed with the correct
prefix sequence.

Lengths (bytes) BRCA (N=2) LSTM-LSTM
9-16 97.06% 91.17%
17-32 97.96% 90.20%
33-64 97.45% 91.72%

65-128 83.56% 86.34%
129-256 11.66% 72.88%
257-512 8.05% 58.80%

Both models were trained on sentences of length up to 128
bytes and evaluated on unseen data. The LSTM model did
not perfectly learn the identity function, even though it was
solving an easier task of predicting the character given the
correct prefix. However, the LSTM model generalized much
better on longer sequences, where performance of BRCA de-
teriorated rapidly (Table 3).

5.4 Balanced Padding of Input Sequences
We found BRCA difficult to train. The default hyperparame-
ters given by the authors [Zhang and LeCun, 2018] are single-
sample batches, SGD with momentum 0.9, and a small learn-
ing rate 0.01 with 100 epochs of training. In our preliminary
experiments, increasing the batch size by batching paragraphs
of the same length improved convergence on datasets with
short sentences (mostly up to 256 bytes long), but otherwise
deteriorated on the Wikipedia dataset, where roughly 50%
paragraphs are longer than 256 bytes. We suspect that the
difficulty lies in the difference of the underlying tasks: long
paragraphs require compressive behavior, while short ones
merely require learning the identity function. Updating net-
work parameters towards one tasks hinders the performance
on the others, hence the necessity for careful training.

In order to blend in both tasks, we opted for padding input
sequences into fixed-length vectors. We find it sensible to
fix maximum length of input sentence, since the model does
not generalize to unseen lengths anyway. Variable length of
input in BRCA does save computations, however we found
fixing input size to greatly improve training time, despite the
overhead.

In order to make the tasks more similar, we propose bal-
anced padding of the inputs (Figure 2). Instead of padding
from the right up to 2K bytes, we pad to the nearest power of
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Figure 2: Unbalanced and balanced padding of an input sequence to
a fixed-length sequence. Grey boxes are (zero) padding, white boxes
are input embedding vectors.

2 and distribute the remaining padding equally in between the
bytes. We hypothesized that it could free convolutional layers
from the burden of propagating the signal from left to right in
order to fill the whole latent vector, as it would be the case,
e.g., when processing a 64-byte paragraph padded with 960
empty tokens from the right to form 1024-byte input. Empir-
ically, this trades additional computations for better conver-
gence characteristics.

5.5 Batch Normalization
Fixed-length, balance-padded inputs allow easy mixing of
paragraphs of different lengths within a batch, in consequence
allowing raising the batch size, applying Batch Normalization
and raising the learning rate. This enables a significant speed-
up in convergence and better auto-encoding accuracy (see
Section 5.6). However, the statistics collected by BN layers
differ during each of the K − r recursive steps, even though
the weights of convolutions in the recursive layers are shared.
This breaks auto-encoding during inference time, when BN
layers have fixed mean and standard deviation collected over
a large dataset. We propose to alleviate this issue by either:
a) collecting separate statistics for each recursive application
and each input length separately, or b) placing a paragraph
inside a batch of data drawn from the training corpus during
inference and calculating the mean and the standard devia-
tion on this batch. We also experimented with the instance
normalization [Ulyanov et al., 2016], which performs the nor-
malization of features of a single instances, rather than of a
whole minibatch. We have found that the instance normaliza-
tion improved greatly upon the baseline model with no nor-
malization, but performed worse than batch normalization.

BRCA has been introduced with linear layers in the post-
fix/prefix groups of the encoder/decoder. In our experiments,
removing those layers from the vanilla BRCA lowered accu-
racy by a few percentage points. Conversely, our model bene-
fits from not having linear layers. We observed faster conver-
gence and better accuracy without them, while reducing the
number of parameters from 23.4 million to 6.67 million.

5.6 Auto-Encoding Performance
Our training setup is comparable with that of BRCA [Zhang
and LeCun, 2018]. In each epoch, we randomly select 1 mil-
lion sentences from the training corpus. We trained using
SGD with momentum 0.5 in batches of 32 paragraphs of ran-
dom length, balanced padded to 2r = 1024 tokens, including
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(a) Input sentence: One of Lem’s major recurring themes, beginning from his very first novel, ”The Man from Mars” (. . . )

(b) Input sentence: Typical fuel is denatured alcohol, methanol, or isopropanol (. . . )

Figure 3: Input-output byte relations (X axis vs. Y axis) as indicated by the method of Integrated Gradients [Sundararajan et al., 2017]
with 50 integration points. The plots correspond to (a) 659-byte, and (b) 128-byte Wikipedia paragraphs. The leftmost plots show relations
between all input-output bytes, the middle plots for the first 64 bytes. The rightmost plots also plot spaces. Dark shades indicate strong
relations -.those lay along diagonals and do not cross word and phrases boundaries.

a special end-of-sequence token. The training was run for 16
epochs, and learning rate was multiplied by 0.1 every epoch
after the 10th epoch. The model suffered from the explod-
ing gradient problem [Hochreiter et al., 2001], and gradient
clipping stabilized the training, enabling even higher learning
rates. With clipping, we were able to set the learning rate as
high as 30.0, cutting down training time to as low as 5 epochs.

Figure 4 shows auto-encoding error rate on the test set
by sentence length. Our best model achieved 1.5% test er-
ror, computed as average byte-level error on the English
Wikipedia dataset.

Finally, we were able to train a static version of our model
(i.e., with no shared weights in the recursion group) in com-
parable time, closing a huge gap in convergence of recursive
and static models in vanilla BRCA.

5.7 Generalization
We investigated which inputs influence correct predictions of
the network using the method of Integrated Gradients [Sun-
dararajan et al., 2017]. We have produced two heatmaps
of input-output relationships for short (128 bytes) and long
(1024 bytes) paragraphs in our best model (Figure 3). In
theory, a model performing identity should have a diagonal
heatmap. Our model finds relations within bytes of individ-
ual words, rarely crossing word and phrases boundaries. In
this sense, it fails to exploit the ordering of words. However,
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Figure 4: Decoding errors on unseen data for our best models (N =
8, no linear layers) with balanced input padding to a sequence of
size 1024 compared with Byte-Level Recursive Convolutional Auto-
Encoder (BRCA)

the order is mostly preserved in the latent vector.
Early in the training the model learns to output only spaces,

which are the most common bytes in an average Wikipedia
paragraph. Later during training, it learns to correctly rewrite
spaces, while filling in the words with vowels, which are the
most frequent non-space characters. Interestingly, the com-
pressing behavior seems to be language-specific and triggered
only by longer sequences. Figure 5 presents input sentences
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In : 9H3cxn4RIRUnOuPymw28dxUoA060LQ3heq1diKcbiUoinkzDjxucnE3Hk7FEFwHjzcTlOrhPUp3kgt9y8VAaw1sYpjPO9N5Cv4IAn
Out: 9H3cxn4RIRUnOuPymw28dxUoA060LQ3heqddiKcbiUoinkzDjxucnE3Hk7FEFwHjzcTlOrhPUp3kgt9y8VAaw1sYpjPO9N5Cv4IAn

(a) Random string of characters (under 128 bytes)

In : Lorsque ce m\xc3\xa9lange de cultures mondiales doit donner une signification au fa
it d’\xc3\xaatre humain, ils r\xc3\xa9pondent avec 10,000 voix diff\xc3\xa9rentes.

Out: Lorsque ce m\xc3\xa9lange de cultures mondiales doit donner une signification au fa
it d’\xc3\xaatre humain, ils r\xc3\xa9pondent avec 10,000 voix diff\xc3\xa9rentes.

In : When we first sequenced this genome in 1995, the standard of accuracy was one error per 10,000 base pairs.
Out: When we first sequenced this genome in 1995, the standard of accuracy was one error per 10,000 base pairs.

(b) French and English sentences (under 256 and 128 bytes respectively)

In : Lorsque ce m\xc3\xa9lange de cultures mondiales doit donner une signification au fa
it d’\xc3\xaatre humain, ils r\xc3\xa9pondent avec 10,000 voix diff\xc3\xa9rentes.L

Out: Larkere de Bu\xa9 lande by mortures mondiales leid dunner one mignification or Za
an ’’\xc3u ari Rumains and pe e rachant open (0,000 seid disar s senge. M

In : When we first sequenced this genome in 1995, the standard of accuracy was one error
per 10,000 base pairs.When we first sequence d this genome in 1995, the standard of

Out: When we first sequenced this genome in 1995, the standard of accuracy was one error
per 10,000 base pair..PWew we first sequence d this genome in 1995, the standard of

(c) French and English sentences concatenated 4 times to form a longer input (only a prefix is shown above)

Figure 5: Auto-encoding capabilities of the model with errors marked in bold red. The model was trained only on English Wikipedia
paragraphs. On short sequences, our model performs close to an identity function. On longer ones, it seems to correctly auto-encode only
English paragraphs. Note that the model tries to map French words into English ones (avec→ open, une→ one). We observed a similar
behavior on other languages as well.

and auto-encoded outputs of our best model, trained on En-
glish Wikipedia, for English, French and random input se-
quences.

6 Word-Level Sentence Encoder
Following the methods and work of [Conneau et al., 2017],
we apply our architecture to a practical task. Namely, we train
models consisting of the recursive convolutional word-level
encoder and a simple three-layer fully-connected classifier on
Stanford Natural Language Inference (SNLI) corpus [Bow-
man et al., 2015]. This dataset contains 570k sentence pairs,
each one described by one of three relation labels: entailment,
contradiction, and neutral. Then we test encoders on various
transfer tasks measuring semantic similarities between sen-
tences.

The encoder of each model has a similar architecture to the
previously described byte-level encoder. However, instead of
bytes it takes words as its input sequence. Our best encoder
has N = 8 layers in each group. The recursive group is ap-
plied K times where 2K is length of a padded input sequence,
so that the latent vector is of the size of a word vector. We use
pre-trained GloVe vectors4 and we do not fine-tune them. We
compared both fixed-length balanced, and variable length in-
put paddings. In fixed-length padding, up to first 64 words
are taken from each sentence. We also compare ensemble of
our best trained model and bag-of-words as a sentence rep-
resentation. Let v be the output vector of the encoder, and
u = 1

m

∑m
i=1 e(wi) be the average of word vectors of the

4https://nlp.stanford.edu/projects/glove/

sentence, where m is the length of the sentence, wi is its i-th
word, and e(w) is the GloVe embedding of the word w. Final
embedding is the sum x = v + u.

Table 4 presents results for word-level recursive convolu-
tional encoder (WRCE), word-level model with fixed bal-
anced padding (Ours), and an ensemble of our model and
an average embedding of the input sequence (Ours + BoW).
We compare them with a baseline model (BoW - average of
GloVe vectors for words in a sentence) on SNLI and other
classification tasks, SICK-Relatedness [Marelli et al., 2014],
and STS{12-16} tasks. The SentEval5 tool was used for these
experiments.

For certain tasks, especially those measuring textual simi-
larity, which are useful in retrieval-based response generation
in dialogue systems, presented models perform better than
bag-of-words. However, they are still not on par with LSTM-
based methods [Conneau et al., 2017; Kiros et al., 2015] that
generate more robust embeddings. LSTM models are au-
toregressive and thus require slow sequential computations.
They are also larger, with the InferSent model [Conneau et
al., 2017] having over 30 times more parameters than convo-
lutional encoders presented in this section. In addition, our
architecture can share word embedding matrices with other
components of a conversational system, since word embed-
dings are ubiquitous in different modules of NLP systems.

In order to qualitatively assess how the results for those
tasks transfer to the actual dialogue system, we have com-
pared some retrieved responses of a simple retrieval-based

5https://github.com/facebookresearch/
SentEval
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Table 4: Results for word-level sentence encoders. We compare bag-of-words (BoW), i.e. averaged word embeddings, WRCE - the encoder
from Zhang and LeCun’s model on word-level, our word-level model with balanced padding to 64 elements (Ours), and an ensemble of our
model and BoW (Ours + BoW) for various supervised (classification accuracy) and unsupervised (Pearson/Spearman correlation coefficients)
tasks.

Model
Task (dev/test acc%) BoW WRCE Ours Ours + BoW
SNLI 67.7 / 67.5 82.0 / 81.3 83.8 / 83.1 83.2 / 82.6
CR 79.7 / 78.0 78.0 / 77.3 78.6 / 77.0 79.1 / 78.2
MR 77.7 / 77.0 72.9 / 72.4 73.7 / 73.1 75.3 / 74.8
MPQA 87.4 / 87.5 85.9 / 85.6 86.0 / 85.9 87.4 / 87.6
SUBJ 91.8 / 91.4 86.1 / 85.4 87.2 / 86.9 89.0 / 88.9
SST Bin. Class. 80.4 / 81.4 78.1 / 77.5 77.2 / 76.7 78.1 / 78.8
SST Fine-Grained Class. 45.1 / 44.4 38.3 / 40.5 40.5 / 39.3 41.9 / 41.4
TREC 74.5 / 82.2 67.0 / 72.4 69.2 / 71.4 71.0 / 77.4
MRPC 74.4 / 73.2 72.4 / 71.1 73.5 / 72.5 74.1 / 73.3
SICK-E 79.8 / 78.2 82.6 / 82.8 83.6 / 81.9 83.2 / 83.0
Task (correlation) BoW WRCE Ours Ours + BoW
SICK-R 0.80 / 0.72 0.85 / 0.78 0.87 / 0.80 0.86 / 0.80
STS12 0.53 / 0.54 0.56 / 0.57 0.60 / 0.60 0.62 / 0.61
STS13 0.45 / 0.47 0.55 / 0.54 0.53 / 0.54 0.57 / 0.58
STS14 0.53 / 0.54 0.65 / 0.63 0.68 / 0.70 0.69 / 0.66
STS15 0.56 / 0.59 0.68 / 0.69 0.70 / 0.70 0.71 / 0.72
STS16 0.52 / 0.57 0.69 / 0.70 0.70 / 0.72 0.71 / 0.73

agent, which matches user utterance with a single quote from
Wikiquotes [Chorowski et al., 2018]. We present a compari-
son of our word-level sentence encoder with the bag-of-word
method in response retrieval task (Figure 6). Human utter-
ances from the training data of NIPS 2017 Conversational
Challenge6 have been selected as input utterances. We match
them with the closest quote from Wikiquotes, using a method
similar to the one used in Poetwannabe chatbot [Chorowski
et al., 2018]. All utterances have been filtered for foul speech
(for details see [Chorowski et al., 2018]), tokenized using
Moses tokenizer7, and embedded as vectors. For every user
input utterance, we return the closest matching quote from
Wikiquotes with respect to the cosine similarity.

7 Discussion and Future Work
The problem of efficiently producing good and robust sen-
tence embeddings seems far from being solved. In this work,
which we consider a step forward in exploration of possi-
ble tools and solutions, we analyzed and proposed improve-
ments to the BRCA model by Xiang Zhang and Yann Le-
Cun [2018]. With extensive usage of convolutions, our model
is efficient in terms of computation and memory usage. By
analyzing BRCA we were able to diagnose problems with
its training, such as exploding gradients, and understand the
difficulty in auto-encoding of long paragraphs, especially in
the initial stage of training. Furthermore, we showed how to

6http://convai.io/2017/data/
7https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/tokenizer/
python-tokenizer/moses.py

successfully apply batch normalization with recursive layers
and investigate input-output relations with Integrated Gradi-
ents method.

The recursive convolutional architecture benefits from the
ease of training and low number of parameters. Due to our
realization that in the current byte-level setting, input-output
relations rarely cross word boundaries, we demonstrate ap-
plicability of the architecture in a word-level setting as a sen-
tence embedder. Furthermore, a good performance on seman-
tic similarity tasks while using little resources demonstrates it
practical usefulness for dialog systems.
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User: Hello, have you studied algebra?
BoW: I never failed in mathematics. Before I was fifteen I had mastered differential and integral calculus.
Ours+BoW: I never failed in mathematics. Before I was fifteen I had mastered differential and integral calculus.
User: From what I understand it’s a video game.
BoW: Life is like a piano. What you get out of it depends on how you play it.
Ours+BoW: From now on, I control all aspects of the game.
User: God
BoW: Knowledge of God is obedience to God.
Ours+BoW: God and all attributes of God are eternal.
User: Have you been to South Asia?
BoW: We do not want chaos in South Africa.
Ours+BoW: There is a wide knowledge gap between us and the developed world in the West and in Asia.
User: How do you like Hackathon?
BoW: Any thing you can do I can do better.
Ours+BoW: Discover the things that you do that make you proud as hell.
User: How do you think ?
BoW: Any thing you can do I can do better.
Ours+BoW: How you think matters more than what you think.
User: I just didn’t catch what was context message about.
BoW: I read it because I was asked to explain what the truth is.
Ours+BoW: I spend so much time thinking about all the answers to the problem... that I forget what the problem actually was.
User: I’m an idiot
BoW: I am an Agnostic because I am not afraid to think.
Ours+BoW: I wish I could say I was sorry.
User: It’s classics!
BoW: I love musical theatre and my dream is to do Once On This Island.
Ours+BoW: No work which is destined to become a classic can look like the classics which have preceded it.
User: So, start talking.
BoW: Oh, ok, ok... Fair enough, yeah, rage it up. Rage all you want. Good things are coming. Good things.
Ours+BoW: Many people talk much, and then very many people talk very much more.
User: Technically correct
BoW: Surely only correct understanding could lead to correct action.
Ours+BoW: Where an opinion is general, it is usually correct.
User: Thats why I play computer games alone.
BoW: I have no time to play games.
Ours+BoW: The only legitimate use of a computer is to play games.
User: Well, can you dance?
BoW: If I can mince , you can dance.
Ours+BoW: Ah, so you wish to dance.
User: What about ivy league?
BoW: Ah wonder if anybody this side of the Atlantic has ever bought a baseball bat with playing baseball in mind.
Ours+BoW: This is so far out of my league.

Figure 6: Sample answers of retrieval-based agents which embed sentences as either BoWs, or BoWs combined with our method
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Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals,

22



Koray Kavukcuoglu, George van den Driessche, Ed-
ward Lockhart, Luis C. Cobo, Florian Stimberg, Norman
Casagrande, Dominik Grewe, Seb Noury, Sander Diele-
man, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex
Graves, Helen King, Tom Walters, Dan Belov, and Demis
Hassabis. Parallel wavenet: Fast high-fidelity speech syn-
thesis. CoRR, abs/1711.10433, 2017.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30,
pages 5998–6008. Curran Associates, Inc., 2017.

[Weissenborn et al., 2017] Dirk Weissenborn, Georg Wiese,
and Laura Seiffe. Fastqa: A simple and efficient neural ar-
chitecture for question answering. CoRR, abs/1703.04816,
2017.

[Yang et al., 2018] Yinfei Yang, Steve Yuan, Daniel Cer,
Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Learn-
ing semantic textual similarity from conversations. CoRR,
abs/1804.07754, 2018.

[Yusupov and Kuratov, 2017] Idris Yusupov and Yurii Kura-
tov. Skill-based conversational agent. 12 2017.

[Zhang and LeCun, 2018] X. Zhang and Y. LeCun. Byte-
Level Recursive Convolutional Auto-Encoder for Text.
ArXiv e-prints, February 2018.

23


	Introduction
	Preliminaries
	Related Work
	Model Description
	Encoder
	Decoder

	Model Analysis
	Data
	Model Capacity
	Generalization to Longer Sequences
	Balanced Padding of Input Sequences
	Batch Normalization
	Auto-Encoding Performance
	Generalization

	Word-Level Sentence Encoder
	Discussion and Future Work



