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Abstract: This paper presents island models, methods, im-
plementation and experiments connecting stochastic opti-
mization methods and recommendation task (collaborative
one). Our models and methods are based on matrix fac-
torization. Parallel run of methods optimizes the RMSE
metric from an island model point-of-view.

This paper comments on architecture and some imple-
mentation decisions.

We dealt with two research hypotheses. First, whether
island models bring always improvement. We will show
that almost always yes. Second, whether evolutionary al-
gorithm does or does not always find the best solution.
This will be confirmed only on smaller data. Experiments
were provided on Movie Lens 100k and 1M data.

1 Introduction

This paper studies recommender systems, especially learn-
ing user/customer preferences. Main idea of this paper is
to connect this study to evolutionary island models. Here,
island models are a computational tool for matrix factor-
ization.

Instances of one stochastic optimization method run in
parallel on island models, searching the same state space.
Such a method traverses the state space of solutions. The
actual state they visit is influenced by (mutually indepen-
dent) stochasticity. Hence, different instances can visit dif-
ferent parts of the state space. Island model parallelization
is based on cooperation of methods during the computa-
tion.

This resembles ensemble and/or hybrid learning, where
different optimization methods are:

• run in parallel

• allowed to run in different state spaces

The solution (usually one of them) is chosen at the end by
an additional aggregation/decision method.

Using evolutionary computing for recommendation is
surveyed in the paper of Horvath [1]. This survey shows
that usage of evolutionary methods is quite frequent in rec-
ommendation systems (see also [2]). One of approaches is
model based. Our approach uses matrix factorization and
hence the model is constituted by factors. In [1] they men-
tion only one paper [3] where evolution individuals are
matrix factors. Authors of the article [3] provide results
on ML100k data on minimizing squared error depending

on size of population and probability of mutation (other
parameters are fixed).

In this paper, parameters of our methods were chosen
after experiments on sample data. We will try to improve
RMSE using parallelization. We will provide results on
both ML100k and ML1M data.

Main contribution of this paper is:

• Multiple island model brings statistically significant
improvement of recommendation in comparison to
single instance optimization.

• Our implementation is able to handle individuals
(matrix factors). Size of our individuals is several or-
ders bigger than usual in evolutionary computation.

This paper is organized as follows: Chapter 2 "Related
work" concerns recommender systems and matrix factor-
ization; evolutionary algorithms and island model. Chap-
ter 3 "Methods, models and parameters" sketches our view
of stochastic optimization methods; parameters and set-
tings of island model used in tests. Next section "Data"
describes realization of experiments and design of tests
and computing resources. Finally section 4 "Results" gives
both numeric and graphic presentation of our results and
discusses confirmation of our hypotheses. After conclu-
sions paper ends with Future work.

2 Related work

This section gives basic notation for recommender sys-
tems, evolutionary computation used and overviews some
relevant literature.

2.1 Recommender systems and matrix factorization

It was the Netflix price (announced in October 2006)
which excited public and changed the landscape of rec-
ommender systems area research.

The BellKor squad included Chris Volinsky and his
AT&T colleagues Robert Bell and Yehuda Koren, along
with four other engineers from the United States, Austria,
Canada and Israel (BellKor’s Pragmatic Chaos) on June
26, 2009, finally crossed the 10% finish line. Main in-
gredient of winning solution has been matrix factorization
(MF), see e.g. [4].

We focus on latent model based recommendation -
which is a part of collaborative filtering technique (Co),
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asked for in Netflix Price competition. Co was introduced
by [4].

Let us denote U set of user ids and I the set of item ids.
Input data can be viewed as partial function r : U ×I −→
P , here P is the preference scale (e.g. one to five stars
or real numbers). Alternative representation is in the form
of algebraic matrix R ∈P |U |×|I | with dimensions repre-
senting users and items respectively. Rating of user i ∈U
of an item j ∈I is content of corresponding cell of matrix
ri j ∈P . Usually this matrix is very sparse, so in practice
input data are represented in a form of a database table R
with schema R(uid = user id, iid = item id,rating). Al-
though implementation uses database table formal model
of [4] description is easier in the language of matrices. The
matrix R is factorized to lower dimensional representation

R≈ U× Iᵀ = R̂ (1)

where U ∈P |U |×d , I ∈P |I |×d are user and item la-
tent factors matrices and × is a matrix product. d is much
smaller than |U | and |I |. Approximation of R by R̂ is
measured by

e2
i j = (ri j− r̂i j)

2 =

(
ri j−

d

∑
k=1

uiki jk

)
(2)

here r̂i j will serve as approximation of value ri j.
Our main optimization method is SGD - stochastic gra-

dient descent method. For other approaches and dimen-
sions of research in recommender systems we reffer to [5].

2.2 Evolutionary algorithms

Evolutionary algorithms became popular after 1970,
thanks to John Holland [6] as a means for solving opti-
mization problems. The solution is represented as an indi-
vidual, the set of individuals forms the population. Evo-
lutionary algorithm is formed by phases: initialization,
selection (parent selection for next generation offspring),
crossover, mutation and evaluation of the whole popula-
tion. The stochastic computing of individuals seeks con-
vergence to the global optimum.

The contribution of evolutionary algorithms in the area
of recommender systems was reviewed by Horvath de Car-
valho in [1]. This review analyzed more than 65 research
papers using EC techniques for user recommendations. It
analyzed different approaches according to five aspects: (i)
recommendation technique used, (ii) datasets employed in
the experiments and (iii) evaluation methods used in the
experiments, (iv) baselines used to compare with the pro-
posed methods and (v) reproducibility of the research.

Most of nature-inspired algorithms reviewed in [1] find
application in solving partial problems such as feature
weighting extraction, model based approach, clustering
and function learning.

Computing latent factor models by using of evolution-
ary algorithms has emerged as a possible approach [3].
Available publications do not mention the parallelization

of evolutionary algorithms in combination with the com-
putation of latent factors.

Motivated by this, in our paper individuals are repre-
sented by concatenation of Uᵀ and Iᵀ (like a worm d-thick
and |U |+ |I | long)




u11 . . . u1|U | i11 . . . i1|I |
...

. . .
...

...
. . .

...
xd1 . . . ud|U | id1 . . . xd|I |




Figure 1: Individual represented by latent vector of users
and latent vector of items

In our experiments we use the RMSE as the fitness func-
tion

√√√√∑|U |i=1 ∑|I |j=1 e2
i j

|U | ∗ |I | (3)

2.3 Island model

Island models are one of approaches how parallelize opti-
mization algorithms. Their characterization is that there is
no central master and populations are distributed. Island
model consists of parallel algorithms enriched by send-
ing and accepting migrants. Migrants are individuals from
other islands population. The hope is that this propagation
of genetic material can speed up convergence and escape
from local optima trap.

Parameters of island model are frequency of sending-
receiving migrants and the way how the migrant is chosen
from local population (remember that parameters of meth-
ods are fixed and are chosen after experiments on a sample
data). Optimal choice of these parameters depends on the
type of optimization method and is subject of study. These
aspects of island models are studied in [7].

Specific type of island models, heterogeneous, were
used in the application of multi-criteria optimization by
Martin Pilát and Roman Neruda [8]. They designed a
new algorithm of MOGASOLS (Multiobjective Genetic
Algorithm with Single Objective Local Search) combining
multi-criteria genetic algorithm (MOGA) with a single-
criteria genetic algorithm (SOGA). It is proved that par-
allelization of time-consuming method MOGA achieves
worse results than parallel running MOGA and SOGA
methods. They were tested in NSGA-II [9] and IBEA [10]
algorithms. This was further developed in [11].

The first who come up with heterogeneous island mod-
els (HeIM), the way we understand them, was Martin Pilat
([11]). In these models, the islands may carry diverse com-
putational methods, differing not only in parameters but
also in the structure of the whole stochastic algorithm [11].
For the choice of optimal methods for the given problem is
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responsible the central planner, which replaces unsuccess-
ful method by more successful methods during the whole
computation. In publication [11] the original Balcar’s tool
[12] was used.

In this paper this tool is used with homogeneous islands
to find optimal user and item latent factor.

Then different optimization techniques are used to con-
verge with factor to optimal one. For illustration we give
formulas for stochastic gradient descent. Recall e2

i j, then
next generation values of user and item factors equal to

úik = uik +α
∂

∂uik
e2

i j
´ik j = ik j +α

∂
∂ ik j

e2
i j (4)

Note, that in our implementation we do not consider
normalization factor, this is left for future. Nevertheless,
some normalization effect is obtained by migration and
synergy of islands. α is not fixed, just bounded from
above. More on our system is in [12].

3 Methods, models and parameters

Island models where originally developed for paralleliza-
tion of evolutionary algorithms. In this paper we will use
also other stochastic optimization methods.

3.1 Stochastic optimization methods

Evolutionary algorithms try to balance trade off between
exploration and exploitation. This property should help
evolutionary algorithm to escape from local extremes and
simultaneously converge to optimal solution. For this abil-
ity they pay a higher time complexity because of parallel
development of bigger population. Because of this fact,
on some types of problems, the winners are other stochas-
tic optimization methods. An example is TSP solution by
hill climbing with 2-opt ([13]). So, this is the main rea-
son we consider several additional stochastic optimization
methods (see Table 1).

All these methods use the stochastic gradient descent.
A general link to description of stochastic optimization
methods is [14].

Our implementation of stochastic optimization methods
was changed in two ways. First, we had to create operators
to enable them to work with latent factor based individu-
als. Second, methods were modified for parallel run in is-
land models with migration. They were enriched with abil-
ity to cooperate. They receive individuals and enrich their
local population. Please notice, that only evolution and
differential evolution have bigger population. Remaining
methods have only one individual population. In this case
enrichment means replacement. They provide their solu-
tion from local population to neighboring islands. Meth-
ods manipulate incoming individuals in concordance with
basic algorithm idea. E.g. the tabu search method inserts
a newcomer to the tabu set.

Individual equals solution. Solution is represented by
pair of latent factors of users and items (Figure 1). Mul-
tiplying of these latent factor we get a matrix which rep-
resents our estimation of ratings. Length of first vector is
the number of users and the length of second vector equals
number of items. Size of the individual depends on size
of input problem. Width of latent vector is an optional pa-
rameter.

3.2 Parameters and settings of island model used in
tests

Now we describe island model - the environment in which
the above methods will be parallelized. It is the envi-
ronment which ensures dissemination of genetic material.
The main tool for this is the migration. This migration
does not mean only exchange of best solutions. We would
like to spread across the system (between islands) genetic
material which has the potential to contribute to further
improvement of population quality and to speed-up the
convergence. Migration is inspired by processes in nature
([15], [16]). Most of island models exchange migrants in a
synchronized way. In our system exchange of migrants is
not synchronized - so in fact our islands are more general.

Key parameter of island models , as nature shows ([17]),
is the frequency of migration and size of local populations.
The bigger the frequency of migration the bigger is the
chance that islands will help each other. On other side each
hardware and software is limited by data through put.

Matrix factorization needs migration of much bigger in-
dividuals than e.g. continuous optimization, where indi-
vidual is a point in an n-dimensional space. In this paper
we had to change architecture of model used in [11]. In
[11] input problems were TSP (traveling salesman prob-
lem of size cca. 1000 cities), BP (bin packing, one dimen-
sional with 1000 items), CO (continuous optimization, 10-
dimensional function) and vertex cover (1000 vertexes).
Solution of preference learning by matrix factorization on
island models is represented of much bigger individuals,
rough estimation of our state space is > #TSP20. Evolu-
tionary algorithms use incoming individuals in groups and
after a while. Hence, it is advantageous to store them in a
front. As far as individuals are big and memory is limited
we had to limit the size of fronts (see Table 2).

3.3 Data

We used data from the movie recommendation domain in
the experiments. The effectiveness of parallelization has
been verified on datasets ml-100k1 and ml-1m2. Datasets
are formed by movie evaluation (1-5 stars), for trials we
use the trinity (user, movie, rating).

The training set consists of four-fifths from the dataset,
the rest is the test set. Counting derivatives for SGD lever-

1http://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/
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Algorithms Tool Parameters
HillClimbing SGD random rating from each line numberOfNeighbors=10
RandomSearch generation of latent vectors
Evolution uniform crossover + SGD popSize=10, mutationRate=0.9,

crossRate=0.1,
parentSelector=CompareTwoRandomSelectors

BruteForce SGD according to the I-th rating
TabuSearch SGD random rating from each line tabuModelSize=50
Sim.Annealing SGD random rating from each line temperature=10000,

coolingRate=0.002
Diff.Evolution differential crossover popSize=50, F=0.25

Table 1: Methods and parameters

Parameter value
Number of iterations 50, period = 60 seconds
Number of islands 4 (AMD Opteron 6376)
Neighbors of method 3 (distributed to everyone)
Migration frequency 5 seconds

Table 2: Parameters of the island model

ages the training set. The test set is used to evaluate indi-
viduals.

3.4 Realization of the experiment

Our main idea is to increase stochasticity of searching the
state space (which is enormous for movie data). First
level of stochasticity is enabled by stochastic optimization
method. Second level is enabled by several independent is-
lands. The third level is attained by migration. Our system
enables all of these. Moreover, all of these run in parallel
with mutually assisting methods (not competitive).

In order to be able to obtain the best solution from such
a computation resource, the computation must be continu-
ously monitored (Figure 2). Solutions represent individu-
als that are unpredictably moving across the island model.
We can never know when and where the best solution will
appear (sometimes the best solution does not appear at the
end, see Figure 3).

Our implementation uses agent middle-ware Jade3 for
achievement of higher adaptivity of methods (in our three
levels of stochasticity).

Here we were facing main decision. Whether to prefer
higher adaptivity (based e.g. on Jade) or better use of ef-
fectiveness of specific hardware (based e.g. on C). From
pure experimental curiosity we went along the agent based
middle-ware framework direction.

The central brain of the multi-agent based system is a
manager of migration which directs the computation and
measures genetic material during evolution.

3http://jade.tilab.com/

Method
(agent) 

III.

Island 3

Method
(agent) 

II.

Island 2

Method
(agent) 

I.

Island 1

Manager 
(planner) 

Monitor 
(statistic) 

Figure 2: Architecture of system

The use of this system is the implementation of methods
as an agent, who can develop methods as adaptive com-
puting resources. The infrastructure of the system is made
up of two central points, by Agent-manager that manages
computation and by Agent-monitor, that monitors genetic
material in the system.

Software allows multiple ways of monitoring. The mon-
itor statistically processes the quality of the individuals.
Another way of observing what happens in the system is
to produce the pedigrees of an individual. The basic idea
is to enrich every individual of the pedigree that contains
information on the involvement of concrete islands in its
creation.

For our experiments, were used statistics that are com-
puted from each monitored individuals in one iteration of
planner. We will present the results as a measure of the
system, which is monitoring follow-planner-iterations.

Our evolutionary methods (Table 1) use uniform
crossover. In phase of mutation they apply stochastic gra-
dient descent on a randomly chosen rating.

Differential evolution combines 3 latent vectors (indi-
viduals which are models/solutions) LV1 which is a con-
catenation of Uᵀ

1 and Iᵀ1 , similarly LV2 and LV3. Result
of the differential operator is latent vector

LVnew = LV1 +F ∗ (LV2−LV3)

here F is 0.25.
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3.5 Test design and computing resources

Two pairs of tests were created, comparing single meth-
ods and island models, differing in the size of the input
Movieland dataset. The width of the latent vector was set
to 10 (best after initial experiments on smaller samples).
The tests run on all initial parameter settings (Table 3) 9
times. As far as our computations are nondeterministic
this makes difference (see Figures 4 and 5). These are
computationally demanding calculations.

Parameter value
Number of runs 9
Computing nodes AMD Opteron 6376, 64GB memory
Latent factor width 10
Datasets ml-100k, ml-1m

Table 3: Parameters of the test

4 Results

Our experiments validated two hypotheses. First is that
evolution does not necessary give best solution and sec-
ond that island models improve results. We will present
results for two datasets separately. We will show the best
solution of 9 runs and average of all runs (for distribution
see Figures 4 and 5).

On the smaller data set the winner is always Evolution
and Islands give always better solution.

On the bigger dataset the single island winner is simu-
lated annealing (in both minimum and average). In Islands
the winner is hill climbing (in both minimum and aver-
age). On bigger data we can not always observe advantage
brought by parallelization by islands and migration. This
can be observed especially by simulated annealing. One
possible explanation is that hill climbing does not risk that
much going in wrong direction as simulated annealing is
doing (sometimes). Bigger data bring bigger state space
and hence risk is necessary, but 50 iterations of the plan-
ner is probably not enough. In future research we will run
island models with more iterations.

5 Conclusions

We proved that island models are a good computing tool
for recommender systems. Our experiments have shown
following. Island models brought clear improvement on
smaller data set. On bigger data, it is also true except of
simulated annealing. Moreover on bigger data evolution
does not find best solution.

Our implementation is publicly available on Github4

and hence enables repeatability of our experiments (see
[1], requirement (v)).

4https://github.com/sbalcar/distributedea
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6 Future work

In our future work we plan to extend this to heterogeneous
island models. We also plan to develop new planners
which will be specifically designed for recommendation
domain. We would like to consider also islands with statis-
tical learning methods. Challenge is extension to content
based recommendation.
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