
Framework for Distributed Computing on the Web

Jakub Šiller and Jaroslav Kuchař

Web Intelligence Research Group, Faculty of Information Technology
Czech Technical University, Thákurova 9, 160 00, Prague 6, Czech Republic

{sillejak|jaroslav.kuchar}@fit.cvut.cz

Abstract: This work is a brief summary of a master the-
sis that focuses on design and implementation of a frame-
work that uses computers of website visitors as comput-
ing nodes through web browsers. It contains an analysis
of the Web environment, summarization of previous ap-
proaches and projects, design and implementation of the
framework. The work describes the solution of computing
node failure, reaction to slow computing node, possibili-
ties of controlling the load of the framework on a website
visitor’s computer, strategies for work distribution and se-
curity of the framework. At the end of the work, the ex-
periment results and proposal of improvements are listed.

1 Introduction

Nowadays, web technologies and web services are an in-
separable part of human life. We are using web browser
for communication, entertainment, shopping and a many
other activities. A lot of web users have powerful de-
vices but they don’t use their full power often. Thus, in
the world, there is huge computing potential that is idle.
Framework presented in this work is able to utilize this
computing power.

In section 2 there is a summarization of previous works
and current project in the field of distributed computation
in web browsers. Analysis of web environment and frame-
work requirements are content of section 3. Section 4 is
focused on design of the framework. Finally, experiment
results are presented in section 5.

2 Related works

Utilizing idle power via the Internet to create distributed
computer is not a new idea. According to [1] the first
project about this topic was Great Internet Mersenne
Prime Search [2] that started in 1996. A few years later
projects SETI@Home [3] that was focused on the Search
for Extraterrestrial Intelligence and Folding@home [4]
that was using computers of volunteers for medical re-
search was launched. After that BOINC (Berkeley Open
Infrastructure for Network Computing) [5] was created. It
is probably the biggest and the best known platform for
volunteer computing. All of mentioned projects are still
alive. In order to join a computation in these projects a
volunteer have to install some additional software.

Since 2007 several works related to utilizing computa-
tion power using web browser have been published. They

were focused on various types of computing tasks. For
instance projects [6], [7], [8] and [9] were using web
browsers for simulated evolution. Work [10] was focused
on image processing. Machine learning in web browsers
was the topic of [11]. Authors of [12] created web search
engine using web browsers. In [13] and [14] map reduce
frameworks were presented. There were also works that
were focused on creating general framework: [15], [16],
[17]. Architecture of most of presented works was client-
server.

Developers of commercial project Computes are trying
to create distributed decentralized supercomputer from all
kind of devices.

There are also several commercial tools for mining alt-
coins.

Published works are usually just proof of concept and
authors don’t deal with every aspect of systems. For in-
stance security is often omitted. The main contribution of
this work is to create complex framework that could be
deployed.

3 Analysis

The web has several major characteristics. One of them is
diversity. Web users are using various browsers of various
versions. Each user has different device, different connec-
tion speed etc.

Another strong aspect of the Web is dynamics. Web
technologies are still evolving and continuously new tech-
nologies are emerging. Also web browsing is very dy-
namic. According to [18] users often stay on a page just
for 10-20 seconds.

The Web is free and open. Everyone can join and pub-
lish and consume data.

And the last but not least aspect is its’ enormous size.
[19] and [20] states that the Web has more than 3.7 billions
users and this number is getting bigger every year.

These aspects of the Web have impact on the frame-
work requirements. Dynamic browsing will cause fre-
quent computing node failures. The framework have to be
able to detect failure and solve the situation. The frame-
work also should be able to work with computing nodes
of different performance. Security mechanisms should be
involved on server side and on client side as well. Frame-
work also have to ensure correctness and reliability of
tasks results.

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 161–167
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Jakub Šiller and Jaroslav Kuchař



4 Design

4.1 Computational model
The framework is focused on types of tasks in which server
sends work to client, client processes the work and sends
the result back to the server. There is no communication
between clients and no communication between client and
server regarding the computation but distributing works
and receiving results. Framework user can define divid-
ing and merging functions. In case that a task has too big
data the framework will use dividing function in order to
automatically recursively divide the data and create partial
subtasks called works. Works are then distributed to the
client. Results of works from clients are then merged by
framework using merging function. Described model is
shown in figure 1.

In order to compute a tasks there will be a lot of mes-
sages between clients and the server. Speed of commu-
nication depends on connection quality. It might be time
consuming. Therefore, the framework is more suitable for
computing intensive tasks rather than data intensive tasks.

4.2 Users
Users of the framework are divided into two groups. Users
from the first group are creators of task prototypes. A task
prototype consists of definition of code that should be ex-
ecuted in client and optional dividing and merging func-
tion. This group of users should know the framework -
its’ advantages, disadvantages and some technical details
in order to create effective code for the framework.

The second group are common users. They use frame-
work for computations. They don’t need to know anything
about the framework but the id of task prototype they want
to use.

This division has several reasons. The first of them is
security. We can assume that number of task prototypes
creators will be much smaller than number of other users.
Therefore it might be relatively easy to make sure that cre-
ators of task prototypes are trustworthy. And then we can
assume that their code is probably trustworthy as well. An-
other reason for the division is quality of code. If there are
users who are focusing on creating code for the frame-
work there is high probability that the code will be effi-
cient, without bugs and there will be no task prototypes
for tasks that are not suitable for the framework. More-
over common users don’t need to know anything about the
framework.

4.3 Framework in a nutshell
Basic architecture of the framework is client-server. The
server consists of two main parts - ProgrammerServer
and VolunteerServer. ProgrammerServer is responsible
for communication with users of the framework. Volun-
teerServer is the main part of the framework. It is respon-
sible for communication with clients, processing tasks,
distributing works to clients and processing results.

The framework utilizes replication and majority voting in
order to ensure correctness and reliability of works results.
User can for each task specify the replication factor. In
each work object server holds information that indicates
to how many more clients the work should be distributed
in order to reach the replication factor. This information is
in attribute remaining.

In order to compute a task a user sends data and id of
task prototype to the server. Server insert the task to the
task queue. The server holds collection of works that are
currently being distributed to clients. If there is enough
place for more works server prepare another task from
the queue for distribution. Preparation of a task for dis-
tribution consists mainly of dividing task’s data. When a
client sends work request the server response with several
works. Works that are returned to the client have attribute
remaining greater then zero. After assigning a work to a
client the attribute is decremented. Number of works that
are returned to the client depends on strategy that is used.
Strategies implemented in the framework are described in
following section. When a client receives works it starts to
process them. The client doesn’t wait until all works are
done but each result is sent back to the server as soon as it
is available. This is shown in figure 3.

When the server received results from all works it merge
them to the result of the task. The task’s result is stored in
database. When the user send request for the result to the
server it responds with the result from the database.

When a client processes all assigned works it sends new
work request to the server.

Strategies for work distribution There are several strate-
gies in the framework for determining number of works
that should be returned to a client.

The most easy one is a strategy that returns fixed num-
ber of works.

Another strategy is based on fixed sum of works sizes.
The framework uses statistics to estimate maximum num-
ber of works so that sum of their sizes is less then config-
ured threshold.

The most complex strategy uses time elapsed from start
of a client session. According to [18] a distribution of ses-
sion duration follows Weibull distribution with negative
aging. That means that at the begging of a web page visit
the probability that user will leave the page is very high
and it decrease over time. Therefore this strategy increase
number of works that are sent to the client accordingly to
the session duration.

Modes of work distribution Work distribution can run
in two modes. In the first mode data with full work code
are sent to the client. In the second mode data along code
identifier are sent. In this mode client have to make an-
other request to the server in order to get the code. How-
ever, in this mode it is possible to cache the code in the

162 Jakub Šiller and Jaroslav Kuchař



(a) Dividing and distributing phase

(b) Receiving and merging phase

Figure 1: Visual example of the computation model of the framework

Figure 2: Base architecture of the framework.

Figure 3: Simplified process of distributing works to the
client and subsequent sending results back to the server.
During computation of a work heartbeats are sent to the
server.

browser and in intermediate network devices. Therefore
the amount of data on wires can be decreased. This mode
is efficient only if a client or a group of clients are per-
forming tasks of a single or a few task prototypes. In other
cases it might be inefficient because of more requests.

4.4 Computing node failure

In order to detect computing node failure the framework
holds in each session object time of last access. It is up-
dated with each request from the session. During compu-
tation a client code running in a session periodically sends
empty request to the server - a heartbeat - so the server is
informed the session is still alive as is shown in figure 3.

A server module DeadSessionCollector periodically
collects dead sessions. A session is considered to be dead
if time elapsed from the last access is higher than a con-
figured threshold. When a session die the framework in-
crements attribute remaining of all unprocessed works that
were assigned to the session. So the work will be assigned
again to some session.

4.5 Slow computing node

Because of different performance of web user devices, dif-
ferent connection speed and different utilization of the de-
vice by it’s user it may happen that computation of a work
would last on one client much longer than computation of
the same work on other client. Thus, when some client is
processing some work too long it may be efficient to assign
the work again to another client.

The framework’s module LongRunningSessionCollec-
tor periodically checks whether there is a slow client for
some work. A client is considered too slow for a work if

Framework for Distributed Computing on the Web 163



the time elapsed since the work was assigned to the client
is several times longer than average time of computation
of the work on other clients. If a client is marked as slow
for a work the framework increment attribute remaining of
the work.

4.6 Client side

At client side the framework is using Web Worker technol-
ogy [21]. A web browser create new thread for each Web
Worker object. Therefore experience of browsing a web
page should not be affected by the framework. The frame-
work creates several Web Worker objects in which works
are processed. When a client receive works it put them in
a queue. The Web Worker objects are taking objects from
the queue and processing them. As soon as a Web Worker
object computes a work the result is sent to the server. This
is shown in figure 4.

Figure 4: Illustration of processing works assigned to a
client on multiple Web Worker objects

For computation of a work the framework is able to
use new client-side web technologies asm.js [22] and We-
bAsembly [23] instead of JavaScript [24]. The creator of
task prototype can implement working function in C++
which is then at the server compiled into asm.js and We-
bAssembly modules.

4.7 Controlling of client utilization

There are two ways how the framework is able to control
stressing of client’s device. The first one is controlling the
number of Web Workers that are used. The second option
is throttling. JavaScript code can not control stressing of
CPU at particular time but it is possible to control stressing
from long-term view. For instance if x seconds is processor
fully stressed by the framework and then x seconds is idle
we can say that the framework stressed CPU by 50% dur-
ing 2x seconds. The configuration attribute throttleFactor
holds information how many times the duration of the last
computation the server has to wait before it could again as-
sign a work to a client. In other words it is inverted value
to the desired CPU usage.

4.8 Security

The framework contains several security mechanisms. The
server accepts user request only with valid API keys. List
of API keys is in configuration of the framework. If a re-
quest doesn’t contain valid API key the server responds
with HTTP code 403 forbidden.

The framework executes user code on server-side and
also on client-side. The framework must ensure that the
code will cause no harm to server or client’s device. There-
fore, user code is executed in a sandbox. At the server-side
VM2 module [25] is used. At the client-side a sandbox is
implemented as a white-list of allowed function and ob-
jects. Every other function or object is disallowed.

Communication between a client and the server is en-
crypted. This decrease probability that content of mes-
sages is changed by malicious third-party.

As was mentioned earlier in order to ensure correctness
an reliability of results majority voting is involved. A user
can specify replication factor but he or she should be aware
that probability that data are correct is never 100%.

Securing data is complicated topic. The purpose of web
browsers is to serve data to its user so the framework can
not hide data from the user of the browser it is running in.
Therefore the only way how to secure the data is comput-
ing on encrypted data. There are mathematical models that
enables it. Some of them are described in [26]. There is
no need to change the framework in order to compute on
encrypted data - it is responsibility of task prototypes im-
plementation. Computing on encrypted data can also en-
sure 100% probability that result is correct excluding bugs
in the task prototype.

5 Experiments

Experiments were performed on 60 computers in class-
rooms at FIT CTU. Configuration of computers is in table
1. Test task was naive algorithm for computing determi-
nant of a matrix. Maximum size of a matrix that was sent
to clients was 11× 11. If the matrix was bigger it was
recursively divided to matrices of size 11×11.

Classroom CPU Model size of RAM

T9-350
Intel® Core™ i5-6500
CPU @ 3.20GHz 16 GB

T9-351
Intel® Core™ i5-3470
CPU @ 3.20GHz 8 GB

T9-303
Intel® Core™ i5-3470
CPU @ 3.20GHz 8 GB

T9-349
Intel® Core™ i5-4570S
CPU @ 2.90GHz 8 GB

server Intel® Core™i5-2410M
CPU @ 2.30GHz 6 GB

Table 1: Configuration of test computers

164 Jakub Šiller and Jaroslav Kuchař



Tests were performed in the mode in which just iden-
tifier of a code is sent to the client. Replication factor
was set to 3. The framework was using all CPU cores
of the client devices. Test environment refreshed test web
page at a client after randomly chosen time from interval
[0,maxDuration] where maxDuration is parameter. Test
Settings of earlier mentioned parameters are in table 2.

Parameter Value
deadSessionCollector:

interval 2 sec
deadTime 10 sec

LongRunningSessionCollector:
interval 5 sec
factor 5

Other framework settings:
throttleFactor 0

heartBeatInterval 5 sec

test environment settings:
maxDuration 960 sec

Table 2: Test setting of mentioned parameters

The purpose of the first experiment was to test how
would change computation time of the task from user point
of view with increasing number of clients. In figure 5 we
can see that with increasing number of clients computa-
tion time is decreasing. During tests in classrooms T9-
350, T9-351 and T9-303 speeding up stops around number
30. That probably happened because computers in T9-350
were more powerful that others (shown in figure 7) so the
framework considered the others to be slow and started to
assign one work to more clients that was necessary. This
is shown in figure 6. Also there was a mistake in the con-
figuration. Interval of sending heartbeat was equal to the
time after which a session was considered as dead. After
some changes in configuration the computation becomes
again a little bit faster.

Figure 5: Influence of number of clients to computation
time from user point of view.

The second experiment tests how size of a matrix would
affect computation time from user point of view. It also
compares computation time of the task using framework
and computation time using local computation that was

Figure 6: Influence of number of clients to average number
of sessions to which one work was assigned

Figure 7: Statistics of a computation time of one matrix at
client-side. For each number of client on axis X mean and
mean ± standard deviation of computation time at client-
side is shown

implemented in C++ using OpenMP [27] in order to uti-
lize all CPU cores of a computer. Local computation was
executed on the server’s computer. In figure 8 we can see
that for small matrices the local computation was more ef-
ficient but for big matrices it was more efficient to use the
framework.

Figure 8: Influence of matrix size to computation time
from user point of view.

The third experiment tests influence of throttleFactor on
the computation time from user point of view. In figure
9 we can see that there is linear dependency. This test
prove that influence of throttleFactor is expected and pre-
dictable.

Framework for Distributed Computing on the Web 165



Figure 9: Influence of attribute throttleFactor to computa-
tion time from user point of view.

The last experiments tests how computation time from
user point of view is changing when maximal session du-
ration is changing. In figure 10 we can see that with in-
creasing session duration computation time is decreasing
as it was expected.

Figure 10: Influence of maximal session duration (at-
tribute maxDuration of test environment) to computation
time from user point of view.

6 Future work

Experiments have shown that framework is useful and it
may be deployed. However there are still some limits and
drawbacks of the implementation that should be solved.
For instance database queries can be optimized or new
strategies for distributing works can be implemented.

The framework can be also extended in several ways.
For instance GUI and monitoring extension would be very
practical. There might be client, user and web sites ad-
ministration. Extensions of the framework may lead to
computing platform with market that would act similar as
application markets.

7 Motivation for joining computations

There can be several reasons for a web user to join the
framework but probably the most likely situation is this:

A web page could profit from involving it’s visitors to the
framework. So the web page could offer a discount of their
services to visitors that allow joining to the framework.

Another use case could be in a company that have a lot
of computers for it’s employees. In this case a proxy could
inject web pages with framework’s client-side code and so
create company’s big distributed computer with minimum
additional costs.

8 Conclusion

In this work a framework for distributed computation us-
ing web browsers is presented. It contains mechanisms
that solve computing node failure and reaction to a slow
computing node. It describes strategies for distributing
works within clients and modes in which the distribution
can be done. The work deals with controlling of client’s
device stressing. Security mechanisms are described as
well. Experiment results that are presented have shown
that the framework is useful and deployable. The future
of the framework may be a computational platform with
market of task prototypes and computation power.

Acknowledgments

This research was supported by Faculty of Informatics,
Czech Technical University in Prague.

References

[1] Miller, D. M.: The Online Community Grid Volunteer
Grid Computing with the Web Browser. Georgia Institute
of Technology, 2008. Available on: https://smartech.
gatech.edu/handle/1853/33477

[2] Mersenne Research, Inc.: Great Internet Mersenne Prime
Search. [cit. 30.4.2018]. Available on: https://www.
mersenne.org

[3] University of California : About SETI@home. [cit.
30.4.2018]. Available on: https://setiathome.
berkeley.edu/sah_about.php

[4] Pande Lab: Folding@home. [cit. 30.4.2018]. Available on:
http://folding.stanford.edu

[5] Anderson, D. P.: BOINC: a system for public-resource
computing and storage. In Fifth IEEE/ACM International
Workshop on Grid Computing, Nov 2004, ISSN 1550-
5510, s. 4–10, doi:10.1109/GRID.2004.14.

[6] Merelo, J. J.; García, A. M.; Laredo, J. L. J.; aj.: Browser-
based Distributed Evolutionary Computation: Performance
and Scaling Behavior. In Proceedings of the 9th An-
nual Conference Companion on Genetic and Evolution-
ary Computation, GECCO ’07, New York, NY, USA:
ACM, 2007, ISBN 978-1-59593-698-1, s. 2851–2858, doi:
10.1145/1274000.1274083. Available on: http://doi.
acm.org/10.1145/1274000.1274083

[7] Klein, J.; Spector, L.: Unwitting Distributed Genetic Pro-
gramming via Asynchronous JavaScript and XML. In Pro-
ceedings of the 9th Annual Conference on Genetic and

166 Jakub Šiller and Jaroslav Kuchař



Evolutionary Computation, GECCO ’07, New York, NY,
USA: ACM, 2007, ISBN 978-1-59593-697-4, s. 1628–
1635, doi:10.1145/1276958.1277282. Available on: http:
//doi.acm.org/10.1145/1276958.1277282

[8] Merelo-Guervos, J. J.; Castillo, P. A.; Laredo, J. L. J.;
aj.: Asynchronous distributed genetic algorithms with
Javascript and JSON. In 2008 IEEE Congress on Evolution-
ary Computation (IEEE World Congress on Computational
Intelligence), June 2008, ISSN 1089-778X, s. 1372–1379,
doi:10.1109/CEC.2008.4630973.

[9] Duda, J.; Dlubacz, W.: Distributed Evolutionary
Computing System Based on Web Browsers with
Javascript. In Proceedings of the 11th International
Conference on Applied Parallel and Scientific Com-
puting, PARA’12, Berlin, Heidelberg: Springer-Verlag,
2013, ISBN 978-3-642-36802-8, s. 183–191, doi:10.1007/
978-3-642-36803-5_13. Available on: http://dx.doi.
org/10.1007/978-3-642-36803-5_13

[10] Zorrilla, M.; Martin, A.; Tamayo, I.; aj.: Web Browser-
Based Social Distributed Computing Platform Applied
to Image Analysis. In 2013 International Conference on
Cloud and Green Computing, Sept 2013, s. 389–396, doi:
10.1109/CGC.2013.68.

[11] Meeds, E.; Hendriks, R.; al Faraby, S.; aj.: ML-
itB: Machine Learning in the Browser. CoRR, ročník
abs/1412.2432, 2014, 1412.2432. Available on: http:
//arxiv.org/abs/1412.2432

[12] Turek, W.; Nawarecki, E.; Dobrowolski, G.; aj.: WEB
PAGES CONTENT ANALYSIS USING BROWSER-
BASED VOLUNTEER COMPUTING. Computer Science,
ročník 14, č. 2, 2013: str. 215, ISSN 2300-7036. Available
on: https://journals.agh.edu.pl/csci/article/
view/278

[13] Pan, Y.; White, J.; Sun, Y.; aj.: Gray Computing: An Anal-
ysis of Computing with Background JavaScript Tasks. In
2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, ročník 1, May 2015, ISSN 0270-
5257, s. 167–177, doi:10.1109/ICSE.2015.38.

[14] Ryza, S.; Wall, T.: MRJS: A JavaScript MapRe-
duce Framework for Web Browsers. 2010. Avail-
able on: http://static.cs.brown.edu/courses/
csci2950-u/f11/papers/mrjs.pdf

[15] Cushing, R.; Putra, G. H. H.; Koulouzis, S.; aj.: Distributed
Computing on an Ensemble of Browsers. IEEE Internet
Computing, ročník 17, č. 5, Sept 2013: s. 54–61, ISSN
1089-7801, doi:10.1109/MIC.2013.3.

[16] Wilkinson, S. R.; Almeida, J. S.: QMachine: commod-
ity supercomputing in web browsers. BMC Bioinformatics,
ročník 15, č. 1, Jun 2014: str. 176, ISSN 1471-2105, doi:
10.1186/1471-2105-15-176. Available on: https://doi.
org/10.1186/1471-2105-15-176

[17] Fabisiak, T.; Danilecki, A.: Browser-based Harness-
ing of Voluntary Computational Power. ročník 42,
03 2017. Available on: https://www.degruyter.
com/downloadpdf/j/fcds.2017.42.issue-1/
fcds-2017-0001/fcds-2017-0001.pdf

[18] Nielsen, J.: How Long Do Users Stay on
Web Pages? [cit. 30.4.2018]. Available
on: https://www.nngroup.com/articles/
how-long-do-users-stay-on-web-pages/

[19] Liedke, L.: 100+ Internet Stats and Facts
for 2018. [cit. 30.4.2018]. Available on:
https://www.websitehostingrating.com/
internet-statistics-facts-2018/

[20] Stevens, J.: Internet Stats & Facts for 2017. [cit.
30.4.2018]. Available on: https://hostingfacts.com/
internet-facts-stats-2016/

[21] Mozilla and individual contributors: MDN web docs:
Using Web Workers. [cit. 30.4.2018]. Available on:
https://developer.mozilla.org/en-US/docs/
Web/API/Web_Workers_API/Using_web_workers

[22] Herman, D.; Wagner, L.; Zakai, A.: asm.js: Working
Draft. [cit. 30.4.2018]. Available on: http://asmjs.
org/spec/latest/

[23] WebAssembly. [cit. 30.4.2018]. Available on: http://
webassembly.org/

[24] Mozilla and individual contributors: MDN web docs:
JavaScript reference. [cit. 30.4.2018]. Available on:
https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference

[25] Šimek, P.: VM2. [cit. 30.4.2018]. Available on: https:
//www.npmjs.com/package/vm2

[26] Vaikuntanathan, V.: How to Compute on Encrypted Data.
In Progress in Cryptology - INDOCRYPT 2012, editace
S. Galbraith; M. Nandi, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, ISBN 978-3-642-34931-7, s. 1–
15.

[27] OpenMP ARB: OpenMP. [cit. 30.4.2018]. Available on:
http://www.openmp.org/

Framework for Distributed Computing on the Web 167


	Contents
	Jakub Šiller and Jaroslav Kuchař: Framework for Distributed Computing on the Web


