
Speedup of Uniform Bicubic Spline Interpolation

Viliam Kačala, Lukáš Miňo, and Csaba Török

Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice
Jesenná 5, 040 01 Košice, Slovakia

viliam.kacala@student.upjs.sk, lukas.mino@upjs.sk, csaba.torok@upjs.sk

Abstract: The goal of the paper is to introduce an efficient
algorithm for computation of derivatives of bicubic spline
surfaces over equispaced grids with C2 class continuity.
The algorithm is based on a recently proposed approach
using a special approximation property between quartic
and cubic polynomials. The proposed solution replaces
the classical de Boor’s systems of equations with systems
of reduced size and simple remainder explicit formulas.
We will show that the proposed new algorithm is numer-
ically equivalent to de Boor’s algorithm and the former is
more than 50% faster.

1 Introduction and problem statement

Modeling of surfaces plays a key role in a wide variety
of computer science fields such as graphics or CAD ap-
plications. The paper proposes an efficient computational
algorithm for interpolating uniform bicubic spline surfaces
of class C2. The standard way to accomplish that is an al-
most 60 years old classic algorithm designed by Carl de
Boor [2] that uses tridiagonal systems of equations. We
will refer to it as the full algorithm.

Even though the evaluation of such systems is quite
straightforward in general, running in linear time, it can
be still viewed as slow especially in real time computing
scenarios. For this reason we present a new reduced algo-
rithm for uniform bicubic spline surfaces that, while being
in the same complexity class, is faster and needs lower
memory requirements.

The structure of the paper is as follows. The remaining
part of this section is devoted to the problem statement
and introducing terminology. Section 2 presents the new
reduced algorithm along with proof of its equality to the
full algorithm. The third section provides experimental
measurements of actual time savings of the new approach
along with some words about its efficient implementation.
To be self contained, we provide the equations of de Boor’s
full algorithm for surfaces and the reduced algorithm for
curves in Appendix, for easier comparison with ours.

Now let’s jump into the problem statement. Consider a
uniform grid

[x0,x1,x2, . . . ,xI−1]× [y0,y1,y2, . . . ,yJ−1], (1)

where

xi = x0 + ihx, i = 1,2,3, . . . , I−1, I > 1, hx ∈ R+,

y j = y0 + ihy, j = 1,2,3, . . . ,J−1, J > 1, hy ∈ R+.

According to [2], a spline surface is defined by given val-
ues

zi, j, i = 0,1,2, . . . , I−1, j = 0,1,2, . . . ,J−1 (2)

at the grid-points, and given first directional derivatives

dx
i, j, i = 0, I−1, j = 0,1,2, . . . ,J−1 (3)

at the boundary verticals,

dy
i, j, i = 0,1,2, . . . , I−1, j = 0,J−1 (4)

at the boundary horizontals and cross derivatives

dx,y
i, j , i = 0, I−1, j = 0,J−1 (5)

at the four corners of the grid.
The task is to define a quadruple [zi, j,dx

i, j,d
y
i, j,d

x,y
i, j] at

every grid-point [xi,y j], based on which a bicubic clamped
spline surface S of class C2 is constructed with properties

S(xi,y j) = zi, j,

∂S(xi,y j)

∂x
= dx

i, j,

∂S(xi,y j)

∂y
= dy

i, j,

∂ 2S(xi,y j)

∂x∂y
= dx,y

i, j .

For I = 7 and J = 5, we provide visual illustration of
the input situation in Figure 1, where bold values represent
(2) – (5) while the remaining non-bold values represent the
unknown derivatives to compute.

z0,0

z0,1

z0,2

z0,3

z0,4

z1,0

z1,1

z1,2

z1,3

z1,4

z2,0

z2,1

z2,2

z2,3

z2,4

z3,0

z3,1

z3,2

z3,3

z3,4

z4,0

z4,1

z4,2

z4,3

z4,4

z5,0

z5,1

z5,2

z5,3

z5,4

z6,0

z6,1

z6,2

z6,3

z6,4

dx
0,0 dx

6,0

dx
0,1 dx

6,1

dx
0,2 dx

6,2

dx
0,3 dx

6,3

dx
0,4 dx

6,4

dy
0,0

dy
0,4

dy
1,0

dy
1,4

dy
2,0

dy
2,4

dy
3,0

dy
3,4

dy
4,0

dy
4,4

dy
5,0

dy
5,4

dy
6,0

dy
6,4

dx,y
0,0 dx,y

6,0

dx,y
0,4 dx,y

6,4

dx
2,0

dx
2,1

dx
2,2

dx
2,3

dx
2,4

dx
4,0

dx
4,1

dx
4,2

dx
4,3

dx
4,4

dx
1,0

dx
1,1

dx
1,2

dx
1,3

dx
1,4

dx
3,0

dx
3,1

dx
3,2

dx
3,3

dx
3,4

dx
5,0

dx
5,1

dx
5,2

dx
5,3

dx
5,4

dy
0,2 dy

1,2 dy
2,2 dy

3,2 dy
4,2 dy

5,2 dy
6,2

dy
0,1

dy
0,3

dy
1,1

dy
1,3

dy
2,1

dy
2,3

dy
3,1

dy
3,3

dy
4,1

dy
4,3

dy
5,1

dy
5,3

dy
6,1

dy
6,3

dx,y
2,2 dx,y

4,2

dx,y
1,1

dx,y
1,3

dx,y
3,1

dx,y
3,3

dx,y
5,1

dx,y
5,3

dx,y
2,1

dx,y
2,3

dx,y
4,1

dx,y
4,3

dx,y
1,2 dx,y

3,2 dx,y
5,2dx,y

0,2 dx,y
6,2

dx,y
2,0

dx,y
2,4

dx,y
4,0

dx,y
4,4

dx,y
0,1 dx,y

6,1

dx,y
0,3 dx,y

6,3

dx,y
1,0

dx,y
1,4

dx,y
3,0

dx,y
3,4

dx,y
5,0

dx,y
5,4

Figure 1: Input situation for a 7×5 uniform grid.

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 3–9
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Viliam Kačala, Lukáš Miňo, and Csaba Török

2 Reduced algorithm

The reduced algorithm for uniform cubic spline curves
was proposed in [11], where the model equations were
obtained using a special approximation property between
cubic splines and quartic polynomials [10]. This property
was extended for spline surfaces proving that a biquar-
tic polynomial fully determines a 2× 2-component uni-
form bicubic spline surface of class C2 [9], [5]. This ap-
proach was generalized in [3], [6], [4], where a new algo-
rithm for solving the unknown derivatives was proposed
and new model equations and explicit formulas were de-
rived. The proposed algorithm introduced equation sys-
tems with reduced dimensionality while the remaining un-
known derivatives were computed from simple explicit
formulas. Measured results showed, that the proposed al-
gorithm is faster than the full one [4]. Thorough analysis
has shown that we can further increase the performance of
the reduced approach. In the next subsection every model
equation will be expressed by simple expressions that cor-
respond to the model equations of [11].

This section consists of two parts. Firstly we show that
one of the four systems of de Boor’s algorithm can be
equivalently solved by a reduced system and additional ex-
plicit formulas. In the second part a reduced algorithm is
proposed for the solution of the unknown derivatives of a
spline surface of class C2 that is equivalent to de Boor’s
full algorithm.

2.1 Model equations

Consider the uniform grid (1) with given input values (2) –
(5). Any of the remaining unknown values can be com-
puted using the systems of equations (20) – (23) of the full
algorithm, see Appendix.

Consider a system of linear equations for the j-th hor-
izontal (j = 0,1,2, . . . ,J− 1), see (20) in Appendix, that
takes a form

4 1 0

1 4 1

0 1 4 1
.

1 4 1

0 1 4

·

dx
1, j

dx
2, j

dx
3, j
...

dx
I−3, j

dx
I−2, j

=

=

3
hx
(z2, j− z0, j)−dx

0, j
3
hx
(z3, j− z1, j)

3
hx
(z4, j− z2, j)

...
3
hx
(zI−2, j− zI−4, j)

3
hx
(zI−1, j− zI−3, j)−dx

I−1, j

.

(6)

The following lemma shows that any of the systems (6)
can be solved by a reduced system.

Lemma 1. Let hx ∈ R+, I ≥ 4,
{z0, j,z1, j,z2, j, . . .zI−1, j,dx

0, j,d
x
I−1, j} ⊂ R be some known

values and {dx
1, j,d

x
2, j,d

x
3, j, . . . ,d

x
I−2, j} ⊂ R be unknown

values. Then the full equation system (6) and the reduced
one

−14 1 0

1 −14 1

0 1 −14 1
. . .

. . .
. . .

1 −14 1

0 1 µ

·

dx
2, j

dx
4, j

dx
6, j
...

dx
ν−2, j

dx
ν , j

=

=

3
hx
(z4, j− z0, j)− 3

hx
(z3, j− z1, j)−dx

0, j
3
hx
(z6, j− z2, j)− 3

hx
(z5, j− z3, j)

3
hx
(z8, j− z4, j)− 3

hx
(z7, j− z5, j)

...
3
hx
(zν , j− zν−4, j)− 12

hx
(zν−1, j− zν−3, j)

3
hx
(zν+τ, j− zν−2, j)− 12

hx
(zν+1, j− zν−1, j)−ηdI−1, j

,

(7)

where

µ =−14, τ = 2, η = 1, ν = I−3,
µ =−15, τ = 0, η =−4, ν = I−2,

if I is odd,

if I is even,
(8)

with explicit formulas

dx
i, j =

3
4hx

(zi+1, j− zi−1, j)−
1
4
(dx

i+1, j +dx
i−1, j),

i = 1,3,5, . . . ,ν + τ−1,
(9)

are equivalent.

Proof. It follows from Lemma 3 of Appendix that the so-
lution of the reduced algorithm is equivalent to the solution
of the full system, see e.g. [8],

4 1 0

1 4 1

0 1 4 1
.

1 4 1

0 1 4

·

d1

d2

d3
...

dN−3

dN−2

=

=

3
h (y2− y0)−d0

3
h (y3− y1)
3
h (y4− y2)

...
3
h (yN−2− yN−4)

3
h (yN−1− yN−3)−dN−1

.

(10)

As we see the systems (6) and (10) use the same tridi-
agonal matrix. The systems (10) and (6) differ in the un-
knowns and the right-hand side vectors. However, using a
substitution

h = hx, di = dx
i, j, yi = zi, j, i = 0,1,2, . . . ,N−1, N = I, (11)

4 Viliam Kačala, Lukáš Miňo, and Csaba Török

we get (6) from (10), (7) from (24) and the remainder for-
mulas (9) from (26) that alongside with Lemma 3 finishes
the proof.

2.2 Algorithm

Now we have sufficient theoretical foundations to propose
an efficient algorithm to compute spline derivatives over
a uniform grid of points. The reduced algorithm consists
of four main steps, each evaluating systems of equations
derived from (7) and remainder formulas (9). The algo-
rithm as a whole takes the same input values and provides
identical results as the original full algorithm in Appendix.
Therefore it is intended as a drop-in replacement for the
full algorithm.

Based on Lemma 1 the full systems (21) – (23) can be
solved using analogical reduced systems and explicit for-
mulas. Hence we get immediately the reduced algorithm
for solving the unknown derivatives of a C2 spline surface
that appears to provide faster computations than de Boor’s
algorithm.

Theorem 1 (Reduced algorithm for surfaces). If the val-
ues (2) – (5) over the uniform grid (1) are given, then the
unknown values

dx
i, j, i = 1,2,3, . . . , I−2, j = 0,1,2, . . . ,J−1,

dy
i, j, i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2,

dx,y
i, j , i = 1,2,3, . . . , I−2, j = 0,J−1,

dx,y
i, j , i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2

for spline surface of class C2 are uniquely determined by
the following linear systems and formulas in four main
steps:

Step 1a. Computation of dx along the horizontals from
equation systems for inner even-indexed grid-points.
For each j = 0,1,2, . . . ,J−1,

solve_system(

dx
i+2, j−14dx

i, j +dx
i−2, j =

=
3
hx

(zi+2, j− zi−2, j)−
12
hx

(zi+1, j− zi−1, j),

where i = 2,4,6, . . . , I−3
).

(12)

Step 1b. Computation of dx along the horizontals from
explicit formulas for inner odd-indexed grid-points.
For each i = 1,3,5, . . . , I−2 and j = 0,1,2, . . . ,J−1,

dx
i, j =

3
4hx

(zi+1, j− zi−1, j)−
1
4
(dx

i+1, j +dx
i−1, j). (13)

Step 2a. Computation of dy along the verticals from
equation systems for inner even-indexed grid-points.

For each i = 0,1,2, . . . , I−1,

solve_system(

dy
i, j+2−14dy

i, j +dy
i, j−2 =

=
3
hy
(zi, j+2− zi, j−2)−

12
hy

(zi, j+1− zi, j−1),

where j = 2,4,6, . . . ,J−3
).

(14)

Step 2b. Computation of dy along the verticals from ex-
plicit formulas for inner odd-indexed grid-points.
For each i = 0,1,2, . . . , I−1 and j = 1,3,5, . . . ,J−2,

dy
i, j =

3
4hy

(zi, j+1− zi, j−1)−
1
4
(dy

i, j+1 +dy
i, j−1). (15)

Step 3a. Computation of dx,y along the horizontals from
equation systems for inner even-indexed grid-points.
For each j = 0,J−1 ,

solve_system(

dx,y
i+2, j−14dx,y

i, j +dx,y
i−2, j =

=
3
hx

(dx
i+2, j−dx

i−2, j)−
12
hx

(dx
i+1, j−dx

i−1, j),

where i = 2,4,6, . . . , I−3
).

(16)

Step 3b. Computation of dx,y along the horizontals from
explicit formulas for inner odd-indexed grid-points.
For each i = 1,3,5, . . . , I−2 and j = 0,J−1,

dx,y
i, j =

3
4hx

(dx
i+1, j−dx

i−1, j)−
1
4
(dx,y

i+1, j +dx,y
i−1, j). (17)

Step 4a. Computation of dx,y along the verticals from
equation systems for inner even-indexed grid-points.
For each i = 0,1,2, . . . , I−1,

solve_system(

dx,y
i, j+2−14dx,y

i, j +dx,y
i, j−2 =

=
3
hy
(dy

i, j+2−dy
i, j−2)−

12
hy

(dy
i, j+1−dy

i, j−1),

where j = 2,4,6, . . . ,J−3
).

(18)

Step 4b. Computation of dx,y along the verticals from
explicit formulas for inner odd-indexed grid-points.
for each i = 0,1,2, . . . , I−1 and i = 1,3,5, . . . , I−2,

dx,y
i, j =

3
4hy

(dy
i, j+1−dy

i, j−1)−
1
4
(dx,y

i, j+1 +dx,y
i, j−1). (19)

If I is even, then the last model equation in steps (12)
and (16) needs to be accordingly replaced by the model
equation derived according to (8). Analogically, if J is
even, the same applies to steps (14) and (18).

Speedup of Uniform Bicubic Spline Interpolation 5

We underline that the systems (12), (14), (16) and (18)
are diagonally dominant and use the same tridiagonal ma-
trix with constant main diagonal and upper, lower diago-
nals.

In the next section it will be shown that the reduced al-
gorithm is faster than the full one and additionally it needs
lower memory requirements.

The main difference between original full algorithm and
the reduced one is that the latter computes only half of the
unknown values using LU factorization where the remain-
ing half of the unknowns are solved by simple remainder
formulas. Because of this, the reduced algorithm is sup-
posed to be more efficient in terms of execution speed and
memory requirements as well. We will discuss and mea-
sure it’s speed in Section 3.

3 Performance evaluation

To be worth of actual implementation, the reduced algo-
rithm should be significantly faster than full one. The el-
ementary task in both algorithms is computation of tridi-
agonal systems of equations. As the full and the reduced
systems are diagonally dominant we use a modified LU
factorization method as the internal solver for such sys-
tems [4]. Our optimizations of the LU factorization relies
on a fact, that the left-hand side matrices comprise only
constant values.

While the LU factorization for tridiagonal linear sys-
tems is a quite efficient way to solve the equations which
are interdependent, it has some drawbacks in the sense of
modern CPU’s capabilities like usage of vectorized SIMD
instructions especially due to the structure of tridiagonal
matrices. By breaking down the computational task of the
full approach into reduced systems and simple explicit for-
mulas, half of the equations are independent and therefore
more versatile to manual or automatic compiler optimiza-
tions.

Memory requirements For the sake of completeness
some words about applied data structures and memory re-
quirements should be given.

The input grid (1) of size I× J needs I + J memory to
store x and y coordinates of the total IJ grid-points. Each
grid-point however requires 4IJ space for zi, j, dx

i, j, dy
i, j, dx,y

i, j
values, where most of them will be computed by the full
or reduced algorithm. This gives us 4IJ + I + J space re-
quirement to store input/output values.

The needs of the full and reduced algorithms are quite
low regarding the size of the grid. The full tridiagonal sys-
tems in Lemma 2 require 2 ·max(I,J) space to store the
right-hand side vector and an auxiliary buffer vector used
for the LU factorization. In case of the reduced algorithm,
only half number of the equations form the tridiagonal sys-
tem, therefore they require only max(I,J) space for the LU
part.

Data structures Since the grid may contain tens of thou-
sands or more grid-points, the most effective representa-
tion is the jagged array structure for each of the z, dx, dy,
dx,y values. Each equation system from any of the two
algorithms always depends on one row of a jagged array,
therefore entire rows of the jagged structure can be effec-
tively cached under the assumption, that the size of the row
is not very large. Notice that the iterations for computing
the dy

i, j and most of the dx,y
i, j values in both algorithms have

interchanged indices compared to the iteration throughout
the dx

i, j values. We mention that an efficient implementa-
tion needs to setup the jagged arrays in accordance with
how we want to iterate the data [7].

3.1 Measurements

Now let us compare the implementations of both algo-
rithms. We implemented a benchmark in C++ 17 compiled
with MSVC 2017 using -O2 optimization level and indi-
vidual code generation for each tested CPU, i.e. CPUs
with AVX2 support were running binaries compiled to
AVX2 instruction set whereas older CPUs received for
instance only SSE2 compiled binaries. Testing environ-
ments comprised several computers with various CPUs
ranging from rather obsolete Nehalem to recent Skylake
microarchitecture. All systems had 8 – 32 GB of RAM,
SSD and Windows 10 installed. The tests were conducted
on freshly booted PCs after 2 minutes of idle time without
running any non-essential services or processes like web
browsers, database engines, etc.

On all testing computers the tests were conducted on
two datasets, a small one on a grid of size I,J = 100,
and a large one, where grid dimensions were I,J =
1000. Both datasets comprised the grid [x0,x1, . . . ,xI−1]×
[y0,y1, . . . ,yJ−1], where x0 = −20, xI−1 = 20, y0 = −20,
yJ−1 = 20 and the values zi, j, dx

i, j, dy
i, j, dx,y

i, j , see (2) – (5),

were computed from function sin
√

x2 + y2 at each grid-
point. These datasets were chosen arbitrarily and the be-
haviour of the algorithms was correct for any input values.
The speedup values were gained averaging 50 measure-
ments of each algorithm.

Tables 1 and 2 contain results for both datasets and con-
sist of four columns. The first column contains the tested
CPUs ordered by their release date. Columns two through
four contain measured execution times in microseconds
for both algorithms and their speed ratios.

To provide better comparison for more datasets, Ta-
ble 3 provides measurements on more different input sizes,
however for the sake of readability it contains measure-
ments only from Intel i7 6700K as the fastest testing CPU.

Let us review the measured performance improvement
of the reduced algorithm. Results of Table 1 say that the
reduced algorithm is more than fifty percent faster than the
full one as long as the grid dimensions remains relatively
small to enable the entire rows of the grid as well as the
auxiliary LU vectors to be cached.

6 Viliam Kačala, Lukáš Miňo, and Csaba Török

I,J = 100
CPU Full Reduced Speedup

Intel i5 M430 783 438 1.79
AMD A6 3650M 922 567 1.64
Intel i7 4790 482 250 1.93
Intel i7 6700K 355 190 1.86
AMD X4 845 648 347 1.86

Table 1: Comparison of full and reduced algorithms on
small dataset. Times are in microseconds.

I,J = 1000
CPU Full Reduced Speedup

Intel i5 M430 116 856 90 541 1.29
AMD A6 3650M 116 390 78 892 1.48
Intel i7 4790 54 719 33 584 1.63
Intel i7 6700K 37 029 22 571 1.64
AMD X4 845 78 860 48 955 1.61

Table 2: Comparison of full and reduced algorithms on
large dataset. Times are in microseconds.

The speedup of the reduced algorithm in Table 2 with a
larger dataset is not so high due to difficulties of keeping
data in fast but small L1 cache, resulting in higher ratio of
cache misses. In the case of even larger dataset, let’s say
in the order of billions of grid-points, the performances of
both algorithms are similar with the reduced one gaining
only small advantage.

In our experiments we observed that the reduced algo-
rithm was always faster than the full one, however exact
speedup depends on the size of the input grid. The general
rule is: the larger the grid the smaller the speedup.

The highest speedup does not depend on the grid size if
it is from range of 50 to 200.

CPU Full Reduced Speedup

I,J = 50 92 50 1.84
I,J = 100 355 190 1.86
I,J = 200 1 417 778 1.82
I,J = 300 3 203 1 797 1.78
I,J = 400 5 791 3 234 1.79
I,J = 1000 37 029 22 571 1.64
I,J = 1500 88 236 54 141 1.63
I,J = 2000 178 144 115 674 1.54

Table 3: Multiple dataset comparison of full and reduced
algorithms tested on i7 6700K. Times are in microseconds.

4 Discussion

Let us briefly discuss the new algorithm from the numer-
ical and experimental point of view. While the classic
full algorithm is composed of four series of tridiagonal
systems of equations, the reduced algorithm breaks down
each equation system into a reduced one approximately
half the size of the original one and simple mutually inde-
pendent explicit formulas.

In addition, from the numerical point of view, the re-
duced tridiagonal subsystems are diagonally dominant and
therefore computationally stable [1], similarly to the full
systems. The remainder explicit formulas (9) are simple
and thus do not present an issue.

The maximal numerical difference in our C++ imple-
mentation was in the order of 10−16 on several different
datasets so the reduced algorithm yields numerically ac-
curate results.

Since the algorithm consists of many independent sys-
tems of linear equations, it can be also effectively paral-
lelized for both CPU and GPU architectures.

There is also a future work for further reduction of the
number of equations in the tridiagonal systems.

5 Conclusion

The paper introduced a new algorithm to compute the un-
known derivatives for uniform bicubic spline surfaces of
class C2. The algorithm reduces the size of the tridiag-
onal systems of equations by half and computes the re-
maining unknown derivatives using simple explicit formu-
las. A substantial decrease of execution time of deriva-
tives at grid-points has been achieved with lower mem-
ory space requirements at the cost of a slightly more com-
plex implementation where the measured speedup ranges
from 1.3 to 1.9 depending on the grid size and CPU archi-
tecture.

Acknowledgements

This work was partially supported by projects Technicom
ITMS 26220220182 and APVV-15-0091 Effective algo-
rithms, automata and data structures.

Appendix

Carl de Boor in [2] proposed an algorithm for computa-
tion of the unknown derivatives of spline surface of class
C2 over any grid with four types of full systems of linear
equations. The following lemma reformulates this algo-
rithm for uniform grid.

Lemma 2 (Full algorithm for surfaces). If the values (2) –
(5) over the uniform grid (1) are given, then the unknown

Speedup of Uniform Bicubic Spline Interpolation 7

values

dx
i, j, i = 1,2,3, . . . , I−2, j = 0,1,2, . . . ,J−1,

dy
i, j, i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2,

dx,y
i, j , i = 1,2,3, . . . , I−2, j = 0,J−1,

dx,y
i, j , i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2

for spline surface of class C2 are uniquely determined
by the following linear systems of equations:
Step 1. Computation of dx along the horizontals from
equation systems.
For each j = 0,1,2, . . . ,J−1,

solve_system(

dx
i+1, j +4 ·dx

i, j +dx
i−1, j =

3
hx
· (zi+1, j− zi−1, j),

where i = 1,2,3, . . . , I−2
).

(20)

Step 2. Computation of dy along the verticals from equa-
tion systems.
For each i = 0,1,2, . . . , I−1,

solve_system(

dy
i, j+1 +4 ·dy

i, j +dx
i, j−1 =

3
hy
· (zi, j+1− zi, j−1),

where j = 1,2,3, . . . ,J−2
).

(21)

Step 3. Computation of dx,y along the horizontals from
equation systems.
For each j = 0,J−1,

solve_system(

dx,y
i+1, j +4 ·dx,y

i, j +dx,y
i−1, j =

3
hx
· (dx

i+1, j−dx
i−1, j),

where i = 1,2,3, . . . , I−2
).

(22)

Step 4. Computation of dx,y along the verticals from
equation systems.
For each i = 0,1,2, . . . , I−1,

solve_system(

dz,y
i, j+1 +4 ·dz,y

i, j +dz,y
i, j−1 =

3
hy
· (dy

i, j+1−dy
i, j−1),

where j = 1,2,3, . . . ,J−2
).

(23)

A new algorithm was proposed in [11] for computation
of the unknown derivatives of a spline curve of class C2

over uniform grids with a reduced system of linear equa-
tions instead of the well known full algorithm with param-
eters 1,4,1.

Lemma 3 (Reduced algorithm for curves). Consider a
cubic clamped spline of class C2 over a uniform grid
[u0,u1, . . . ,uN−1], where ui = u0+ ih, i = 1,2,3, . . . ,N−1,

defined by given values y0, . . . ,yN−1 and d0, dN−1 at grid-
points. The tridiagonal system

−14 1 0

1 −14 1

0 1 −14 1
. . .

. . .
. . .

1 −14 1

0 1 −14

·

d2

d4

d6
...

dν−2

dν

=

=

3
h (y4− y0)− 12

h (y3− y1)−d0
3
h (y6− y2)− 12

h (y5− y3)
3
h (y8− y4)− 12

h (y7− y5)
...

3
h (yν − yν−4)− 12

h (yν−1− yν−3)
3
h (yν+τ − yν−2)− 12

h (yν+1− yν−1)−ηdN−1

,

(24)

where

µ =−14, τ = 2, η = 1, ν = N−3,

µ =−15, τ = 0, η =−4, ν = N−2,

if N is odd,

if N is even,
(25)

and the formula

di =
3

4h
(yi+1− yi−1)−

1
4
(di+1 +di−1),

i = 1,3,5, . . . ,ν + τ−1,
(26)

imply that the second derivatives of spline components at
the inner grid-points are equal.

References

[1] Björck A: Numerical Methods in Matrix Computations.
Springer (2015)

[2] de Boor, C.: Bicubic Spline Interpolation. Journal of Math-
ematics and Physics, 41(3), (1962), 212–218

[3] Miňo L.: Efficient Computational Algorithm for Spline Sur-
faces. ITAT 2015: Information Technologies – Applications
and Theory, ISSN 1613–0073, (2015), 30–37

[4] Kačala, V., Miňo, L.: Speeding up the Computation of Uni-
form Bicubic Spline Surfaces. WSCG 2017: 25. Conference
on Computer Graphics, Visualization and Computer Vision
2017, ISSN 2464–4617, (2017), 73–80

[5] Miňo L., Szabó I., Török Cs.: Bicubic Splines and Biquartic
Polynomials. Open Computer Science, Volume 6, Issue 1,
ISSN (Online) 2299–1093, (2016), 1–7

[6] Miňo L., Török Cs.: Fast Algorithm for Spline Surfaces.
Communication of the Joint Institute for Nuclear Research,
Dubna, Russian Federation, E11-2015-77, (2015), 1–19

[7] Patterson, J. R. C.: Modern Microprocessors – A 90-Minute
Guide!, Lighterra (2015)

[8] Salomon, D.: Curves and Surfaces for Computer Graphics.
Springer (2006)

8 Viliam Kačala, Lukáš Miňo, and Csaba Török

[9] Szabó I.: Approximation Algorithms for 3D Data Analy-
sis. PhD Thesis, P. J. Šafárik University in Košice, Slovakia
(2016)

[10] Török Cs.: On reduction of equations’ number for cubic
splines. Matematicheskoe modelirovanie, Vol. 26 , No. 11,
ISSN 0234–0879, (2014), 33–36

[11] Török, Cs.: Speed-up of Interpolating Spline Construction,
(to appear)

Speedup of Uniform Bicubic Spline Interpolation 9

	Contents
	Viliam Kačala, Lukáš Miňo, and Csaba Török: Speedup of Uniform Bicubic Spline Interpolation

