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Abstract: Complexity of feedforward networks comput-
ing binary classification tasks is investigated. To deal with
unmanageably large number of these tasks on domains
of even moderate sizes, a probabilistic model character-
izing relevance of the classification tasks is introduced.
Approximate measures of sparsity of networks comput-
ing randomly chosen functions are studied in terms of
variational norms tailored to dictionaries of computational
units. Probabilistic lower bounds on these norms are de-
rived using the Chernoff-Hoeffding Bound on sums of in-
dependent random variables, which need not be identically
distributed. Consequences of the probabilistic results on
the choice of dictionaries of computational units are dis-
cussed.

1 Introduction

It has long been known that one-hidden-layer (shallow)
networks with computational units of many common types
can exactly compute any function on a finite domain [8].
In particular, they can perform any binary-classification
task. Proofs of theorems on the universal approxima-
tion and representation properties of feedforward networks
guarantee their power to express wide classes of functions,
but do not deal with the efficiency of such representations.
Typically, such arguments assume that the number of units
is unbounded or is as large as the size of the domain of
functions to be computed. For large domains, implemen-
tations of such networks might not be feasible.

A proper choice of a network architecture and a type
of its units can, in some cases, considerably reduce net-
work complexity. For example, a classification of points
in the d-dimensional Boolean cube {0,1}“ according to
the parity of the numbers of 1’s cannot be computed by a
Gaussian SVM network with less than 2¢~! support vec-
tors [3] (i.e., it cannot be computed by a shallow network
with less than 29-! Gaussian SVM units). On the other
hand, it is easy to show that the parity function (as well as
any generalized parity, the set of which forms the Fourier
basis) can be computed by a shallow network with merely
d + 1 Heaviside perceptrons [12].

The basic measure of sparsity of a network with a single
linear output is the number of its nonzero output weights.

The number of nonzero entries of a vector in R” is called
“lp-pseudonorm”. The quotation marks are used as [y is
not homogenous and its “unit ball” is unbounded and non-
convex. Thus, minimization of the number of nonzero en-
tries of an output-weight vector is a difficult nonconvex
optimization task. Minimization of “Iy-pseudonorm” has
been studied in signal processing, where it was shown that
in some cases it is NP-hard [20].

A good approximation of convexification of “Iy-
pseudonorm” is the /;-norm [17]. In neurocomputing, /;-
norm has been used as a stabilizer in weight-decay regu-
larization techniques [7]. In statistical learning theory, it
l1-norm plays an important role in LASSO regularization
[19].

Networks with large /;-norms of output-weight vectors
have either large numbers of units or some of the weights
are large. Both are not desirable: implementation of net-
works with large numbers of units might not be feasi-
ble and large output weights might lead to instability of
computation. The minimum of the /;-norms of output-
weight vectors of all networks computing a given function
is bounded from below by the variational norm tailored to
a type of network units, which is a critical factor in esti-
mates of upper bounds on network complexity [10, 11].

To identify and explain design of networks capable
of efficient classifications, one has to focus on suitable
classes of tasks. Even on a domain of a moderate size,
there exists an enormous number of functions representing
multi-class or binary classifications. For example, when
the size of a domain is equal to 80, then the number of
classifications into 10 classes is 10%° and when its size is
267, then the number of binary classification tasks is 2267,
These numbers are larger than the estimated number 1078
of atoms in the observable universe (see, e.g., [15]). Ob-
viously, most classification tasks on such domains are not
likely to be relevant for neurocomputing, as they do not
model any task of practical interest.

In this paper, we investigate how to choose dictionar-
ies of network units such that binary classification tasks
can be efficiently solved. We assume that elements of a fi-
nite domain in R? represent vectors of features, measure-
ments, or observations for which some prior knowledge
is available about probabilities that a presence of each of
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these features implies the property described by one of the
classes. For example, when vectors in the domain repre-
sent ordered sets of medical symptoms, certain values of
some of these symptoms might indicate a high probabil-
ity of some diagnosis, while others might indicate a low
probability or be irrelevant.

For sets of classification tasks endowed with product
probability distributions, we explore suitability of dictio-
naries of computational units in terms of values of vari-
ational norms tailored to the dictionaries. We analyze
consequences of the concentration of measure phenom-
ena which imply that with increasing sizes of function do-
mains, correlations between network units and functions
tend to concentrate around their mean or median values.
We derive lower bounds on variational norms of functions
to be computed and on /j-norms of output-weight vec-
tors of networks computing these functions. To obtain the
lower bounds, we apply the Chernoff-Hoeffding Bound [5,
Theorem 1.11] on sums of independent random variables
not necessarily identically distributed. We show that when
a priori knowledge of classification tasks is limited, then
sparsity can only be achieved with large sizes of dictionar-
ies. On the other hand, when such knowledge is biased,
then there exist functions with which most functions on a
large domain are highly correlated. If some of these func-
tions is close to an element of a dictionary, then most func-
tions can be well approximated by sparse networks with
units from the dictionary.

The paper is organized as follows. In Section 2, we in-
troduce basic concepts on feedforward networks, dictio-
naries of computational units, and approximate measures
of network sparsity. In Section 3, we propose a proba-
bilistic model of classification tasks and analyze properties
of approximate measures of sparsity using the Chernoff-
Hoeffding Bound. In Section 4, we derive estimates of
probability distributions of values of variational norms and
analyze consequences of these estimates for choice of dic-
tionaries suitable for tasks modeled by the given probabil-
ities. Section 5 is a brief discussion.

2 Approximate measures of network
sparsity

We investigate computation of classification tasks repre-
sented by binary-valued functions on finite domains X C
R?. We denote by

BX):={ff: X = {-1,1}}
the ser of all functions on X with values in {—1,1} and by
F(X):={f|f:X =R}

the set of all real-valued functions on X .
When cardX = m and X = {xj,...,x,} is a linear or-
dering of X, then the mapping 1 : % (X) — R defined

as 1(f) := (f(x1),...,f(xn)) is an isomorphism. So, on
(X)) we have the Euclidean inner product defined as

(f.8) ==Y flu)g(u)

ueX

and the Euclidean norm ||f|| := +/{f,f). We consider
binary-valued functions with the range {—1,1} instead
of {0,1} as all functions in %(X) have norms equal to
VecardX.

A feedforward network with a single linear output can
compute input-output functions from the set

n
spanG := { Z wigi
i=1

where G, called a dictionary, is a parameterized family
of functions. In networks with one hidden layer (called
shallow networks), G is formed by functions computable
by a given type of computational units, whereas in net-
works with several hidden layers (called deep networks), it
is formed by combinations and compositions of functions
representing units from lower layers (see, e.g., [2, 16]).
Formally, the number of hidden units in a shallow net-
work or in the last hidden layer of a deep one can be de-
scribed as the number of nonzero entries of the vector of
output weights of the network. In applied mathematics,
the number of nonzero entries of a vector w € R”, denoted
[Iw]lo, is called “ly-pseudonorm” as it satisfies the equa-

tion )
0
Iwllo =Y wi.

i=1

The quotation marks are used because ||wl|lp is nei-
ther a norm nor a pseudonorm. Minimization of “ly-
pseudonorm” is a difficult non convex problem as /y lacks
the homogeneity property of a norm and its “unit ball” is
not convex.

Instead of the nonconvex [p-functional, its approxima-
tion by the /1-norm

w,-eR,g,eGneN},

n

[wlli =) wil

i=1

have been used as a stabilizer in weight-decay regulariza-
tion methods [7]. Some insight into efficiency of compu-
tation of a function f by networks with units from a dictio-
nary G can be obtained from investigation of the minima
of [{-norms of all vectors from the set

k
Wi (G) ={w=(wi,...,wn) | f = Zwigi,gi € G,neN}.
i=1
Minima of /;-norms of elements of W;(G) are bounded
from below by a norm of f tailored to a dictionary G
called G-variation. It is defined for a bounded subset G
of a normed linear space (£, ||.||) as

Il fllc ::inf{c€R+ ‘ f/cEclgconv(GU—G)} ,
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where — G := {—g | g € G}, cly denotes the closure with
respect to the topology induced by the norm || -
conv denotes the convex hull. Variation with respect to
Heaviside perceptrons (called variation with respect to
half-spaces) was introduced in [1] and extended to general
dictionaries in [9].

It is easy to check (see [13]) that for a finite dictio-
nary G and any f, such that the set Ws(G) non empty,
G-variation of f is equal to the minimum of /;-norms of
output-weight vectors of shallow networks with units from
G, which compute f, i.e.,

Iflle = min{[wils jw e W;(G) }.

Thus lower bounds on minima of /j-norms of output-
weight vectors of networks computing a function f can be
obtained from lower bounds on variational norms. Such
bounds can be derived using the following theorem, which
is a special case of a more general result [10] proven using
Hahn-Banach theorem. By G is denoted the orthogonal
complement of G in the Hilbert space .7 (X).

Theorem 1. Let X be a finite subset of R and G be a
bounded subset of 7 (X). Then for every f € F(X)\ G,

112

Iflle = S T

So functions which are nearly orthogonal to all elements
of a dictionary G have large G-variations. On the other
hand, if a function is correlated with some element of G,
then it is close to this element and so can be well approxi-
mated by an element of G.

3 Probabilistic bounds

When we do not have any prior knowledge about a type of
classification tasks to be computed, we have to assume that
a network from the class has to be capable to compute any
uniformly randomly chosen function on a given domain.
Often in practical applications, most of the binary-valued
functions o a given domain are not likely to represent tasks
of interest. In such cases some knowledge is available that
can be expressed in terms of a discrete probability measure
on the set of all functions on X.

For a finite domain X = {xi,...,x,,} C RY, a func-
tion f in %B(X) can be represented as a vector
(Ff(x1),..os f(xm)) € {—1,1} C R™. We assume that for
each x; € X, there exists a known probability p; € [0, 1]
that f(x;) = 1. For p = (py,. .., pm), we denote by

pp: BX)—[0,1]
the product probability defined for every f € A(X) as

=[1ppr.i(1), (1)
i=1

where p,,;(f) := p;i if f(x;) =1 and p,;(f) :==1—p; if
f(xi) = —1. It is easy to verify that p, is a probability
measure on A(X).

When cardX is large, the set .%(X) is isometric to a
high-dimensional Euclidean space and #(X) to a high-
dimensional Hamming cube. In high-dimensional spaces
and cubes various concentration of measure phenomena
occur [14]. We apply the Chernoff-Hoeffding Bound on
sums of independent random variables, which do not need
to be identically distributed [5, Theorem 1.11] to obtain
estimates of distributions of inner products of any fixed
function & € Z(X) with functions randomly chosen from
Z(X) with probability p,,.

Theorem 2 (Chernoff-Hoeffding Bound). Let m be a pos-
itive integer, Y1, ..., Y, independent random variables with

values in real intervals of lengths cy,...,cy, respectively,
€>0,andY :=Y" Y. Then

_ 262
Pr([Y —E(Y)|>¢€)<e YR

For a function h € #(X) and p = (p1,...
€ [0,1], we denote by

,Dm), Where

w(h,p) = Ep((h. )| f € (X))

the mean value of inner products of h with f randomly
chosen from Z4(X) with probability p,, and by 1’ := II%H
its normalization. The next theorem estimates the distri-
bution of these inner products.

Theorem 3. Let X = {x1,...,%,} CRL, p=(p1,...,Pm)
be such that p; € [0,1],i=1,...,m, and h € B(X). Then
the inner product of h with f randomly chosen from % (X)
with a probability p,(f) satisfies for every A >0

ma2

(hp)|>m7L)<e 2y

i) Pr(|(7.h) -

i) Pr( |77, 1) - “(Z”H >2) <ot

Proof. Let Fj, : #(X) — %(X) be an operator com-
posed of sign-flips mapping % to the constant function

equal to 1, i.e., Fy(h)(x;) =1 for all i =1,...,m and
forall fe . Z#(X)andalli=1,...,m, F,(f)(x;) = f(xi)
if h(x;) =1 and F,(f)(xi) = —f(x;) if h(x;) = —1. Let

p(h) = (p(h)1s.... p(h)m) be defined as p(h); = pi if
h(x;)=1and p(h), = 1— p;if h(x;) = —1. The inverse op-
erator F, ' maps the random variable F,(f) € Z(X) such
that

Pr(F(f)(xi) = 1) = p(h);

to the random variable f € %(X) such that
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Pr(f(xi> = 1) = Di

Since the inner product is invariant under sign flipping,
for every f € A(X) we have (f,h) = (Fy(f),(1,...,1)) =

" Fu(f)(x;). Thus the mean value of the sum of random
variables Y7 | Fj,(f)(x;) is u(h, p). Applying to this sum
the Chernoff-Hoeffding Bound stated in Theorem 2 with
¢c1=--=cy=2and € = mA, we get

hp)\>ml) -

( ZFh )(xi)—

Hence

Pr(|(f )~ ulh,p)] >ma) <e”F,

which proves i).
ii) follows from i) as all functions in Z(X) have norms

equal to y/m. 0

Theorem 3 shows that when the domain X is large, most
inner products of any given function with functions ran-
domly chosen from Z8(X) with a probability p, are con-

centrated around their mean values. For example, setting
71/4 7m7Lz 7»171/2 . . .
A=m/* wegete 2 =e 2 which is decreasing

exponentially fast with increasing size m of the domain.

4 Dictionaries for efficient classification

Theorem 3 implies that when a dictionary G contains a
function £, for which the mean value u(h, p) is large, then
most functions randomly chosen with respect to the proba-
bility distribution p,, are correlated with 4. Thus most clas-
sification tasks characterized by p, can be well approxi-
mated by a network with just one element 4. A dictionary
G is also suitable for a given task when such function i
can be well approximated by a small network with units
from G.

It is easy to calculate the mean value p(h,p) of inner
products of a fixed function & from Z(X) with randomly
chosen functions from (X ) with respect to the probabil-

ity pp.
Proposition 4. Let h € B(X) and p= (p1 ..., pm), where
€ [0,1] for each i = 1,...,m. Then for a function f

randomly chosen in %8(X) according to p, the mean value

of (f,h) satisfies

wh,p) =Y 2pi—1)+ Y (1-2p;),

i€l iy

where I = {i € {1,...

{1,...,m}|h(x;) = —1}.

By Theorem 1, variation with respect to a dictionary of
a function is large when the function is nearly orthogonal

ym}lh(x;) =1} and J, = {i €

to all elements of the dictionary. For G := {g1, ...
define

8k}, We

uG(p) = max \u(gi,p)l -

The next theorem estimates probability distributions of
variational norms in dependence on the size of a dictio-
nary.

Theorem 5. Let X = {xi,...,xy} C RY G =

{g1,---,8} C B(X), and p = (p1,...,pm) such that
€ [0,1),i = 1,....,m. Then for every f € B(X)

randomly chosen according to p, and every A >0

m mA2
P >————— | >1—ke 2.
(1102 i) > 1-ke

Proof. By Theorem 3 (i), we get

ma2

Pr(|<f,h>— (h, p)| > mA Vh e G) <ke .

Hence,

Pr(1(f,h) ~
As|(f,h) ~

we get

(hp)|<m7LVheG)>1—ke

w(h, p)| <mA implies [(f, h)| < u(h, p)+mA.,

m 2
Pr(\(f,h>| < u(h,p)+mA Yh e G) S 1—ke "5

So by Theorem 1

mA2

m
P >—————VheG)|)>1—ke 2.
(Il g e ) = 1-ke

Since by the definition, for every i € G one has ug(p) >
w(h, p), we obtain

m < m
uG(p) +mA = p(h,p) +mA
and so

2

(e
Ug(p) +ma

Theorem 5 shows that when for all computational units
h in a dictionary G, the mean values p(h, p) are small,
then for large m almost all functions randomly chosen ac-
cording to p, are nearly orthogonal to all elements of the
dictionary G. For example, setting A = m~/4, we get a

O

ml/2
probability greater than 1 — ke~ 2 that a randomly cho-

sen function has G-variation greater or equal to ——"—.
tG (p)+m’f
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Thus when for large m, ”GI—TSM is small, G-variation of most

functions is large unless the size k of a dictionary G out-
. mA2
weighs the factore™ 2.
Function with large G-variations cannot be computed by
networks that have both the number of hidden units and all
absolute vales of output weights small.

Corollary 1. Let X = {xi,...,xn} C RY G =
{g1,---,&} C B(X), and p = (p1,...,pm) such that
pi € [0,1],i = 1,...,m.  Then for every f € B(X)
randomly chosen according to pp,, and every A >0,

Pr <m1n{||w||1 |W S Wf(G)} > W) >

mA2

1—ke 2.

Corollary 1 implies that computation of most classifica-
tion tasks randomly chosen from Z(X) with the product
probability p,, either requires to perform an ill-conditioned
task by a moderate network or a well-conditioned task by
a large network.

In particular, for the uniform distribution p; = 1/2 for
alli=1,...,m, forevery h € #(X) the mean value p(h, p)
is zero. Thus for any dictionary G C #(X), almost
all functions uniformly randomly chosen from %(X) are
nearly orthogonal to all elements of the dictionary. So we
get the following two corollaries.

Corollary 2. Let X = {x,...,x,} C R? and f € B(X)
be uniformly randomly chosen. Then for every h € B(X)
and every A >0

mA2

Pr(|(f,h)| >mA) <e 7 .

Corollary 3. Let X = {x1,...,x,} C R? and G =
{g1,---,8c} C B(X). Then for every f € B(X) uniformly
randomly chosen and every A > 0

mA2

Pl 7 ) 21-ke

When we do not have any a priori knowledge about the
task, we have to assume that the probability on B(X) is
uniform. Corollary 3 shows that unless a dictionary G is

sufficiently large to outweigh the factor e_#, most func-
tions randomly chosen in Z(X) according to p,, have G-
variations greater or equal to 1/A. So for small A and suf-
ficiently large m, most such functions cannot be computed
by linear combinations of small numbers of elements of
G with small coefficients. Similar situation occurs when
probabilities are nearly uniform.

Many common dictionaries used in neurocomputing are

)7'11/2
relatively small with respect to the factor e~ 2. For ex-
ample, the size of the dictionary of signum perceptrons

P;(X) on a set X of m points in R? is well-known since
the work of Schlifli [18]. He estimated the number of lin-
early separated dichotomies of m points in R¢. His upper
bound states that for every X C R4 such that card X = m,

d

d
m—1 m
dP,(X) <2 <™ 2
anar) <2y (") <2 @

(see, e.g., [4]). The set P;(X) forms only a small fraction
of the set of all functions in the set Z(X), whose cardi-
nality is equal to 2”. Also other dictionaries of {—1,1}-
valued functions generated by dichotomies of m points in
R¢ defined by nonlinear separating surfaces (such as hy-
perspheres or hypercones) are relatively small (see [4, Ta-
ble I]).

5 Discussion

As the number of binary-valued functions modeling clas-
sification tasks grows exponentially with the size of their
domains, we proposed to model relevance of such tasks
for a give application area by a probabilistic model. For
sets of classification tasks endowed with product probabil-
ity distributions, we investigated complexity of networks
computing these tasks. We explored network complex-
ity in terms of approximate measures of sparsity formal-
ized by [; and variational norms. For functions on large
domains, we analyzed implications of the concentration
of measure phenomena for correlations between network
units and randomly chosen functions.

We focused on classification tasks characterized by
product probabilities. To derive estimates of complexity of
networks computing randomly chosen functions we used
the Chernoff-Hoeffding Bound on sums of independent
random variables. An extension of our analysis to tasks
characterized by more general probability distributions is
a subject of our future work. To obtain estimates for more
general probability distributions, we plan to apply versions
of the Chernoff-Hoeffding Bound stated in [6], which hold
in situations when random variables are not independent .
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