
Classification based on Associations (CBA) - a
performance analysis

Filip Jǐŕı and Tomáš Kliegr[0000−0002−7261−0380]

University of Economics, Prague
Department of Information and Knowledge Engineering

nám Winstona Churchilla 4
13067 Prague, Czech Republic

filj03@vse.cz, tomas.kliegr@vse.cz

Abstract. Classification Based on Associations (CBA) has for two decades
been the algorithm of choice for researchers as well as practitioners ow-
ing to simplicity of the produced rules, accuracy of models, and also fast
model building. Two versions of CBA differing in speed – M1 and M2 –
were originally proposed by Liu et al in 1998. While the more complex M2
version was originally designated as on average 50% faster, in this article
we present benchmarks performed with multiple CBA implementations
on the UCI lymph dataset contesting the M2 supremacy: the results
show that M1 had faster processing speeds in most evaluated setups. M2
was recorded to be faster only when the number of input rules was very
small and the number of input instances was large. We hypothesize that
the better performance of the M1 version can be attributed to recent ad-
vances in optimization of vectorized operations and memory structures in
SciKit learn and R, which the M1 can better utilize due to better predis-
positions for vectorization. This paper is accompanied by a Python im-
plementation of CBA available at https://pypi.org/project/pyARC/.

Keywords: CBA · Classification by Associations · Association Rule
Classification · benchmark

1 Introduction

CBA (Classification Based on Associations) [9] is probably the most widely used
algorithm from the Association Rule Classification (ARC) family.1 The original
work by Liu et al [10] proposes two different versions of CBA, M1 and M2, which
differ in speed but should produce the same results. According to benchmarks
in [10], the M1 version, also called a naive CBA-CB, is about 50% slower than
M2.

In this paper, we investigate the proposition that M2 is faster than M1. Fol-
lowing the recommendation in [10], most CBA implementations adopt M2 as

1 This statement is based on citation analysis of main ARC algorithms, such as CPAR,
CMAR, FARC-HD and IDS.

https://pypi.org/project/pyARC/


2 Filip Jǐŕı and Tomáš Kliegr

the default (and often the only) supported CBA-CB algorithm. The essential
difference between M1 and M2 is that M1 takes a straightforward approach to
rule pruning resulting in more operations with data or rules than what is per-
formed in the M2 version. The M2 version reduces the number of operations,
but this comes at a cost of introducing multiple embedded cycles, counters and
conditions. The hypothesis that we evaluate is that an efficient M1 implemen-
tation can take advantage of highly optimized vectorized operations available in
modern scientific computing environments such as sci-kit learn [11] or R Matrix
package [3], and thus overtake M2 in scalability.

The comparison between M1 and M2 can either be performed analytically or
empirically. The first option would entail analysis of all operations, taking into
account their costs. However, the costs can differ dramatically based on the
chosen implementation. Therefore, we have decided to perform the comparison
empirically through a benchmark involving our reimplementation of CBA M1
and M2, as well as existing maintained implementations of the CBA algorithm.

This paper is organized as follows. In Section 2 we briefly outline the CBA
algorithm. The CBA implementations used in our benchmarks are covered in
Section 3. Section 5 gives an overview of the benchmark setup. Finally, Sec-
tion 6 presents the results and discusses their implications for choice of the right
CBA version for given task. The conclusions present the limitations of our re-
search, state availability of our CBA implementation and benchmarking code,
and outline future work.

2 Background

While relatively dated, CBA is used as a reference state-of-the-art algorithm in
many recent papers in the ARC field (e.g. [2,8]). One of the advantages of CBA
is its speed, in a benchmark performed in a seminal paper by [2], CBA came out
as one of the fastest algorithms.

The CBA algorithm consists of two distinct phases [10]: association Rule Gener-
ation phase (called CBA-RG) and the Classifier Building (CBA-CB) phase. In
the CBA-RG phase, all class association rules that meet user-defined thresholds
for confidence and support are discovered using the apriori algorithm [1]. The
gist of CBA is the CBA-CB phase, which is responsible for removing redundant
discovered rules, and creating a classifier from the pruned rule list.

3 CBA implementations

The base comparison between M1 and M2 implementations was performed using
our pyARC package.2 While we strived to equally well optimize both M1 and

2 https://github.com/jirifilip/pyARC

https://github.com/jirifilip/pyARC


Classification based on Associations (CBA) - a performance analysis 3

M2 algorithm implementations in pyARC, for better representativeness of the
benchmark we also decided to include other pre-existing CBA implementations:
arulesCBA [5], arc [6] and rCBA [7]. An overview of all CBA implementations
involved in our benchmark is provided in Table 1. For the R implementations,
a detailed description can be found in the CRAN3 package documentation. For
pyARC we provide a short description below.

Table 1: Review of existing CBA implementations

software name CBA-CB version language

arulesCBA M2 R (C)
rCBA M2 (default), M1 R (Java)
arc M1 R
pyARC M1,M2 Python

For the CBA-RG phase, pyARC uses the fim (frequent itemset mining) package4,
which is a Python wrapper for one of the fastest available apriori implementa-
tions. The same apriori implementation is used, for example, in the popular
arules R package [4]. The CBA-CB phase for both M1 and M2 was implemented
in Python, using built-in optimized Python data structures, such as sets, lists
and dictionaries.

4 M1 and M2 comparison

The M1 algorithm, as presented by its authors [9], is characterized by its greater
time complexity and memory requirements. Figure 1 shows the M1 algorithm in
pseudocode.

In the first step, all rules are sorted according to the precedence operator (line
1). In this way, it is ensured that rules with high confidence and support are
chosen first. The rules are then iterated in this order – for each rule, it is tested
how many instances the rule satisfies. If any instance satisfies rule’s antecedent
and the instance’s class matches the consequent, the rule is marked and inserted
into temp (line 2-6). After iterating through all the instances, we test if the rule
is marked. If it is, it is inserted at the end of the classifier and all the instances in
temp are removed from the dataset. The default class is selected (the majority
class of the remaining instances). Next, it is evaluated how many errors are made
by a classifier C consisting of all rules above the current rule (sorted according
to the precedence operator), the current rule and a default rule. The number of
errors is associated with the current rule.

3 http://cran.r-project.org/
4 https://pypi.org/project/fim/

https://pypi.org/project/fim/


4 Filip Jǐŕı and Tomáš Kliegr

1 R = sort(R);
2 foreach rule r ∈ R do
3 temp = ∅;
4 foreach data case d ∈ D do
5 if d satisfies the conditions of r then
6 store d.id in temp and mark r if it correctly classifies d
7 end

8 end
9 if r is marked then

10 insert r at the end of C ;
11 delete all the cases with the ids in temp from D ;
12 select a default class for the current C ;
13 compute the total number of errors of C ;

14 end

15 end
16 Find the first rule p in C with the lowest total number of errors and drop

all the rules after p in C;
17 Add the default class associated with p to the end of C and return C;

Fig. 1: M1 algorithm [9]

After all the rules have been iterated, the rule r with the lowest associated
number of errors is found, rules below rule r are discarded. A rule with empty
antecedent predicting the default class associated with rule r is then appended
below r as the last rule of the final classifier C.

1 Q = ∅;U = ∅;A = ∅;
2 foreach case d ∈ D do
3 cRule = maxCoverRule(Cc, d);
4 wRule = maxCoverRule(Cw, d);
5 U = U ∪ {cRule};
6 cRule.classCasesCovered[d.class]++;
7 if cRule � wRule then
8 Q = Q ∪ {cRule};
9 mark cRule;

10 end
11 else A = A∪ < d.id, d.class, cRule, wRule >;

12 end

Fig. 2: M2 algorithm, stage 1 [9]



Classification based on Associations (CBA) - a performance analysis 5

M1 is not always the right choice for pruning the mined rules. It traverses the
dataset multiple times5, keeping the whole dataset and rules in memory. This
may not be the optimal solution for very large datasets.

In response, Liu98integratingclassification proposed the M2 version of CBA-CB.
Liu98integratingclassification state that M2 needs to go through the dataset less
than two times.

M2 can be divided into three distinct stages. For each instance, two rules are
found by traversing the set of sorted rules – cRule, which classifies the instance
correctly, and wRule, which classifies it incorrectly. If cRule has precedence be-
fore wRule, cRule is marked it means cRule will be chosen before wRule when
building a classifier. If wRule has higher precedence, the situation is more com-
plex and the wRule and crule need to be stored in a separate data structure.

Figure 2 shows the first step of the M2 algorithm in pseudocode. Let U be
the set of all crules, Q the set of all crules that have precedence before their
corresponding wRule and A the set of all conflicting data structures ¡id, y,
cRule, wRule¿, where wRule has precedence over cRule.

1 foreach entry < d.id, d.class, cRule, wRule >∈ A do
2 if wRule is marked then
3 cRule.classCasesCovered[d.class]–;
4 wRule.classCasesCovered[d.class]++;

5 end
6 else
7 wSet = allCoverRules(U , dID.case, cRule);
8 foreach entry w ∈ wSet do
9 w.replace = w.replace ∪ {< cRule, dID, y >};

10 w.classCasesCovered[y]++

11 end
12 Q = Q ∪ wSet;

13 end

14 end

Fig. 3: M2 algorithm, stage 2 [9]

The goal of the second stage is to traverse all conflicting data structures in A.
For each one, we check if wRule is marked. If it is, wRule is a cRule of another
instance. In that case, the support and confidence counts are adjusted so that
they correctly reflect the support and confidence of said rule. The second stage
is depicted in Figure 3.

5 In subsequent iterations, the dataset shrinks since some instances have been removed.



6 Filip Jǐŕı and Tomáš Kliegr

1 classDistr = compClassDistr(D);
2 ruleErrors = 0;
3 Q = sort(Q);
4 foreach rule r ∈ Q do
5 if r.classCasesCovered[r.class] 6= 0 then
6 foreach entry < rul, dID, y >∈ r.replace do
7 if the dID case has been covered by a previous r then
8 r.classCassesCovered[y]–;
9 end

10 else rul.classCasesCovered[y]–

11 end
12 ruleErrors = ruleErrors + errorsOfRule(r);
13 classDistr = update(r, classDistr);
14 defaultClass = selectDefault(classDistr);
15 defaultErrors = defErr(defaultClass, classDistr);
16 totalErrors = ruleErrors + defaultErrors;
17 Insert < r, default− class, totalErrors > at end of C;

18 end

19 end
20 find the first rule p in C with the lowest total number of errors and drop

all the rules after p in C;
21 Add the default class associated with p to the end of C and return C;

Fig. 4: M2 algorithm, stage 3 [9]

In the third stage, the final assembly of the classifier takes place. First, we iterate
for every rule r in Q. For each such rule (line 7-11), all rules which could be
replaced by rule r are checked. If the checked instance has already been covered
by previous rule, support and confidence counts are adjusted. Next steps include
– as in M1 – calculating total error count and finding the default rule. Then, the
rule with the lowest number of total errors is found and the remaining rules are
removed from the classifier.

5 Benchmark setup

We used the Lymph dataset from the UCI repository6. We chose lymph, because
it is included in the original benchmark by [9], who reported M2 being about
30% faster than M1 on this dataset.

We perform two types of benchmarks: sensitivity of processing speed to a)
changes in rule count and b) to changes in the data size.

6 https://archive.ics.uci.edu/ml/datasets.html

https://archive.ics.uci.edu/ml/datasets.html


Classification based on Associations (CBA) - a performance analysis 7

For the rule count sensitivity comparison, input rules were generated using the
arules R package with the following parameters: confidence = 0, support =

0.01, minlen = 1, maxlen = 20. The arules-based generation was applied to
all implementations except for pyARC, which used the topRules function from
the arc package to generate the same number of input rules as in the arules-based
generation.

The list of generated rules was subsampled at different sizes and passed to the
benchmarked packages. Only execution time of the classifier-building step (CBA-
CB) was measured. The run time for each rule count threshold was measured
ten times and the results were averaged. The benchmarking scripts are available
on GitHub.7

For the data size sensitivity comparison, only the first 100 rules generated in the
previously described setting were used. To generate various data size thresholds,
the training data were doubled at each iteration by oversampling.

The benchmark was run on a machine with two cores (Intel Core M-5Y10 CPU
@ 0.8GHz) and 8GB of RAM. The package versions used for the benchmark are:
arc: 1.2, rCBA: 0.4.2, arulesCBA: 1.1.3-1.

6 Experimental results

In the first benchmark, we varied the number of rules on the output of CBA-
RG, keeping the data size constant. As Figure 5a shows, pyARC-M1 followed by
pyARC-M2 were the fastest implementations irrespective of the number of input
rules. A detailed comparison between pyARC-M1 and pyARC-M2 provided by
Figure 5b shows that pyARC-M1 was at least three times faster than pyARC-M2
across the whole range.

(a) All implementations (b) pyARC implementation

Fig. 5: Runtime – number of input rules is varied

7 https://github.com/jirifilip/pyARC/tree/master/notebooks/benchmark

https://github.com/jirifilip/pyARC/tree/master/notebooks/benchmark


8 Filip Jǐŕı and Tomáš Kliegr

(a) All implementations (b) pyARC implementation

Fig. 6: Runtime – number of input rows is varied

In the second benchmark, we varied the size of the input datasets, keeping the
number of rules constant. The results depicted in Figure 6a show that the arc
(M1) implementation, followed by pyARC-M1 were fastest for data set size up
to about 133.120 instances. A detailed comparison between pyARC-M1 and
pyARC-M2 provided by Figure 6b shows that the performance gap increases in
favour of M1 when the number instances grows.

Two somewhat outlying patterns can be observed from Figure 5a and Figure 6a.
First, arc (M1) is the slowest implementation when the number of rules is high,
and the fastest implementation (up to 133.120 instances) in the second bench-
mark focused on increasing the number of input rules. Deterioration of perfor-
mance for high number of input rules is generally not an issue for CBA imple-
mentations, since classification accuracy starts to plateau between 60.000-80.000
input rules [10]. Second, rCBA had nearly constant time irrespective of the num-
ber of input instances, resulting in the lowest mining time for the largest data
set sizes. This may be possibly explained by rCBA taking advantage of effi-
cient Java structures for searching the instances, but suffering from a constant
overhead relating to data exchange between Java and R (rCBA core is imple-
mented in Java, but the software provides an R interface). However, note that
the number of rules in the second benchmark was only 100.

Overall, the results show that M1 version of CBA is faster than M2 in most
benchmarked combinations.

7 Conclusion

The experiments presented in this paper contest the previously held belief that
M2 version of CBA is always faster than the M1 version. To ensure robustness of
our results, we followed crossvalidation, averaged execution times from repeated
experiments, and chose a dataset originally used in [9] to demonstrate better



Classification based on Associations (CBA) - a performance analysis 9

performance of M2 over M1. We see a limitation of our results in that they are
based on experiments performed on just one dataset. To aid extension to addi-
tional datasets, we made the benchmarking framework freely available under an
open license. As for other future work, we plan to investigate the intepretability
of classifiers produced by the CBA algorithm.

A by-product of our research is the first (to our knowledge) CBA implemen-
tation in Python. According to the performed benchmarks, pyARC is highly
competitive with existing CBA implementations in other languages. The pyARC
package provides a scikit-learn-like interface, which makes it easy to use and fur-
ther extend. pyARC is available at GitHub, and can be downloaded via pip or
easy install.

Acknowledgments

This research was supported by grant IGA 33/2018 and institutional support
for research activities of the Faculty of Informatics and Statistics, University of
Economics, Prague.

References

1. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
2. Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification

model for high-dimensional problems with genetic rule selection and lateral tuning.
IEEE Transactions on Fuzzy Systems 19(5), 857–872 (2011)

3. Bates, D., Maechler, M.: Matrix: Sparse and Dense Matrix Classes and Methods
(2017), https://CRAN.R-project.org/package=Matrix, R package version 1.2-8

4. Hahsler, M., Grün, B., Hornik, K.: arules - a computational environment for mining
association rules and frequent item sets. Journal of Statistical Software 14(15), 1–
25 (9 2005), http://www.jstatsoft.org/v14/i15

5. Johnson, I.: arulesCBA: Classification Based on Association Rules (2016), https:
//CRAN.R-project.org/package=arulesCBA, R package version 1.0.2

6. Kliegr, T.: Association Rule Classification (2016), https://CRAN.R-project.org/
package=arc, R package version 1.1

7. Kuchar, J.: rCBA: CBA Classifier for R (2018), https://CRAN.R-project.org/
package=rCBA, R package version 0.4.1

8. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: A joint frame-
work for description and prediction. In: Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 1675–
1684. KDD ’16, ACM, New York, NY, USA (2016)

9. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proceedings of the Fourth International Conference on Knowledge Discovery
and Data Mining. pp. 80–86. KDD’98, AAAI Press (1998)

10. Liu, B., Ma, Y., Wong, C.K.: Classification using association rules: weaknesses and
enhancements. Data mining for scientific applications 591 (2001)

11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Ma-
chine learning in python. Journal of machine learning research 12(Oct), 2825–2830
(2011)

https://CRAN.R-project.org/package=Matrix
http://www.jstatsoft.org/v14/i15
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA

	Classification based on Associations (CBA) - a performance analysis

