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Abstract. This work is devoted to comparative experimental analysis of different stochastic 

optimization algorithms for image registration in spatial domain: stochastic gradient descent, 

Momentum, Nesterov momentum, Adagrad, RMSprop, Adam. Correlation coefficient is 
considered as the objective function. Experiments are performed on synthetic data generated 

via wave model with different noise-to-signal ratio. 

1. Introduction

Digital image registration is a process by which the most accurate match is determined between two
images, which may have been taken at the same or different times, by the same or different sensors,

from the same or different viewpoints. The registration process determines the optimal transformation,

which will align the two images. This has applications in many fields as diverse as medical image
analysis, pattern matching and computer vision for robotics, as well as remotely sensed data

processing. In all of these domains, image registration can be used to find changes in images taken at

different times, or for object recognition and tracking.

Spatial domain methods operate directly on pixels, and the problem of the estimation of registration 

parameters α  becomes the problem of searching for the extreme point of a multi-dimensional 

objective function )α,J(Z . The objective function measures the similarity between two images 

 )1()1(

j
zZ and  )2()2(

j
zZ , where j  are nodes of grid mesh   on which the images are 

defined. There is a wide variety of similarity measures that can be used as objective functions [1]. The 

decision of which objective function to choose is usually based on the specifics of images, 

deformation properties and conditions. Recently, objective functions from the theory of information 

are becoming more popular. Among these functions the most interesting is mutual information. It has 
been found to be especially robust for multimodal image registration and registration of images with 

great non-linear intensity distortion [2]. However, mutual information has some drawbacks. One of 

them is relatively high computational complexity. 
The choice of optimization search technique depends on the type of problem under consideration. 

Traditional nonlinear programming methods, such as the constrained conjugate gradient, or the 

standard back propagation in neural network applications, are well suited to deterministic optimization 
problems with exact knowledge of the gradient of the objective function. Optimization algorithms 

have been developed for a stochastic setting where randomness is introduced either in the noisy 

measurements of the objective function and its gradient, or in the computation of the gradient 

approximation. Stochastic gradient ascend (descend) is one of the most powerful technique of this 
class [3]. It is an iterative algorithm, where registration parameters can be found as follows [4]: 

)),(J(ˆˆ
11   tttttt Z  Λ , 
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where   – gradient estimation vector of the objective function J  obtained using not each pixel in the 

images but a sample tZ  taken randomly on each iteration, tΛ  – positive-definite gain (learning rate) 

matrix: itt Λ , 0it , mi ,1 ; m  – the number of registration parameters. 

The main disadvantage of this optimization algorithm is presence of a large number of local 
extreme points of the objective function due to the use of small samples and relatively short working 

range in terms of registration parameters to be estimated. To overcome these problems the number of 

sample elements can be increased. However, this leads to significant increase in computational efforts. 

Another significant problem is choosing the hyperparameter tΛ  as it largely affects not only the 

convergence rate but also the estimation accuracy. Thus, the problem of optimization of stochastic 

gradient algorithm for image registration is an important, especially for real-time processing systems. 

To overcome the mentioned problems some modifications of the “classical” stochastic gradient 
descent have been proposed. This paper is devoted to comparative experimental analysis of these 

modifications: Momentum, Nesterov momentum, Adagrad, RMSprop, Adam. These algorithms are 

very effective, especially in training artificial neural networks [5]. 

2.  Stochastic optimization algorithms 

Let us consider the most popular modifications of stochastic gradient descent optimization algorithm 

which can be used for solving image registration problem. 

2.1.  Momentum 

The idea behind Momentum optimization is quite simple [6]: if one imagine a bowling ball rolling 

down a gentle slope on a smooth surface: it will start out slowly, but it will quickly pick up momentum 

until it eventually reaches terminal velocity (if there is some friction or air resistance). In contrast, 
regular gradient descent will simply take small regular steps down the slope, so it will take much more 

time to reach the bottom. Recall that gradient descent simply updates the parameter estimates α̂  by 

directly subtracting the gradient of the cost function with regards to the parameters )α,J(Z  multiplied 

by the learning rate 0 . It does not care about what the earlier gradients were. If the local gradient 

is tiny, it goes very slowly. Momentum optimization cares a great deal about what previous gradients 

were: at each iteration, it adds the local gradient to the momentum vector m  multiplied by the 

learning rate  , and it updates the weights by simply subtracting this momentum vector. In other 

words, the gradient is used as an acceleration, not as a speed. To simulate some sort of friction 

mechanism and prevent the momentum from growing too large, the algorithm introduces a new 

hyperparameter h , simply called the momentum, which must be set between 0 (high friction) and 1 

(no friction). A typical momentum value is 0.9. Thus, the equation for parameter estimate updates can 
be written as follows: 

,mˆˆ
1 ttt    

where ),(J(mm 11   tttttt Zh Λ . 

One can easily verify that if the gradient remains constant, the terminal velocity (i.e. the maximum 

size of the weight updates) is equal to that gradient multiplied by the learning rate   multiplied by 

h1

1
. For example, if 9.0h , then the terminal velocity is equal to 10 times the gradient times the 

learning rate, so Momentum optimization ends up going 10 times faster than “classical” stochastic 

gradient descent. This allows Momentum optimization to escape from plateaus much faster. 

 

2.2.  Nesterov momentum 

In [7] the author proposes one small variant to Momentum optimization which is almost always faster 

than vanilla Momentum optimization. The idea behind Nesterov momentum optimization consists in 

measuring the gradient of the cost function not at the local position but slightly ahead in the direction 
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of the momentum. Hence, the only difference from vanilla Momentum optimization is that the 

gradient is measured on t -th iteration at the point tt hmˆ
1   rather than at 1

ˆ
t : 

  tttttttt hZh mˆ,(Jmˆˆ
111    Λ . 

This small tweak works because in general the momentum vector will be pointing in the right 

direction (i.e., toward the optimum), thus it will be slightly more accurate to use the gradient measured 

a bit farther in that direction rather than using the gradient at the original position. Figure 1 shows this 

effect. Here 
1  represents the gradient of the cost function measured at the starting point 1

ˆ
t , and 

2  represents the gradient at the point located at tt hmˆ
1  . As one can see, the Nesterov update 

ends up faster optimizers slightly closer to the optimum. After a while, these small improvements add 
up and the procedure ends up being significantly faster than regular Momentum optimization. 

Moreover, we should note that when the momentum pushes the weights across a valley, 
1  continues 

to push further across the valley, while 
2  pushes back toward the bottom of the valley. This helps 

reduce oscillations and thus converges faster. 

 
Figure 1. Difference between Momentum and Nesterov momentum optimization. 

2.3.  Adagrad 

If we consider the elongated bowl problem again: gradient descent starts by quickly going down the 
steepest slope, then slowly goes down the bottom of the valley. However, it would be better if the 

algorithm could detect this early on and correct its direction to point a bit more toward the global 

optimum. 
The Adagrad algorithm [8] achieves this by scaling down the gradient vector along the steepest 

dimensions: 

     21

11 c//ˆ,Jˆˆ    ttttttt ZΛ , 

where   211
ˆ,Jcc   ttttt Z  . 

The first step of this algorithm on each iteration is accumulating the square of the gradients into the 

vector tc . If the cost function is steep along the i -th dimension, then itc  will get larger and larger at 

each iteration. The second step is almost identical to “classical” stochastic gradient descent, but with 

one big difference: the gradient vector is scaled down by a factor of   21
c t  (the //  symbol 

represents the element-wise division, and   is a smoothing term to avoid division by zero, typically 

set to 10
–8

). In short, this algorithm decays the learning rate, but it does so faster for steep dimensions 

than for dimensions with gentler slopes. This is called an adaptive learning rate. It helps point the 

resulting updates more directly toward the global optimum. One additional benefit is that it requires 

much less tuning of the learning rate hyperparameter. 
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Adagrad often performs well for simple quadratic problems, but unfortunately it often stops too 
early when training neural networks. The learning rate gets scaled down so much that the algorithm 

ends up stopping entirely before reaching the global optimum. 

2.4.  RMSprop 
Although Adagrad slows down a bit too fast and ends up never converging to the global optimum, the 

RMSProp algorithm [9] fixes this by accumulating only the gradients from the most recent iterations 

(as opposed to all the gradients since the beginning of training). It does so by using exponential decay 
in the first step: 

    211
rr ˆ,J1cc   ttttt Zdd   

where d  is the decay rate and it is typically set to 0.9. 

Except on very simple problems, this optimizer almost always performs much better than Adagrad. 
It also generally performs better than Momentum optimization and Nesterov momentum. In fact, it 

was the preferred optimization algorithm of many researchers until Adam optimization came around. 

2.5.  Adam 

Adam [10] which stands for adaptive moment estimation, combines the ideas of Momentum 
optimization and RMSProp: just like Momentum optimization it keeps track of an exponentially 

decaying average of past gradients, and just like RMSProp it keeps track of an exponentially decaying 

average of past squared gradients: 

  21AA

1 c//mˆˆ    ttttt Λ , 

    
1

111
A

1A

1

ˆ,J1m
m

d

Zdd tttt
t




  

, 

    
2

2

121
A

2A

1

ˆ,J1c
c

d

Zdd tttt
t




  

. 

One can notice the similarity of Adam update rule to both Momentum optimization and RMSProp. 
The only difference is that it computes an exponentially decaying average rather than an exponentially 

decaying sum for t
Am  and t

Ac , but these are actually equivalent except for a constant factor as the 

decaying average is just  11 d  and  21 d  times the decaying sum respectively. The momentum 

decay hyperparameter 1d  is typically initialized to 0.9, while the scaling decay hyperparameter 2d  is 

often initialized to 0.999. As earlier, the smoothing term  ϵ is usually initialized to a tiny number 

such as 10
–8

. In fact, since Adam is an adaptive learning rate algorithm like both Adagrad and 

RMSProp, it requires less tuning of the learning rate hyperparameter tΛ . 

3.  Experiments and analysis 

3.1.  Synthetic data 

For efficiency analysis of differentit optimization algorithms it is reasonable to use simulated images 

whose intensity probability distribution function and correlation function can be priori defined during 

their synthesis. In conducted experiments simulated images based on wave model [11, 12] with 
intensity probability distribution function and correlation function close to Gaussian and with different 

correlation radius were used. In addition, an unbiased Gaussian noise was used in simulations. Figure 

2 shows an example of such synthesized image. 
In order to measure the performance of the optimization algorithms we tested them on images with 

different noise-to-signal ratio and with different μ  ‒ the number of points in the sample using for 

estimation of the gradient of the chosen objective function. Correlation coefficient [1] is chosen as an 
objective function to be optimized. Similarity model is considered as the deformation model to be 

estimated. For all of the below results the deformation parameters are the following: horizontal shift ‒ 
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20 pixels to the right, vertical shift ‒ 15 pixels upwards, clockwise rotation ‒ 17 degrees, scale factor – 
0.9. In each experiment, optimal hyperparameters were chosen experimentally as different algorithms 

better perform with different hyperparameters and their choice is out of the scope of this article.  

The number of iterations before convergence of mismatch Euclidean distance [4] E  which is an 
integral measure of registration parameters’ convergence is used as the performance criterion. 

Moreover, all the results are averaged by 50 realizations to make them more consistent and 
reproducible. 

 
Figure 2. The image synthesized using wave model. 

3.1.1.  Different sample size 

Figure 3 shows the convergence of mismatch Euclidean distance for the algorithms with different 

sample size μ . Hereafter, curve 1 corresponds to “classical” stochastic gradient descent, 2 ‒ stochastic 

gradient descent with Momentum, 3 – Nesterov momentum (plus markers), 4 – Adagrad (plus 

markers), 5 – RMSprop (dashed line), 6 – Adam (dashed line). 

 

 

 
a) 5μ   b) 20μ  

Figure 3. Mismatch Euclidean distance on the number of iterations for different sample size. 
 

One can see that in both cases “classical” stochastic gradient descent shows the worst result as it 

starts to converge only after 800 iterations for 5μ  and after 700 iterations for 20μ . Momentum 

optimization algorithm performs almost identically but slightly better for 20μ . The best results in 

both cases are provided by Adam and RMSprop optimizations as they start to converge after 300 

iterations for 5μ and after 200 iterations for 20μ . Moreover, it is obvious that Adam algorithm 

in both situations has less variance then RMSprop, thus we can conclude that it is more stable and 

hence preferable. Adagrad and Nesterov momentum algorithms show close results in terms of number 

of iterations before convergence (500 iterations for 5μ  and after 450 iterations for 20μ ), but in 

the beginning Adagrad has much faster convergence rate and with some optimization (e.g. increasing 
or dropping learning rates after a number of iterations) it possibly can outperform Nesterov 

momentum. 
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Also, we can conclude that all of the algorithms have better convergence rate with bigger sample 
size. It is reasonable from theoretical point of view because the objective function gradient estimates 

become less noisy. 

3.1.2.  Images with different signal-to-noise ratio 

Let us test the algorithms in case of noisy images with different signal-to-noise ratio q . In this 

experiment we were using the sample size 5μ  for each algorithm and q . Figure 4 shows the 

convergence of algorithms for 50q and 2q . 

  
a) 50q  b) 2q  

Figure 4. Mismatch Euclidean distance on the number of iterations for different signal-to-noise ratio. 

 

As in the previous experiment, “classical” stochastic gradient descent shows the slowest 

convergence rate in both set-ups. Adam and RMSprop algorithms have the best result. For 50q  

their curves are almost identical but when the noise increases Adam has much faster convergence rate 

in the beginning, hence it can potentially show better result. In addition, we can notice that with very 

intense noise ( 2q ) Adagrad converges with bigger error in comparison with other algorithms and it 

performs almost the same as “classical” stochastic gradient descent. In order to reduce the error we 
can choose smaller learning rates. However, with smaller rate sometimes it was not able to converge at 

all. 

Additionally, it is clear that noise affects not only the convergence rate but also the variance of 

estimates for all of the algorithms as the curves become less smooth. 

3.2.  Real data 

Satellite images were used for the comparative analysis on real data. Figure 5 shows an example of the 

images taken in different weather conditions. 
Figure 6 shows an example of mismatch Euclidean distance convergence of the algorithms for 

images shown in figure 5. For this experiment μ  was set to 25 and the results were averaged by 100 

realizations as them became more noisy in comparison with synthesized images, especially for the 
algorithms with adaptive learning rates. 

One can easily notice that the results on real data are almost identical to the results on synthesized 

images. Again, Adam and RMSprop algorithms are the fastest in terms of convergence rate. However 

here we can see the algorithms with adaptive learning rates have much noisier curves that the others. It 
can be explained by the fact that when dealing with real images we have noisier gradient estimation, 

thus in these algorithms the learning rate estimation becomes less stable. 
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Figure 5. An example of real satellite images which were used for the comparative analysis. 

 
Figure 6. Mismatch Euclidean distance on the number of iterations for real images. 

4.  Conclusion 

The comparative analysis of different optimization algorithms for solving image registration problem 
in spatial domain shows that in each case “classical” stochastic gradient descent shows the worst result 

in terms of the convergence rate of registration parameters’ estimates. Momentum optimization 

algorithm just slightly outperforms it. Adagrad and Nesterov momentum algorithms show close results 
in terms of number of iterations before convergence but except for the situation with intense noise 

Adagrad in the beginning has much faster convergence rate and with some optimization (e.g. 

increasing or dropping learning rates after a number of iterations) it possibly can outperform Nesterov 

momentum The best results are provided by Adam and RMSprop optimizations Moreover, it is 
obvious that Adam algorithm is almost always preferable as it has less variance then RMSprop. 

Furthermore, we can conclude that all of the algorithms have better convergence rate with bigger 

sample size. It is reasonable from theoretical point of view because the objective function gradient 
estimates become less noisy. Additionally, it is clear that noise affects not only the convergence rate 

but also the variance of estimates for all of the algorithms as the curves become less smooth. 

Experiments on real satellite images show mostly identical results. 
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