
Generating Ontologies from Templates: A
Rule-Based Approach for Capturing Regularity

Christian Kindermann1, Daniel P. Lupp2, Uli Sattler1, and Evgenij Thorstensen2

1 University of Manchester, UK
2 University of Oslo, Norway

Abstract. We present a second-order language that can be used to
succinctly specify ontologies in a consistent and transparent manner.
This language is based on ontology templates (OTTR), a framework for
capturing recurring patterns of axioms in ontological modelling. The
language, and our results are independent of any specific DL.
We define the language and its semantics, including the case of negation-as-
failure, investigate reasoning over ontologies specified using our language,
and show results about the decidability of useful reasoning tasks about
the language itself. We also state and discuss some open problems that
we believe to be of interest.

1 Introduction

The phenomenon of frequently occurring structures in ontologies engineering
(OE) has received attention from a variety of angles. One of the first accounts is
given in [4], where repeated versions of general conceptual models are identified.
Similar observations gave rise to the notion of Ontology Design Patterns (ODP) as
abstract descriptions of best practices in OE [2, 9, 13]. Another view, emphasizing
common ontological distinctions, led to the emergence of Upper Ontologies which
aim to categorize general ideas shareable across different domains [10]. Orthogonal
to such conceptual patterns, the existence of syntactic regularities in ontologies
has been noted and some aspects of their nature have been analyzed [16–18].

In this paper, we propose a new language that allows expressing patterns of
repeated structures in ontologies. This language is rule-based and has both a
model-theoretic and a fixpoint semantics, which we show coincide. In contrast
to other rule languages “on top of” DLs, in this language firing a rule results in
the addition of TBox and/or ABox axioms. The goal is to succinctly describe
ontologies, thereby making them more readable and maintainable.

Given that DL ontologies are sets of axioms, an ontology provides no means to
arrange its axioms in a convenient manner for ontology engineers. In particular, it

The second author was supported by Norwegian Research Council grant no. 230525.
The fourth author partially funded by the Norwegian Research Council through the
SIRIUS Centre for Research-based Innovation (grant no. 237898).

is not possible to group conceptually related axioms or indicate interdependencies
between axioms. While ontology editors such as Protégé3 display an ontology
through a hierarchy of its entities, conceptual interdependencies between axioms
are hidden and the underlying structural design of an ontology remains obscured.

Example 1. Consider the ontology

𝒪1 = {Jaguar ⊑ Animal, Jaguar ⊑ ∀hasChild.Jaguar, (1)
Tiger ⊑ Animal, Tiger ⊑ ∀hasChild.Tiger, (2)
Lion ⊑ Animal, Lion ⊑ ∀hasChild.Lion} (3)

Then, an ontology editor will group the entities Jaguar,Tiger and Lion under
Animal according to their class hierarchy.

However, 𝒪1 contains no indication that every subclass 𝑋 of Animal can have
only children of the same class 𝑋. Assume this regularity is no coincidence but a
desired pattern that should hold for any subclass of Animal. Currently, ontology
engineers have no means of expressing or enforcing such a pattern other than
dealing with the ontology as a whole, inspecting all axioms separately, and making
necessary changes manually.

Expressing patterns such as in Example 1 explicitly has a potential to reveal
some aspects of the intentions for the design of an ontology.

Example 2. Consider the ontology

𝒪2 = {Jaguar ⊑ Animal, Tiger ⊑ Animal, Lion ⊑ Animal}

In addition, consider the rule

𝑔 : {?𝑋 ⊑ Animal}⏟ ⏞
Body

→ {?𝑋 ⊑ ∀hasChild.?𝑋}⏟ ⏞
Head

,

where ?𝑋 is a variable. We can interpret the body of this rule as a query which,
when evaluated over the ontology 𝒪2, returns substitutions from the signature of
𝒪2 for ?𝑋. These substitutions can then be used to instantiate the axioms in
the head of the rule. Firing the above rule over 𝒪2 would add all those resulting
axioms to 𝒪2, thereby reconstructing 𝒪1 from Example 1.

In the following, we will call such rules generators. The possible benefits of
generators are threefold. Firstly, 𝒪2 in combination with 𝑔 is easier to understand
because 𝑔 makes a statement about all subconcepts of Animal that the type of an
animal determines the type of its children. This is a kind of meta-statement about
concepts which a user of an ontology can usually only learn by inspecting (many)
axioms in an ontology. Secondly, 𝒪2 in combination with 𝑔 is easier to maintain
and extend compared to 𝒪1, where a user would have to manually ensure that
the meta-statement continues to be satisfied after new concepts have been added.
3 https://protege.stanford.edu/

Thirdly, conceptual relationships captured in a generator such as 𝑔 are easy to
reuse and can foster interoperability between ontologies in the spirit of ontology
design patterns.

This paper is accompanied by a more detailed technical report [7] providing
more elaborate examples, a discussion of potential use cases, a list of open
questions, and all omitted proofs.

2 Preliminaries

Let 𝑁𝐼 ,𝑁𝐶 , and 𝑁𝑅 be sets of individual, concept, and role names, each containing
a distinguished subset of individual, concept, and role variables 𝑉𝐼 , 𝑉𝐶 , and 𝑉𝑅.
A concept (resp. role) is either a concept name (resp. role name) or a concept
expression (resp. role expression) built using the usual DL constructors [1]. Since
we do not distinguish between TBoxes and ABoxes, an axiom is either an assertion
of the form C(a) or R(a, b) for a concept C, role R, and individual names a, b or an
inclusion statement C ⊑ D for concepts or roles C and D. A theory is a (possibly
infinite) set of axioms, whereas an ontology is a finite set of axioms. A set ℒ of
individuals, concepts, and roles is called a language.

A template 𝑇 is an ontology, and we write 𝑇 (𝑉) for 𝑉 ⊆ 𝑉𝐼 ∪ 𝑉𝐶 ∪ 𝑉𝑅 the set
of variables occurring in 𝑇 . As the variables are concept, role, and individual
names, the semantics of a template is the same as of a regular ontology. For the
sake of brevity, we occasionally omit the variable set 𝑉 when it is either clear from
context or nonvital to the discussion. Templates can be instantiated by applying a
substitution to them. A substitution 𝜎 is a function that maps individual, concept,
and role variables to individuals, concepts, and roles respectively. We require that
substitutions respect the type of a variable, so that the result of instantiating a
template is a well-formed ontology. For ℒ a language, an ℒ-substitution is one
whose range is a subset of ℒ. The ℒ-evaluation of 𝑇 over 𝒪, written eval(𝑇,𝒪,ℒ),
is the set of substitutions defined as follows:

eval(𝑇,𝒪,ℒ) = {𝜎 an ℒ-substitution | 𝒪 |= 𝑇𝜎},

where 𝑇𝜎 is the instantiation of 𝑇 with 𝜎. Furthermore, we define eval(∅,𝒪,ℒ)
to be the set of all ℒ-substitutions.

Finally, we say that an ontology 𝒪 is weaker than 𝒪′ if 𝒪′ |= 𝒪, and strictly
weaker if the reverse does not hold.

3 Generators and GBoxes

In this section we define the syntax and semantics of generators and GBoxes and
discuss some examples.

Definition 1. A generator 𝑔 is an expression of the form 𝑇𝐵(𝑉𝐵) → 𝑇𝐻(𝑉𝐻),
for 𝑇𝐵(𝑉𝐵), 𝑇𝐻(𝑉𝐻) templates with 𝑉𝐻 ⊆ 𝑉𝐵. 𝑇𝐵 and 𝑇𝐻 are respectively called
the body and head of 𝑔, and we write 𝐵(𝑔) and 𝐻(𝑔) to denote them.

Example 3. 𝑔 : {?𝑋 ⊑ Animal} → {?𝑋 ⊑ ∀hasChild.?𝑋} is a generator, with a
single variable ?𝑋.

Next, we define the semantics for generators and sets of generators based on
entailment to ensure that generators behave independent of the syntactic form
of an ontology. In this choice we diverge from the work done on OTTR [20], as
OTTR template semantics is defined syntactically.

Definition 2. Let 𝑔 : 𝑇𝐵(𝑉𝐵) → 𝑇𝐻(𝑉𝐻) be a generator. A theory 𝒪 satisfies 𝑔
wrt. ℒ if, for every ℒ-substitution 𝜎 such that 𝒪 |= 𝑇𝐵𝜎, we have 𝒪 |= 𝑇𝐻𝜎.

Example 4. Consider the generator 𝑔 from Example 3, and let ℒ be the lan-
guage of all concept names. The theory 𝒪1 = {Turtle ⊑ Mammal,Mammal ⊑
Animal,Turtle ⊑ ∀hasChild.Turtle,Mammal ⊑ ∀hasChild.Mammal} satisfies 𝑔 wrt.
ℒ, while the theory 𝒪2 = {Turtle ⊑ Mammal,Mammal ⊑ Animal} does not.

A set 𝐺 of generators is called a GBox. Furthermore, we define the set 𝐵(𝐺)
(resp. 𝐻(𝐺)) as the set of all bodies (resp. heads) occurring in 𝐺, i.e., they are
sets of ontologies.

Definition 3. Let 𝐺 be a GBox, 𝒪 an ontology, and ℒ a language. The expansion
of 𝒪 and 𝐺 in ℒ, written Exp(𝐺,𝒪,ℒ), is the smallest set of theories 𝒪′ such that

(1) 𝒪′ |= 𝒪,
(2) 𝒪′ satisfies every 𝑔 ∈ 𝐺 w.r.t. ℒ, and
(3) 𝒪′ is entailment-minimal, i.e. there is no 𝒪′′ strictly weaker than 𝒪′ satisfying

(1) and (2).

We call the theories in Exp(𝐺,𝒪,ℒ) expansions. This definition corresponds to
the model-theoretic Datalog semantics, with consequence rather than set inclusion.
Since axioms can be rewritten to be subset-incomparable, entailment-minimality
is used rather than subset minimality. For example, consider {𝐴 ⊑ 𝐵,𝐵 ⊑ 𝐶}
and {𝐴 ⊑ 𝐶}: the second one is not a subset of the first one, but weaker than it.

Example 5. Recall the generator 𝑔 from Example 3, and let𝐺 be a GBox consisting
of 𝑔 alone. Let 𝒪 = {Turtle ⊑ Mammal,Mammal ⊑ Animal}, and let ℒ be the
set of all concept names. Then {Turtle ⊑ Mammal,Mammal ⊑ Animal,Turtle ⊑
∀hasChild.Turtle,Mammal ⊑ ∀hasChild.Mammal} ∈ Exp(𝐺,𝒪,ℒ).

4 Results

We show that the semantics defined in the previous section coincides with a
fixpoint-based one, investigate the role played by the language ℒ, and investigate
generators with negated templates.

Theorem 1. For every 𝐺, 𝒪, and ℒ, we have that any two 𝒪1,𝒪2 ∈ Exp(𝐺,𝒪,ℒ)
are logically equivalent.

Hence applying a GBox 𝐺 to an ontology 𝒪 results in a theory that is unique
modulo equivalence, but not necessary finite. As a consequence, we can treat
Exp(𝐺,𝒪,ℒ) as a single theory when convenient.

Our definition of Exp(𝐺,𝒪,ℒ) is strictly semantic, i.e., does not tell us how to
identify any 𝒪′ ∈ Exp(𝐺,𝒪,ℒ). In order to do that, we define a 1-step expansion.

Definition 4. The 1-step expansion of 𝒪 and 𝐺 in ℒ, written 1Exp(𝐺,𝒪,ℒ), is
defined as follows:

1Exp(𝐺,𝒪,ℒ) = 𝒪 ∪
⋃︁

𝑇𝐵→𝑇𝐻∈𝐺

{𝑇𝐻𝜎 | 𝜎 ∈ eval(𝑇𝐵 ,𝒪,ℒ)}.

In other words, we add to 𝒪 all instantiated heads of all generators applicable in
𝒪. Of course, this extension may result in other generators with other substitutions
becoming applicable, and so on recursively.

Lemma 1. If 𝒪1 ⊆ 𝒪2, then 1Exp(𝐺,𝒪1,ℒ) ⊆ 1Exp(𝐺,𝒪2,ℒ).

Definition 5. The 𝑛-step expansion of 𝒪 and 𝐺 in ℒ, written 1Exp𝑛(𝐺,𝒪,ℒ),
is defined as follows:

1Exp𝑛(𝐺,𝒪,ℒ) = 1Exp(. . . 1Exp(⏟ ⏞
𝑛times

𝐺,𝒪,ℒ) . . .).

We use 1Exp*(𝐺,𝒪,ℒ) to denote the least fixpoint of 1Exp(𝐺,𝒪,ℒ).

Theorem 2. For finite ℒ, the least fixpoint 1Exp*(𝐺,𝒪,ℒ) exists and belongs to
Exp(𝐺,𝒪,ℒ).

In other words, our fully semantic definition of Exp(𝐺,𝒪,ℒ) coincides with
the operational semantics based on the fixpoint computation.

Size of the fixpoint For a generator 𝑔 with variables 𝑉 , there are at most |ℒ||𝑉 |

different ℒ-substitutions. The size of the fixpoint is therefore bounded by |𝐺|×|ℒ|𝑛,
where 𝑛 is the maximum number of variables in any 𝑔 ∈ 𝐺. In the worst case
we need to perform entailment checks for all of them, adding one instantiation
at a time to 𝒪. Hence determining 1Exp*(𝐺,𝒪,ℒ) involves up to (|𝐺| × |ℒ|𝑛)2
entailment checks. For finite ℒ and provided we have a fixed upper bound for 𝑛,
determining 1Exp*(𝐺,𝒪,ℒ) involves a polynomial number of entailment tests
and results in a 1Exp*(𝐺,𝒪,ℒ) whose size is polynomial in the size of 𝐺 and ℒ .

Finite vs infinite L The next examples illustrate the difficulties an infinite
language ℒ can cause. The first example shows how an infinite ℒ can lead to
infinite expansions.

Example 6. Consider the ontology 𝒪 = {A ⊑ ∃R.B}, the generator 𝑔 : {?𝑋 ⊑
∃R.?𝑌 } → {?𝑋 ⊑ ∃R.∃R.?𝑌 }, and ℒ the set of all ℰℒ-concept expressions. Clearly,
1Exp*(𝐺,𝒪,ℒ) is infinite, and so is each expansion in Exp(𝐺,𝒪,ℒ).

The next example shows that this does not necessarily happen.

Example 7. Consider the ontology 𝒪 = {∃R.A ⊑ A}, the generator 𝑔 : {∃R.?𝑋 ⊑
?𝑋} → {∃R.∃R.?𝑋 ⊑ ∃R.?𝑋}, and ℒ the set of all ℰℒ-concept expressions.
Clearly, 1Exp*(𝐺,𝒪,ℒ) is infinite, but there is a finite (and equivalent) ontology
to this fixpoint in Exp(𝐺,𝒪,ℒ), namely 𝒪 itself.

While having to explicitly specify ℒ may seem to be cumbersome, it is not
very restrictive. In fact, it is easy to show that, for finite languages, generators
can be rewritten to account for concepts, roles, or individuals that are missing
from a given language by grounding the generators.

Definition 6. Let 𝑔 : 𝑇𝐵 → 𝑇𝐻 be a generator, and ℒ a finite language. The ℒ-
grounding of 𝑔 is the finite set of generators {𝑇𝐵𝜎 → 𝑇𝐻𝜎 | 𝜎 an ℒ-substitution}.

Using ℒ-grounding, we can compensate for a smaller language ℒ1 (ℒ2 by
ℒ2 ∖ ℒ1-grounding generators, thereby proving the following theorem.

Theorem 3. Let ℒ1 ⊆ ℒ2 be finite languages. For every GBox 𝐺 there exists a
Gbox 𝐺′ such that, for every 𝒪,𝒪1,𝒪2 we have that 𝒪1 ∈ Exp(𝐺′,𝒪,ℒ1) and 𝒪2 ∈
Exp(𝐺,𝒪,ℒ2) implies 𝒪1 ≡ 𝒪2.

Of course, grounding all the generators is a very wasteful way of accounting for
a less expressive language. A more clever rewriting algorithm should be possible:
for example, if we allow binary conjunctions of names in ℒ2 but not in ℒ1, we
can add copies of each generator where we replace variables ?𝑋 with ?𝑋1⊓?𝑋2.

4.1 GBox containment and equivalence

Having defined GBoxes, we now define a suitable notion for containment and
equivalence of GBoxes.

Definition 7 (ℒ-containment). Let 𝐺1 and 𝐺2 be GBoxes, and ℒ a language.
𝐺1 is ℒ-contained in 𝐺2 (written 𝐺1 ⪯ℒ 𝐺2) if Exp(𝐺2,𝒪,ℒ) |= Exp(𝐺1,𝒪,ℒ)
for every ontology 𝒪.

The following lemma relating the entailment of theories and the entailment of
expansions holds as a direct consequence of the monotonicty of description logics.

Lemma 2. Let 𝐺 be a GBox, 𝑇, 𝑇 ′ two theories and ℒ a language. If 𝑇 |= 𝑇 ′

then Exp(𝐺,𝑇,ℒ) |= Exp(𝐺,𝑇 ′,ℒ).

Furthermore, the following is a rather straightforward consequence of the
definition of the semantics of generators.

Lemma 3. Let 𝑇 be a theory, 𝐺 a GBox, 𝒪 an ontology, and ℒ a language. If
𝑇 |= 𝒪 and 𝑇 satisfies every generator 𝑔 ∈ 𝐺 then 𝑇 |= Exp(𝐺,𝒪,ℒ).

Using Lemmas 2 and 3, ℒ-containment can be shown to be decidable, and in
fact efficiently so, using a standard freeze technique from database theory.

Theorem 4. Let 𝐺1 and 𝐺2 be GBoxes, and ℒ a language. 𝐺1 is ℒ-contained
in 𝐺2 if and only if Exp(𝐺2, 𝑇𝐵 ,ℒ) |= 𝑇𝐻 for every 𝑇𝐵 → 𝑇𝐻 ∈ 𝐺1.

It follows that ℒ-containment is decidable for arbitrary ℒ (even infinite),
since we can restrict ourselves to the language of all subexpressions of 𝐵(𝐺1).
Furthermore, the complexity is the same as that of computing an expansion of a
GBox.

4.2 GBoxes with negation

In this section we introduce negation-as-failure to GBoxes. We extend the
definition of the expansions defined in Section 3, define suitable notions of semi-
positive GBoxes and semantics for stratified GBoxes, and prove the corresponding
uniqueness results.

To do so, a generator is now a rule of the form 𝑇+
𝐵 (𝑉1),not𝑇−

𝐵 (𝑉2) → 𝑇𝐻(𝑉3),
for 𝑇+

𝐵 (𝑉1), 𝑇
−
𝐵 (𝑉2), 𝑇𝐻(𝑉3) templates with 𝑉3 ⊆ 𝑉1∪𝑉2. For the sake of notational

simplicity, we restrict ourselves here to generators with at most one template in
the negative body. It is worth noting, however, that all definitions and results in
this section are immediately transferable to generators with multiple templates in
the negative bodies (multiple templates in the positive body can of course be
simply merged into a single template).

The following definition, together with Definition 3 of Exp(𝐺,𝒪,ℒ), provides
a minimal model semantics for GBoxes with negation:

Definition 8. A theory 𝒪 satisfies a generator 𝑔 : 𝑇+
𝐵 (𝑉1),not𝑇−

𝐵 (𝑉2) → 𝑇𝐻(𝑉3)
wrt. ℒ if, for every 𝜎 ∈ eval(𝑇+

𝐵 ,𝒪,ℒ) ∖ eval(𝑇−
𝐵 ,𝒪,ℒ) we have 𝒪 |= 𝑇𝐻𝜎.

Unsurprisingly, adding negation results in the loss of uniqueness of the
expansion Exp(𝐺,𝒪,ℒ) (cf. Theorem 1), as illustrated by the following example.

Example 8. Let ℒ = {A,B,C, s}, 𝒪 = {A(s)} and 𝐺 = {A(?𝑋),notB(?𝑋) →
C(?𝑋)}. Then Exp(𝐺,𝒪,ℒ) contains the two non-equivalent expansions {A(s),B(s)}
and {A(s),C(s)}.

Next, we extend the definition of the 1-step expansion operator from Definition 4
to support negation. However, as Example 9 will show, a fixpoint does not always
correspond to an expansion in Exp(𝐺,𝒪,ℒ).

Definition 9. The 1-step expansion of 𝒪 and 𝐺 in ℒ of a GBox 𝐺 with negation,
written 1Exp−(𝐺,𝒪,ℒ), is defined as follows:

1Exp−(𝐺,𝒪,ℒ) = 𝒪∪
⋃︁

𝑇+
𝐵 ,not𝑇−

𝐵 →𝑇𝐻∈𝐺

{𝑇𝐻𝜎 | 𝜎 ∈ eval(𝑇+
𝐵 ,𝒪,ℒ)∖eval(𝑇−

𝐵 ,𝒪,ℒ)}.

Example 9. Consider the ontology𝒪 = {Single ⊑ Person,Spouse ⊑ Person,Single ⊑
¬Spouse,Person(Maggy)} and the following GBox 𝐺

𝐺 = { {Person(?𝑋)},not{Single(?𝑋)} → {Spouse(?𝑋)},
{Person(?𝑋)},not{Spouse(?𝑋)} → {Single(?𝑋)}}

The expansion Exp(𝐺,𝒪,ℒ) contains the two non-equivalent ontologies 𝒪 ∪
{Single(Maggy)} and 𝒪 ∪ {Spouse(Maggy)}. Furthermore, the iterated fixpoint
(1Exp−)*(𝐺,𝒪,ℒ) is 𝒪 ∪ {Single(Maggy),Spouse(Maggy)}; this is, however, not
an ontology in Exp(𝐺,𝒪,ℒ) as it is not entailment-minimal.

A natural question arising is whether we can identify or even characterize
GBoxes with negation that have a unique expansion. To this end, we define
suitable notions of semi-positive GBoxes and stratified negation. These are based
on the notion of multiple templates affecting others, as formalized next.

Definition 10. Let ℒ be a language, 𝑆 = {𝑆1, . . . , 𝑆𝑘} a set of templates, 𝒪 an
ontology, and 𝑇 a template. We say that 𝑆 activates 𝑇 with respect to 𝒪 and
ℒ if there exist ℒ-substitutions 𝜎1, . . . 𝜎𝑘 such that 𝒪 ∪

⋃︀
𝑆𝑖𝜎𝑖 |= 𝑇𝜎 for some

ℒ-substitution 𝜎. For brevity we omit 𝒪 and ℒ if they are clear from the context.

In contrast to standard Datalog with negation, the entailment of a template in
the body of a generator is not solely dependent on a single generator with a
corresponding head firing. Instead, multiple generators might need to fire and
interact with 𝒪 in order to entail a body template. Hence we use the set 𝑆 of
templates in the definition of activation.

Example 10. Consider the GBox containing generators 𝑔1 : 𝑇1(?𝑋) → {?𝑋 ⊑
A}, 𝑔2 : 𝑇2(?𝑌) → {?𝑌 ⊑ B} and 𝑔3 : not{?𝑍 ⊑ A ⊓ B} → 𝑇3(?𝑍). Then 𝐻(𝑔1)
and 𝐻(𝑔2) activate {?𝑍 ⊑ A ⊓ B} with respect to any 𝒪 and ℒ, indicating that
the firing of 𝑔3 depends on the combined firing of 𝑔1 and 𝑔2.

Activation can then be used to define a notion of semi-positive GBoxes, which
is analogous to semi-positive Datalog programs.

Definition 11 (Semi-positive GBoxes). Let 𝐺 be a GBox with negation, ℒ
a language, and 𝒪 an ontology. 𝐺 is called semi-positive w.r.t. 𝒪 and ℒ if no
negative body template 𝑇−

𝐵 of a generator 𝑔 ∈ 𝐺 is activated by 𝐻(𝐺).

As seen in example 8, even semi-positive GBoxes result in multiple non-
equivalent expansions. In that example, neither the ontology 𝒪 nor any possible
firing of 𝐺 can yield 𝐵(𝑠). As such, we wish to restrict the theories in Exp(𝐺,𝒪,ℒ)
to containing only facts derivable from 𝒪 and 𝐺. To that end, the following
definition suitably restricts the entailment of expansions.

Definition 12. Let 𝐺 be a GBox, 𝒪 an ontology, and ℒ a finite language. We
say that an expansion 𝒪′ ∈ Exp(𝐺,𝒪,ℒ) is justifiable w.r.t. (𝐺,𝒪,ℒ) if the
following holds: if 𝒪′ |= 𝑇𝜎 for some template 𝑇 and substitution 𝜎, then 𝒪 |= 𝑇𝜎
or 𝐻(𝐺) activates 𝑇𝜎 with respect to 𝒪 and ℒ. We write simply 𝒪′ is justifiable
when 𝐺, 𝒪, and ℒ are clear from the context.

Using this notion, we can show that, indeed,a GBox being semi-positive implies
that its semantics is unambiguous when restricted to justifiable expansions.

Theorem 5. Let 𝐺 be a semi-positive GBox, 𝒪 an ontology, and ℒ a finite
language. Then the fixpoint (1Exp−)*(𝐺,𝒪,ℒ) exists, is the unique fixpoint of
1Exp−, and is contained in Exp(𝐺,𝒪,ℒ).

The following is a direct corollary of the proof of Theorem 5.

Corollary 1. Let 𝐺 be a semi-positive GBox, 𝒪 and ontology and ℒ a finite
language. All justifiable ontologies in Exp(𝐺,𝒪,ℒ) are logically equivalent.

For a GBox to be semi-positive is a very strong requirement. Next, we introduce
the notion of a stratified GBox: this does not ensure that all expansions are
equivalent, but it ensures that we can determine one of its expansions by expanding
strata in the right order. Again, we use 𝐻(𝐺) to denote the set of templates
in heads of generators in 𝐺, and 𝐵(𝐺) for the set of templates in (positive or
negative) bodies of generators in 𝐺.

Definition 13 (Stratification). Let ℒ be a language and 𝒪 an ontology. A
GBox 𝐺 is stratifiable w.r.t. 𝒪 and ℒ if there exists a function 𝑣 : 𝐻(𝐺)∪𝐵(𝐺) →
N such that, for every generator 𝑇+

𝐵 ,not𝑇−
𝐵 → 𝑇𝐻 ∈ 𝐺 the following holds:

1. 𝑣(𝑇𝐻) ≥ 𝑣(𝑇+
𝐵),

2. 𝑣(𝑇𝐻) > 𝑣(𝑇−
𝐵),

3. for every ⊆-minimal 𝑆1 ⊆ 𝐻(𝐺) that activates 𝑇+
𝐵 , 𝑣(𝑇+

𝐵) ≥ max
𝑆′∈𝑆1

𝑣(𝑆′),

4. for every ⊆-minimal 𝑆2 ⊆ 𝐻(𝐺) that activates 𝑇−
𝐵 , 𝑣(𝑇−

𝐵) > max
𝑆′∈𝑆2

𝑣(𝑆′).

The first two conditions in the previous definition are analogous to stratified
Datalog, which intuitively states that a body literal must be evaluated (strictly, in
the case of negative literals) before head literals. The second two conditions tailor
the stratification to generators: generators allow for more interaction amongst
their components. As opposed to Datalog, multiple heads combined might be
needed to entail a body template. Thus, a body template must be defined in a
higher stratum than any possible set of templates that could entail it.

Following this definition, a stratification 𝑣 of a GBox 𝐺 w.r.t. an ontology 𝒪
gives rise to a partition𝐺1

𝑣, . . . 𝐺
𝑘
𝑣 of𝐺, where each generator 𝑔 : 𝑇+

𝐵 ,not𝑇−
𝐵 → 𝑇𝐻

is in the stratum 𝐺
𝑣(𝑇𝐻)
𝑣 .

For a GBox 𝐺, an ontology 𝒪 and a language ℒ, we can define the precedence
graph 𝒢𝐺,𝒪,ℒ as follows: nodes are the templates occuring in 𝐺 and

1. if 𝑇+
𝐵 ,not𝑇−

𝐵 → 𝑇𝐻 is in 𝐺, then 𝒢𝐺,𝒪,ℒ contains the positive edge (𝑇+
𝐵 , 𝑇𝐻)

and the negative edge (𝑇−
𝐵 , 𝑇𝐻);

2. for a template 𝑇 that occurs in the positive (resp. negative) body of a generator
and any ⊆-minimal set {𝑆1, . . . , 𝑆𝑘} ⊆ 𝐻(𝐺) that activates 𝑇 w.r.t. 𝒪 and
ℒ, 𝒢𝐺,𝒪,ℒ contains the positive (resp. negative) edges (𝑆𝑖, 𝑇) for 1 ≤ 𝑖 ≤ 𝑘.

We then get the following classification of stratified GBoxes, the proof of which is
entirely analogous to the Datalog case.

Proposition 1. Let ℒ be a language and 𝒪 an ontology. A GBox 𝐺 is stratifiable
w.r.t. 𝒪 and ℒ iff its precedence graph 𝒢𝐺,𝒪,ℒ has no cycle with a negative edge.

Given such a stratification, we can thus define a semantics for stratified negation.

Definition 14 (Stratified semantics). Let 𝒪 be an ontology, ℒ a language,
and 𝐺 a GBox stratifiable w.r.t. 𝒪 and ℒ. For a stratification 𝑣 of 𝐺 and the
induced partition 𝐺1

𝑣, . . . , 𝐺
𝑘
𝑣 of 𝐺, we define 𝒪strat

𝑣 (𝐺,𝒪,ℒ) as follows:

1. 𝒪1
𝑣 = 𝒪,

2. 𝒪𝑗
𝑣 = 1Exp*(𝐺𝑗−1, 𝑂𝑗−1,ℒ) for 1 < 𝑗 ≤ 𝑘,

3. 𝒪strat
𝑣 (𝐺,𝒪,ℒ) = 𝑂𝑘

𝑣 .

Theorem 6. Let 𝒪 be an ontology, ℒ a finite language, and 𝐺 be a GBox
stratifiable w.r.t. 𝒪 and ℒ. Then 𝒪strat

𝑣 (𝐺,𝒪,ℒ) exists, is independent of the
choice of 𝑣, and contained in Exp(𝐺,𝒪,ℒ).

5 Related work

When combining rules with DL ontologies, the focus has thus far primarily
been on (1) encoding ontology axioms in rules for efficient query answering and
(2) expanding the expressivity of ontologies using rules. In contrast, GBoxes
are designed as a tool for ontology specification by describing instantiation
dependencies between templates.

Datalog± [3] falls into the first category: it provides a formalism for unifying
ontologies and relational structures. Datalog± captures ontology axioms as rules,
and these cannot “add” new axioms.

dl-programs [6] and DL-safe rules [19] fall into the second category: dl-
programs add nonmonotonic reasoning by means of stable model semantics,
whereas DL-safe rules allow for axiom-like rules not expressible in standard DL.
However, none of these formalisms adds new TBox axioms to the ontology.

Tawny-OWL4 and the Ontology Pre-Processing Language5 (OPPL)
are formalism for manipulating OWL ontologies [5,15]. While OPPL was designed
to capture patterns and regularities in ontologies, Tawny-OWL is a more general
programmatic environment for authoring ontologies that includes powerful support
for ontology design patterns. It is part of future work to see whether GBoxes can
be faithfully implemented in Tawny-OWL (OPPL lacks the recursion required).

Another question is whether metamodeling in DL, in particular the encoding
scheme from [12] can be faithfully captured by (an extension of) GBoxes: this
would require replacing axioms in 𝒪 with others which is currently not supported.

Ontology Design Patterns (ODPs) have been proposed to capture best
practices for developing ontologies [2, 9], inspired by Software Design Patterns.
While some ODPs are easily expressible in GBoxes, it is part of ongoing work to
investigate extensions required to capture others.

Reasonable Ontology Templates6 (OTTR) [8,20] provide a framework
for macros in OWL ontologies, based on the notion of templates. In contrast to
GBoxes, “matching” of templates is defined syntacically and non-recursively, but
they can be named and composed to give rise to more complex templates.

The Generalized Distributed Ontology, Modelling and Specification
Language (GDOL) [14] is a formalism facilitating the template-based construc-
tion of ontologies from a wide range of logics. In addition to concepts, roles, and
individuals, parameters may be ontologies which act as preconditions for template
instantiation: for a given substitution, the resulting parameter ontology must be
satisfiable in order to instantiate the template. Thus these preconditions serve
only as a means to restrict the set of allowed instantiations of a template, whereas
in GBoxes, an ontology triggers such substitutions.

4 https://github.com/phillord/tawny-owl
5 http://oppl2.sourceforge.net/index.html
6 http://ottr.xyz

https://github.com/phillord/tawny-owl
http://oppl2.sourceforge.net/index.html
http://ottr.xyz

6 Future work

We have presented first results about a template-based language for capturing
recurring ontology patterns and using these to specify larger ontologies. Here, we
list some areas that we would like to investigate in the future.

Finite representability In general, the semantics of GBoxes is such that the
expansion of a GBox and ontology can be infinite if the substitution range given
by ℒ is infinite. A natural question arising is whether/which other mechanisms
can ensure that some expansion is finite, and how can we compute such a finite
expansion? Furthermore, given 𝐺,𝒪,ℒ, when can we decide whether an ontology
in Exp(𝐺,𝒪,ℒ) is finite?

Controlling substitutions So far, we have only considered entailment for generators
when determining matching substitutions. Consider the ontology 𝒪 = {A ⊑
B,B ⊑ C} and the template ?𝑋 ⊑ 𝐶. The resulting substitutions include concepts
A and B, but also a multitude of possibly unwanted, redundant concepts, e.g.,
{A ⊓ A,A ⊓ B, . . .}. Hence restricting substitutions to “reasonable” or possible
“parametrizable” (e.g., maximally general) ones is part of future work.

Entailment problems for ontologies with Gboxes The expansion of a Gbox over an
ontology is itself an ontology and can be used as such for standard reasoning
tasks. A question of interest is whether/how reasoning on the input ontology and
GBox directly, without computing an expansion, can improve reasoning efficiency.

Furthermore, there are plenty of reasoning tasks about GBoxes which naturally
reduce to reasoning tasks over ontologies. For example, checking whether a single
generator 𝑔 : 𝑇𝐵 → 𝑇𝐻 always leads to inconsistency is equivalent to checking
whether 𝑇𝐵 ∪ 𝑇𝐻 is inconsistent. This generalizes to similar questions over entire
GBoxes: To check whether there exists an ontology 𝒪 such that every generator 𝑔
in a GBox 𝐺 fires, it suffices to check that the union of the generators’ bodies is
consistent.

However, there are also global properties of Gboxes that do not reduce to
individual templates. For example, do two GBoxes 𝐺1 and 𝐺2 specify equivalent
ontologies? While Section 4.1 contains some results about such problems, we
believe there is more to do here.

Extensions to generators Another area of future work is motivated by our
preliminary analysis of logical ontology design patterns [11]. We found that a
number of rather straightforward, seemingly useful such patterns require some form
of ellipses and/or maximality. Consider, for example, the role closure pattern on the
role hasTopping: if𝒪 entails thatMyPizza ⊑ ∃hasTopping.𝑋1⊓. . . ∃hasTopping.𝑋𝑛

and 𝑛 is maximal for pairwise incomparable𝑋𝑖, then we would like to automatically
add MyPizza ⊑ ∀hasTopping.(𝑋1 ⊔ . . . ⊔𝑋𝑛). Extending generators to capture
some form of ellipses or unknown number of variables and maximality conditions
on substitutions for variables will be part of future work.

For GBoxes to be indeed intention revealing, we will also support named
generators and named sets of axioms in the body or the head of generators, as in
OTTR [20].

References
1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

2. Eva Blomqvist and Kurt Sandkuhl. Patterns in ontology engineering: Classification
of ontology patterns. In ICEIS (3), pages 413–416, 2005.

3. Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris. Datalog+/-
: A family of languages for ontology querying. In Oege de Moor, Georg Gottlob,
Tim Furche, and Andrew Jon Sellers, editors, Datalog Reloaded - 1st International
Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers,
volume 6702 of Lecture Notes in Computer Science, pages 351–368. Springer, 2011.

4. Peter Clark. Knowledge patterns. In EKAW, volume 5268 of Lecture Notes in
Computer Science, pages 1–3. Springer, 2008.

5. Mikel Egaña, Robert Stevens, and Erick Antezana. Transforming the axiomisation
of ontologies: The ontology pre-processor language. In OWLED (Spring), volume
496 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

6. Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and
Hans Tompits. Combining answer set programming with description logics for the
semantic web. Artificial Intelligence, 172(12):1495 – 1539, 2008.

7. Henrik Forssell, Christian Kindermann, Daniel P. Lupp, Uli Sattler, and Evgenij
Thorstensen. Generating ontologies from templates: A rule-based approach for cap-
turing regularity. Technical report, 2018. https://arxiv.org/abs/1809.10436v1.

8. Henrik Forssell, Daniel P. Lupp, Martin G. Skjæveland, and Evgenij Thorstensen.
Reasonable Macros for Ontology Construction and Maintenance. In DL Workshop,
2017.

9. Aldo Gangemi. Ontology design patterns for semantic web content. In International
Semantic Web Conference, volume 3729 of Lecture Notes in Computer Science,
pages 262–276. Springer, 2005.

10. Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro Oltramari. Under-
standing top-level ontological distinctions. In OIS@IJCAI, volume 47 of CEUR
Workshop Proceedings. CEUR-WS.org, 2001.

11. Aldo Gangemi and Valentina Presutti. Ontology design patterns. In Handbook on
ontologies, pages 221–243. Springer, 2009.

12. Birte Glimm, Sebastian Rudolph, and Johanna Völker. Integrated metamodeling
and diagnosis in OWL 2. In International Semantic Web Conference (1), volume
6496 of Lecture Notes in Computer Science, pages 257–272. Springer, 2010.

13. Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi, and Valentina
Presutti, editors. Ontology Engineering with Ontology Design Patterns - Foundations
and Applications, volume 25 of Studies on the Semantic Web. IOS Press, 2016.

14. Bernd Krieg-Brückner and Till Mossakowski. Generic ontologies and generic ontology
design patterns. In WOP@ISWC, 2017.

15. Phillip Lord. The semantic web takes wing: Programming ontologies with tawny-owl.
In OWLED, volume 1080 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

16. Eleni Mikroyannidi, Luigi Iannone, Robert Stevens, and Alan L. Rector. Inspecting
regularities in ontology design using clustering. In International Semantic Web
Conference (1), volume 7031 of Lecture Notes in Computer Science, pages 438–453.
Springer, 2011.

17. Eleni Mikroyannidi, Nor Azlinayati Abdul Manaf, Luigi Iannone, and Robert Stevens.
Analysing syntactic regularities in ontologies. In OWLED, volume 849 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

https://arxiv.org/abs/1809.10436v1

18. Eleni Mikroyannidi, Manuel Quesada-Martínez, Dmitry Tsarkov, Jesualdo Tomás
Fernández-Breis, Robert Stevens, and Ignazio Palmisano. A quality assurance
workflow for ontologies based on semantic regularities. In EKAW, volume 8876 of
Lecture Notes in Computer Science, pages 288–303. Springer, 2014.

19. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules.
Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41 – 60,
2005. Rules Systems.

20. Martin G. Skjæveland, Daniel P. Lupp, Leif Harald Karlsen, and Henrik Forssell.
Practical ontology pattern instantiation, discovery, and maintanence with reasonable
ontology templates. Accepted for ISWC 2018 research track, 2018.

	Generating Ontologies from Templates: A Rule-Based Approach for Capturing Regularity

