
IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

The ontology-driven approach to support the requirements

engineering process in Scrum framework

M Sh Murtazina
1
 and T V Avdeenko

1

1Novosibirsk State Technical University, Karla Marks ave 20, Novosibirsk, Russia, 630073

Abstract. The paper presents an approach to the Support of the requirements engineering

process in the field of software development process by applying OWL ontology. A brief

overview of the capabilities of using ontologies for intellectual support of the process of

requirements engineering is given. The main features of requirements engineering for Scrum

project management of software development are analyzed.The quality assessment criteria of

user stories are explored. The developed ontology accumulates knowledge about the quality
assessment criteria of user stories, about requirements artifacts, types of requirements, about

elements of Scrum framework. The ontology includes axioms that determine the quality of user

story expression and the quality properties of the requirements.Also ontology includes axioms

determining the priority and risk of user stories.The ontology is implemented in the Protégé

environment.

1. Introduction
The International Standard ISO/IEC/IEEE 29148-2011 Systems and software engineering – life cycle

processes – requirements engineeringdetermines requirements engineering as “interdisciplinary

function that mediates between the domains of the acquirer and supplier to establish and maintain the
requirements to be met by the system, software or service of interest” [1, p.8]. A complex system of

requirements is developed and maintained in the process of requirements engineering. This system of

requirements is built on the basis of needs, expectations, constraints and interactions of the

stakeholders. Under the stakeholders the Standard ISO/IEC/IEEE 29148-2011 primarily implies users
and customers.The circle of stakeholders also includes software developers and suppliers.

Requirements engineering plays a key role in ensuring the success of the software development.

Eliciting and managing requirements is an extremely difficult task for any methodology of software
development project management. Project management methodologies are usually subdivided into

rigid and agile approaches. A rigid approach to the management of the software development project

is characterized by detailed planning. Requirements engineering here is a separate stage that precedes
all other stages of the software building. In case of agile methodologies planning is performed only for

the current iteration. Requirements engineering here is an iterative process where the requirements

constantly evolve. Changeability of requirements is a serious problem for software development

projects. In this regard, rigid methodologies are much inferior to agile ones. With an agile approach,
precious time is not wasted on trying to anticipate all possible requirements and document them in

detail. A typical form of agile high-level requirements in agile methodologies is feature requests and

user stories. They are formulated as one or more sentences which illustrate the user's goals that a

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

software function will satisfy. The details are clarified when the requirements are implemented within
the regular iteration. This happens in the process of active interaction with the stakeholders.

Incompleteness that is inherent to requirements specification in agile methodologies is compensated

by extensive informal communication with stakeholders. Another problem area is to ensure the
consistency of the requirements coming from different stakeholders and also to reveal the same

requirements presented by different stakeholders with different terminology.

Scrum is one of the most popular and well-developed agile methodologies. According to the
Internet survey of Agile Survey, only in 2017 this methodology was used by 56% of the respondents'

organizations[2]. Despite the immense popularity of agile methodologies in general, and the Scrum

methodology in particular, development of approaches to assessing the quality of specifications for

agile requirements is still relevant. Many existing investigations use the INVEST model proposed in
2003 by B. Wake [3]. New approaches to assessing the quality of requirement specifications for agile

methodologies began to appear in the mid-2010s. Examples of new approaches are Quality User Story

Framework [4] and Agile Requirements Quality Framework [5].
The trend of recent years in the field of supporting the process of requirements engineering and

assessment of the software requirements specification quality is knowledge-based systems built on the

ontologies. The ontological approach is promising for overcoming some of the deficiencies in

requirements engineering [6]. However the existing ontology-base solutions are more focused on
assessing the requirements specifications in accordance with international standards and do not take

into account the specifics of Scrum and the evaluation of the quality of user stories.

In the present paper we propose an ontology-driven approach to support the requirements
engineering process in Scrum framework. The paper is organized as follows. In Section II the

literature review is made. Section III analyzes the features of the requirements engine in Scrum.

Section IVdiscusses the issues of assessing the quality of user stories.Section V proposes an
ontological model for supporting the process of requirements engineering in Scrum. In section VI

conclusionsabout prospects for the proposed approach are made.

2. Background

In the early 2000s K. K. Breitman et al. considered the ontology development process as a subprocess
of the process of requirements engineering [7]. In [8] it was proposed to use the domain ontology as an

infrastructure for refinement of software requirements. G. Dobson et al. pointed out that ontologies are

useful for the representation and interconnection of many types of knowledge. Requirements
engineering involves the extraction of knowledge from a variety of sources. Ontologies in

requirements engineering can be used for representation of the requirements model itself, as well as

acquisition structures for domain knowledge, the application domain and the environment [9].
One of the first works, in full demonstrating the possibility of the ontologies for the Requirements

engineering, is the work of M. Kossmann et al. in which semi-automated methodology OntoREM

(Ontology-driven Requirements Engineering Methodology) was developed [10]. Methodology

OntoREM includes processes, methods and tools. The aim of this methodology is to create
requirements specifications for systems in less time and at lower costs while improving the quality of

such specifications. Methodology OntoREM was applied by its authors in the company Airbus to

develop aircraft operability requirements. Using OntoREM resulted in significant savings of money
and time [11]. The structure of the OntoREM process developed by M. Kossmann et al. is shown in

Figure 1.

To provide the OntoREM process, Kossmann M. et al. used the MindManager Tool Environment,

the OntoRAT Tool Environment, the Protégé Tool Environment, and the DOORS Tool Environment.
First, the domain ontology intheformofaMindmap is developed using in MindManager. This tool is

convenient for quick visualization of the domain ontology and allows saving the result in the OWL

format. The Protégé environment is used to manage the ontologies obtained with MindManager. The
OntoRAT tool (Ontology-driven Requirements Analysis Tool) is used to analyze requirements by

status, purpose, soft targets (i.e. targets without clear criteria) and traceability. The OntoRAT tool was

developed during the OntoREM project. The IBM Rational DOORS software package is used for
requirements management. The OntoREM project has, to a large extent, led to an active analysis of the

Data Science
M Sh Murtazina and T V Avdeenko

288

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

possibilities of using of ontologies in many subject domains including the field of software
development.

Figure 1. OntoREMprocess [10].

In paper [6] an approach to automating the process for quality evaluation of requirements is

presented. В K. Siegemund has distinguished two types of support for the requirements engineer: “(1)

support for the specification of the requirements knowledge and (2) validation and error elimination

support” [6, p.79]. Support for requirement engineering is provided by two ontologies: “Guidance
Ontology” and “Requirements Ontology”. The GORE (Goal-Oriented Requirements Engineering)

method is used in the approach developed by K. Siegemund. А set of optional and mandatory tasks

based on validation rules and their pre- and postconditions are contained in the Guidance Ontology.
The basis of the Requirements Ontology is the IEEE 830-1998 standard. The Requirements Ontology

accumulates knowledge about the requirements for a particular project

The approach based on frame ontology is proposed in [12-14]. Application of the ontology allows

building a harmonized model of requirements for software development process. This is designed to
help the analyst to take into account all aspects of the requirements. The theory of the field structure of

speech parts and recommendations of the SWEBOK were applied to construct the model. Templates

of the specification structure were designed in the Protégé environment.
A metamodel is proposed in [15] which is used to reason about the requirements. This model is

implemented as an OWL ontology. The model includes requirements, requirement artifacts and

stakeholders. The requirements are linked by four types of relations: Refines, Requires, Conflicts, and
Contains. These relations allow building rules to reason about requirements traceability, consistency

and completeness.

An ontological approach to improving the requirements engineering in the agile development is

presented in [16]. C. Thamrongchote et al. pointed out that although the templates of user stories are
easy to use, the application of the domain terminology when writing them is a difficult problem. It is

proposed in [16] to accumulate user stories from previous successful projects in the ontology

knowledge base, in order to improve the process of subsequent working with them. The ontology
schema is designed using class and hierarchy relations. Hierarchy relations are used, for example, to

determine which user roles inherit features from other roles. For example, the class "Guest" is a

subclass of the "Customer" class. Accordingly, the set of user stories of the "Guest" should be
implemented for the "Customer". Also ontology establishes synonymous relations. For example, a

synonymous relation exists between the "Guest" and "Visitor" classes. This means that user stories

that mention the roles "Guest" and "Visitor" describe the features for users of the same class. The

words extracted from the user story are distributed in three classes: "Role", "Action" and "Object".
Individuals of the classes "Role" and "Action" are associated with the relation "perform Action" and

individuals of the classes "Action" and "Object" – relation “perform Object”.

The authors of paper [17] propose to use the ontology to predict the effort estimates in the
implementation of user stories. The accuracy of effort estimates depends on the level of analysis of the

software development context and the experience of persons making the evaluation. The approach

Role

Identification

Ontology

Development

Eliciting Validation

Ontology

Management

Requirements

Management
DOORS

Tool Environment

Protégé

Tool Environment

OntoRAT

Tool Environment

MindManager

Tool Environment

Documentation
Analysis and

Negotiation

Data Science
M Sh Murtazina and T V Avdeenko

289

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

developed by M. Adnan et al. Proposes to accumulate unique knowledge of key project participants.
This knowledge is then used to evaluate efforts to implement user stories.

The analysis of scientific publications shows that the questions of designing the ontology-driven

approach to support the requirements engineering process in the Scrum framework are not yet
sufficiently developed. The considered complex ontology-oriented approaches do not take into

account the peculiarities of working with user stories. At the same time, research in the field of

requirements engineering in agile projects focuses on certain aspects of working with user stories and
evaluation of their quality.

3. Requirements engineering in Scrum framework

According to the Guide [18], Scrum is a process framework designed for developing and sustaining

complex products. The core of the Scrum is Sprint, that is a time interval of one month or less, during
which the Scrum team creates a potentially releasable product Increment. The basic elements of the

Scrum framework are depicted in Figure 2. These include the Scrum Team, the Scrum Events and the

Scrum Artifacts.

Figure 2. The basic elements of the Scrum framework.

Requirements engineering in Scrum is an iterative process. The requirements evolve in each Sprint

[19, p.27]. Eliciting the requirements-needs occurs during the Sprint Review. The next stage is a

requirements analysis accepted for execution in the Sprint. From the point of view of the Scrum Team

the requirements should be unambiguous, complete and consistent. Conflicts can be resolved by
prioritizing user stories or overriding incorrectly formulated requirements.

Documenting the requirements helps to analyze and verify the requirements specification.

Although documentation in agile software development methodologies is used in smaller volumes
than in rigid methodologies, requirements documentation is an essential part of the work process.

Allocate the following base forms of requirements records: feature requests and stories. The following

forms of recording the requirements in agile methodologies are allocated: feature request and story.

Feature request is a structured query (with header, description and set of attributes) for new or refined
feature of the software. Story is a high-level requirement formulated as one or more sentences in the

user's everyday or business language so that the developers can give a reasonable estimate of an effort

to implement it. The following types of stories are distinguished by the form of the record:

 userstory;

 technical story / technical user story;

 jobstory.

The most common form to record the requirements when applying the Scrum framework is user

story. According ISO / IEC / IEEE 26515-2011 user story is “simple narrative illustrating the user goals

Data Science
M Sh Murtazina and T V Avdeenko

290

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

that a software function will satisfy” [20, p.3]. In accordance with this standard user story has to include
[20, p.18]:

 role of the user;

 goal that the user achieves;

 value for the customer;

 acceptance criteria that allow to determine that the user story is implemented.

The following recording scheme is usually used in Scrum project for the user story:

As a <type of user X >
I want <some goal Y>

So that <some reason Z>

The last part of the user story should show the user's benefit from using the feature (the reason why
this story is needed by the user). In Scrum, a detailed analysis of user story occurs at the moment of

implementing the feature to which it relates. During the Sprint planning, the user story usually is used

as the basis for a conversation between the Development Team and the Product Owner in order to

clarify the details of the implementation. The acceptance criteria for the user story are determined by
the Development Team during the discussion.

Acceptance criteria are a set of statements that specify both functional and non-functional

requirements. It should be noted that attention is usually focused on functional requirements so many
non-functional requirements may not be taken into account. Acceptance criteria can be written in a

variety of formats. There are two main approaches to the recording of acceptance criteria: rule-

oriented or scenario-oriented ones.Gherkin notation can be used when using a scenario-oriented
approach.

During the Daily Scrum meetings, it is discussed what was done during the last working day and

what difficulties arose. Each member of the Development Team notifies the Team what they are going

to implement for the current day. In a Daily Scrum, the problems found in the requirements for the
software product can be discussed and a strategy for their solution can be worked out.

Sprint Review is an event that takes place at the end of Sprint to inspect the Increment and adapt

the Product Backlog if needed. Validation of the requirements occurs during the Sprint Review.
Requirements management is based on the stakeholder feedback during the Sprint Review. The Sprint

Retrospective is an event when the Scrum Team analyzes the work done and creates a plan for

improvements to be enacted during the next Sprint. These improvements relate to all work processes

including engineering requirements.

4. Quality assessment of user stories

There are many approaches to quality assessment of requirements. The standard ISO/IEC/IEEE

29148:2011 defines quality criteria for the individual requirements and sets of requirements. Each
individual requirement must be necessary, implementation free, unambiguous, consistent, complete,

singular, feasible, traceable, verifiable. The set of requirements must possess the following quality

characteristics: completeness, consistency, affordability, boundedness [1, p.11-12].
The QUS (Quality User Story) Framework proposed by Lucassen et al. in [4] can be used to assess

the quality of user stories. The structure of the criteria in the QUS framework is based on the

understanding of quality in categories O.I. Lindland. There are syntactic quality, semantic quality and

pragmatic quality. Syntactic quality criteria are used to evaluate the textual structure of a user story
without considering its meaning. These criteria are used to quality assessment of individual user

stories. In the structure of user story, three parts are identified: a role, a means and an ends

(optionally). The group of syntactic quality criteria includes:

 well-formed: in the user story test there is at least a role and a means;

 atomic: the test user story expresses a requirement for exactly one feature of the software;

 minimal: in the user story test there is nothing except a role, a means and the ends.

Semantic quality criteria are used to evaluate “the relations and meaning of (parts of) the user story

text” [4]. The group of semantic quality criteria includes:

 conflict-free: a user story should not conflict with any other user story;

Data Science
M Sh Murtazina and T V Avdeenko

291

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

 conceptually sound: the means expresses a feature and the ends expresses a rationale;

 problem-oriented:a user story determines the problem, not the solution to it;

 unambiguous: the text of user story does not contain terms or abstractions that can lead to

multiple interpretation.
The criterion "conflict-free" is used to quality assessment of a set of user stories. The other three

criteria are used to quality assessment of individual user stories.

Pragmatic quality criteria affect the “choosing the most effective alternatives for communicating a
given set of requirements”[4]. The group of pragmatic quality criteria includes:

 fullsentence: a user story is a well-formed full sentence;

 scalable: a user story does not specify the coarse-grained requirements that are difficult to plan

and prioritize;

 unique: each user story is unique, duplicates are not allowed;

 uniform: all user stories in the specification use the same template;

 independent: a user story is self-contained and does not have inherent dependencies on other

user stories;

 explicit dependencies: if a user story has non-obvious dependencies on others, explicit

references should be made to the stories from which there is a dependency

 complete: implementing a set of user stories creates a feature-complete application, no steps are

missing (for critical user stories).

The "full sentence" and "scalable" criteria are used to quality assessment of individual user stories.

The remaining criteria are used to quality assessment of a set of user stories.

5. Ontology for requirementsengineering process in Scrum framework

OWL ontology to support the engineering requirements process is implemented in the Protégé

environment. This ontology accumulates knowledge about the key features of the requirements
engineering in the Scrum framework. The taxonomy of the upper level classes, which are direct

descendants of the general Thing class, is shown in Figure 3.

Figure 3. The taxonomy of the upper level classes.

The class Attribute Of User Story describes the attributes of user stories such as priority, risk level,

etc. The class Backlog Project is a class whose subclasses are the types of backlogssuch as Product

Backlog, Sprint Backlog and Task Backlog. The class Level Of Evaluationis a class whose subclasses

are qualitative scales used in assessing priorities, risks, etc. The concept Product corresponds to the
term "software product". The concept Product Feature Function corresponds to the term "function of

the software". The class Requirement contains subclasses corresponding to the term "requirement".

The development of ontology is based on the following understanding of the term "requirement". A
requirement is an assertion about some property of the software product. For example, user story,

acceptance criteria fixed with use of rule-oriented or scenario-oriented approaches. The class

Data Science
M Sh Murtazina and T V Avdeenko

292

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

Requirements Artefactcontains subclasses corresponding to the concept "requirement artefact". Since
such requirements as Scenarios, Acceptance criteria and Definition of done represent information also

about the requirements that are created, modified and used in the process of implementing the

requirements, they are simultaneously included in the classes Requirement and Requirements Artefact.
Also subclasses of the class Requirements Artefact are requirements sources and software features and

tests that verify the correctness of the requirements implementation.

The class Requirement Type contains requirements classification (for example, functional and non-
functional requirements). The class Risk Class contains subclasses describing the classification of risks

such as a risk of getting a bug, security risk and etc. The class Scrum Event contains subclasses

corresponding to the Scrum events from the Scrum Guides. The class Scrum Team contains subclasses

corresponding to the Scrum roles from the Scrum Guides. The class Stakeholder corresponds to the
term "stakeholder". The class Status Req contains subclasses describing the status of requirements

such as “resolved”, “in progress” and etc. The class Task is a class whose instances are tasks

performed by the development team. The class Test Type contains subclasses describing the
classification of test types (for example, performance testing). The class Сonstraint Type contains

subclasses describing the types of constraints for non-functional requirements. Constraints express

requirements to the internal and external quality of the software product. The class Structural Element

contains subclasses describing structural elements that must include requirements written using some
technique. Figure 4 shows the relations between the class UserStory and the classes that describe its

structure.

Figure 4. A conceptual structure of user story.

The structure of the user story includes the user role, user goal and the user benefits (or in other

words, the reason of the occurrence of the story). The user goal in turn consists of the action that the

user makes and the object on which the action is performed. For example, "As a user, I want to sort

photos, so that easy to view photos". In this example, the user goal consists of the action "sort" and
the object "photos". Theuserbenefitis "easytoviewphotos".

In the ontological model, rules for assessing the quality of individual user stories and sets of user

stories are introduced. For example, consider the criterion for evaluating syntactic quality – “Well-
formed user story”. A user story is considered well-formed if it specifies the role, goal and benefits.

The goal should include the action and the object:

IF User Story has (User Role and Well Formed Goal User and User Benefit) THEN User Story is
Well Formed User Story.

IF Goal has (Action Goal User and Object Goal User) THEN Goal is Well Formed Goal User.

The implementation of these rules in the axioms of the ontology in the Protégé environment is

shown in Figure 5.
To extract instances of the classes User Role, Action User Goal, Object User Goal and User Benefit

from the user story text, morphological, syntactic and semantic analysis of the text can be performed

using the appropriate utilities.
A separate user story satisfies the completeness property (internal completeness), if it is included

all the information necessary to ensure correct implementation. This means that the user story must be

evaluated and acceptance criteria for it must be established, for user story should be indicated the

Data Science
M Sh Murtazina and T V Avdeenko

293

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

source and the team member who added it in the baglog. The assessment of user story includes effort
estimates, priority and assessing the level of risk. The proposed ontology axiom for assessing the

completeness of user story is shown in Figure 6.

Figure 5. Axioms for evaluating the structure of user story.

Figure 6. Axioms for evaluating the completeness of user story.

If information is entered to calculate the level of risk then a user story is included in the class User

Story Risk. If information is entered to calculate the priority of the user story then the user story is

included in the class Priority. Consider the priority evaluation. In the proposed approach, the user
story priority is set depending on the entered parameters – business value and urgency. The simplest

from the point of view of the organization of the assessment process is ranking by qualitative scale. In

the developed approach, the scale contains four divisions: "critical level" (4), "high" (3), "middle" (2)
and "low" (1). The matrix for priority estimation and an example of an axiom for determining a low

priority level are shown in Figure 7.

Figure 7. Matrix for priority estimation and an axiom for determining a low priority level.

The developed ontology allows checking the quality criteria of individual user stories. In practice,
the definition of completeness and conflictuality of a set of user stories is a context-dependent problem

that is difficult to generalize. However, you can talk about the incompleteness of the set of user stories

if the user stories meet the requirements for manipulating the elements of the system that were not
previously created. You can talk about the conflict of a set of user stories if for one object from one

type of user there is permission and lockout the same action. The latter can be partly solved by

constructing the domain ontology from the structural elements of user stories and behavior scenarios

detailing user stories. Methods of extracting knowledge units from a set of texts can be used for semi-
automatic construction of domain ontology (for example, as in [21]).

6. Conclusion

The paper shows that the application of an ontology-oriented approach to supporting the process of
requirements engineering in Scrum is an extremely urgent task. Requirements are the raw data for

software development and must satisfy certain quality characteristics. Currently, the main

characteristics of the requirements quality for software products are defined by the standard
ISO/IEC/IEEE 29148-2011 Systems and software engineering – life cycle processes – requirements

engineering. The analysis of scientific publications allows us to talk about the need to apply

assessment models that take into account the specifics of agile requirements.

Data Science
M Sh Murtazina and T V Avdeenko

294

IV International Conference on "Information Technology and Nanotechnology" (ITNT-2018)

In present paper the ontology was presented taking into account the features of the Scrum
framework and the quality criteria that are characteristic for the user stories. In analyzing the features

of the requirements engineering in the Scrum framework found that the main effort is focused on the

analysis of the functional component, so non-functional requirements are often not documented.
Taking into account high frequency of updating the requirements when working in accordance with

the Scrum framework, application of the proposed approach allows to quickly monitoring traceability

and completeness of the requirements. Making records in the ontological knowledge base will also
serve as a good tool for documenting the progress of the work. The latter can help to increase the

productivity of the development team.

7. References

[1] ISO/IEC/IEEE 29148:2011(E), Systems and software engineering – life cycle processes –
requirements engineering (Version 1.0, 2011-12-01).

[2] VersionOneInc 2018 The 12
th

 annual State of Agile report (Access mode:

https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report)
[3] Wake B 2003 INVEST in Good Stories, and SMART Tasks (Access mode:

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/)

[4] Lucassen G, Dalpiaz F, van der Werf J M and Brinkkemper S 2015 Proc. Int. Conf. on

Requirements Engineering 126-135
[5] Heck P and Zaidman A 2014 Preprint arXiv: 1406.4692

[6] Siegemund K 2014 Contributions To Ontology-Driven Requirements Engineering : dissertation

to obtain the academic degree Doctoral engineer (Dresden: Technischen Universität Dresden)
[7] Breitman K K and Leite J C S P 2003 Proc. Int. Conf. on Requirements Engineering 309-319

[8] Zhu X and Jin Z 2005 Proc. Int. Conf. onEngineering of Complex Computer Systems 402-410

[9] Dobson G and Sawyer P 2006 Int. Seminar on Dependable Requirements Engineering of
Computerised Systems at NPPs (Halden: Institute for Energy Technology)

[10] Kossmann M, Wong R, Odeh M and GilliesA 2008 Proc. Int. Conf. on Information and

Communication Technologies: From Theory to Applications

[11] Kossmann M, Odeh M, Gillies A and WattsS 2009 Proc. Int. Conf. onApplications of Digital
Information and Web Techn 95-103

[12] Pustovalova N V and Avdeenko T V 2016 SPIIRAS Proceedings 1(44) 31-49

[13] Avdeenko T V and Pustovalova N V 2016 Proc. Int. Conf. onActual problems of electronic
instrument engineering 1 513-518

[14] Avdeenko T V and Pustovalova N V 2015 Proc. Int. Siberian conference on control and

communications
[15] Goknil A, Kurtev I, van den Berg K 2008 Proc. Int. Conf. onModel Driven Architecture –

Foundations and Applications 310-325

[16] Thamrongchote С and Vatanawood W 2016 Proc. Int. Conf. onComputer and Information

Science 633-636
[17] Adnan M and Afzal M 2017 IEEE Access 5 25993-26005

[18] Schwaber K and Sutherland J 2017 The Scrum Guide (Access mode:

https://www.scrumguides.org /docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100)
[19] Darwish N D and Megahed S 2016 International Journal of Computer Applications 149(8) 24-

29

[20] ISO/IEC/IEEE 26515:2011(E), Systems and software engineering Developing user

documentation in an Agile environment (Version 1.0, 2011-12-01)
[21] Mikhaylov D V, Kozlov A P and Emelyanov G M 2016 Computer Optics 40(4) 572-582 DOI:

10.18287/2412-6179-2016-40-4-572-582

Acknowledgments
The reported study was funded by Russian Ministry of Education and Science, according to the

research project No. 2.2327.2017/4.6.

Data Science
M Sh Murtazina and T V Avdeenko

295

