
A Decision Support System for Food Recycling
based on Constraint Logic Programming and

Ontological Reasoning

Federico Chesani1[0000−0003−1664−9632] and Giuseppe Cota2[0000−0002−3780−6265]

and Evelina Lamma2[0000−0003−2747−4292] and Paola Mello1[0000−0002−5929−8193]

and Fabrizio Riguzzi3[0000−0003−1654−9703]

1 Dipartimento di Informatica Scienza e Ingegneria – University of Bologna
Viale Risorgimento 2, 40136, Bologna, Italy

name.surname@unibo.it
2 Dipartimento di Ingegneria – University of Ferrara

Via Saragat 1, I-44122, Ferrara, Italy
3 Dipartimento di Matematica e Informatica – University of Ferrara

Via Saragat 1, I-44122, Ferrara, Italy
name.surname@unife.it

Abstract. In 2011, FAO estimated that about one third of the total
production of edible food for human consumption, gets lost or wasted,
globally. In industrialized countries, more than 40% of the food losses
occur at retail and consumer levels. A considerable part of the wasted
food can be reused. The SORT project aims at “recycling” food in excess
by converting it into animal feed or fuel for biogas/biomass power plants.
During this process of reconditioning it is necessary to make choices in
order to minimize the costs and maximize the earnings. However, due
to the extremely complex nature of the process, it is not possible for a
human being to make these choices at runtime and in an optimal manner.
In these cases, Decision Support Systems (DSS) can be of help.
In this paper we propose a DSS based on the Constraint Logic Program-
ming (CLP) paradigm and ontology reasoning for finding the optimal so-
lution. The information about feed processing and feed categories were
extracted from Regulation (EU) 2017/1017 and stored into an ontol-
ogy. Finally, we provide an evaluation of our system on several synthetic
datasets with different search settings.

1 Introduction

In 2011, FAO (Food and Agriculture Organization of the United Nations) esti-
mated that about one third of the total production of food for human consump-
tion, 1.3 billion tonnes per year, gets lost or wasted worldwide [3].

Food waste has strong impact on deforestation, ecosystem degradation and on
natural and human resource consumption, including water, land, energy, labour
and capital. Moreover it produces greenhouse gas emissions, contributing to
global warming and climate change.



Food loss refers to losses of edible food mass throughout the early stages of the
supply chain. Food losses take place during the stages of production, harvesting,
treatment, storage and processing. Food losses occurring at the end of the food
chain (retail distribution and final consumption) are called food waste, which
depend on the behaviour of retailers and consumers. For instance, at retail level,
large quantities of food are wasted due to appearance standards (e.g. dented but
unbroken cans, fruit with imperfections, etc.).

In industrialized countries, more than 40% of the food losses are food waste.
In particular, the quantity of food wasted at consumer level in industrialised
countries amounts to 222 million tonnes, roughly equivalent to the food pro-
duction available in sub-Saharan Africa (230 million tonnes) [3]. The European
Commission estimated that in 2012 about 88 million tonnes of food loss and
waste were produced, with a related cost of 143 billion euros [9].

A considerable part of the food waste (currently destined for landfill) can be
reused. The SORT project4 aims at “recycling” food items in excess or no longer
consumable by humans. The main goals of the SORT project are:

– Recovering the packaging for subsequent recycling.
– Reconditioning the to-be-wasted food into a sellable product that can be

used as feed material for animals or as fuel for biogas/biomass power plants.

The process envisioned by SORT is complex and involves several parties and
actors (retail companies, vehicles, machinery for food processing, warehouses,
animal feed factories, biogas/biomass power plants, etc.). In order to maximize
the earnings and minimize the costs, several decisions must be made during
the process, which must take into account several variables and purposes (food
items used for reconditioning, maximizing profit, the cost of using machinery
for processing, storage costs, etc.). Given the extremely complex nature of the
SORT process, a Decision Support Systems (DSS) can be used to aid the process
manager to make choices.

In this paper we present a DSS for the SORT process developed using the
Constraint Logic Programming (CLP) paradigm for finding the optimal solu-
tion. The knowledge about feed processes and categories was extracted from
Regulation (EU) 2017/1017 and stored into an OWL ontology. Information rep-
resented in a logical formalism, such as OWL, enables the CLP engine to perform
reasoning for finding the best solution.

The paper is organized as follows. Section 2 illustrates the processing of food
articles inside a SORT plant. Section 3 provides some background knowledge of
the technologies used for this DSS. In particular, it recalls the main concepts
of description logics and Constraint Logic Programming. Section 4 presents the
SORT Ontology, used to represent the feed materials and processes. Section 5
illustrates the CLP(FD) model of the DSS. Section 6 shows experimental results
on synthetic datasets. Section 7 concludes the paper.

4 The SORT project is promoted by the Italian Ministry of Education, Universities and
Research. Code: SCN 00367, Ministerial Act n. 2427 http://attiministeriali.

miur.it/anno-2015/ottobre/dd-28102015-(1).aspx.

http://attiministeriali.miur.it/anno-2015/ottobre/dd-28102015-(1).aspx
http://attiministeriali.miur.it/anno-2015/ottobre/dd-28102015-(1).aspx


2 SORT Process Chain

The food articles to be reused are gathered at large retailers and collection
centers, packaged and sent to the so-called SORT plants. Every box of food
articles has an RFID chip for identification and tracking. The customers of a
SORT plant are feed factories and biogas/biomass power plants, which can make
different orders of feed materials.

Figure 1 shows the process chain of a SORT plant. When the boxes reach the
SORT plant, they are opened and their contents are poured into an hopper. Then
the Sorter machinery sorts the food articles into other boxes in order to create,
if possible, homogeneous boxes, i.e. boxes that contain similar food articles. It
is worth noting that, during this phase, the Sorter is not managed by the DSS.
The boxes are then stored in an automated warehouse. This phase of the process
chain is called input sorting.

In the warehouse we can have both homogeneous content boxes and heteroge-
neous content boxes. The presence of boxes with heterogeneous content certainly
represents a complication, but also an interesting and stimulating challenge from
a computational point of view.

If the articles contained in a box are selected by the DSS to satisfy an order,
that box will be opened and its content will be poured into Sorter’s hopper again
and each article will be sent to one of the N regular output destinations or sent
back, according to the guidelines specified by the DSS. At the end of each output
destination there is a box that gathers all the sorted articles. This phase of the
process chain is called output sorting . Finally, the selected articles are sent to
machinery for unpacking and food processing or sent back to the warehouse.

Example 1. Consider the case where the SORT plant received two orders, o1 and
o2, that request two different types of feed materials and consider the situation
depicted in Fig. 1. Moreover, let us suppose that both o1 and o2 must be satisfied.
The DSS then assigns the first output destination (out 1) to o1 and the second
output destination (out 2) to o2 and, at the same time, assigns some of the food
articles contained in the boxes with identifiers 5 and 17 to o1 and some of the
articles contained in boxes 17 and 131 to o2. Boxes 5, 17 and 131 are then opened
and their content is poured into the hopper. The Sorter then sends the articles
chosen to satisfy o1 to out 1 and the articles chosen to satisfy o2 to out 2.

It should be noted that in the SORT plant, there is only one sorting line (for
the time being). That means that the Sorter machinery depicted in Figure 1 on
the left side of the warehouse (input sorting phase) is the same Sorter machinery
on the right of the warehouse (output sorting phase). Consequently, during the
output sorting phase, the Sorter will not be able to perform the input sorting
step, i.e. it cannot process the boxes coming from large retailers and collection
centers.

2.1 Use cases of the DSS

The envisaged user of the DSS is the manager of the SORT plant. Its job is to
choose, day by day, which orders must be satisfied and which articles must be



SorterHopper

Warehouse

id:5

id:17

id:131

...

id:237

Hopper Sorter

DSS

out 3

out 2

out 1

out 4

...

out N
go back

Fig. 1. SORT chain. Every box in the warehouse has RFID chip with a unique identi-
fier.

used to satisfy them in order to maximize the earnings, according to the available
articles in the warehouse and to the received orders. These decisions are made
with the help of the DSS.

One of the components of the DSS is a web-based application (still under de-
velopment) which allows the user to perform the necessary operations to achieve
the optimal solutions. We planned four use cases of the DSS:

1. Manual selection of orders and boxes The user selects which orders
must be satisfied that day and which boxes must be used. The DSS assigns
each user-selected order to an output destination and uses only the food
articles contained in the selected boxes to satisfy them.

2. Manual selection of orders The user selects only the orders that must
be satisfied that day. The DSS assigns each selected order to an output
destination and uses the articles available in the warehouse to satisfy them.

3. Manual selection of boxes The user selects the boxes and the DSS, ac-
cording to the optimization criterion, calculates which orders must be satis-
fied by using only the food articles contained in the selected boxes.

4. Automatic selection The DSS automatically selects the orders to satisfy,
i.e. it automatically assigns an output destination to each chosen order, and
chooses which articles must be used to satisfy them, according to the opti-
mization criterion.

3 Background

3.1 Description Logics

An ontology describes the concepts of the domain of interest and their relations
with a formalism that allows information to be processable by machines. The



Web Ontology Language (OWL) is a family of knowledge representation lan-
guages, based on description logics, for authoring ontologies or knowledge bases.
OWL 2 [11] is the last version of this language and is a W3C recommendation
since 2012. We used this logical formalism to represent the knowledge about feed
processes and categories.

Description Logics (DLs) are fragments of FOL languages used for model-
ing knowledge bases (KBs) that exhibit nice computational properties such as
decidability and/or low complexity [1].

There are many different DL languages that differ in the constructs that are
allowed for defining concepts (sets of individuals of the domain) and roles (sets
of pairs of individuals). Below we illustrate the ALC DL, which is one of the
most common fragments and it is the basis for many other DLs.

Let us consider a set of atomic concepts C, a set of atomic roles R and a
set of individuals I. In ALC a concept C is either C1 ∈ C, ⊥, >, (C2 u C3),
(C2 t C3), ¬C, ∃R.C or ∀R.C, where C2 and C3 are concepts and R ∈ R.

A TBox T is a finite set of concept inclusion axioms C v D, where C and
D are concepts. An ABox A is a finite set of concept membership axioms a : C,
role membership axioms (a, b) : R, equality axioms a = b and inequality axioms
a 6= b, where C ∈ C, R ∈ R and a, b ∈ I. A ALC KB K = (T ,A) consists
of a TBox T and an ABox A. It is usually assigned a semantics in terms of
interpretations I = (∆I , ·I), where ∆I is a non-empty domain and ·I is the
interpretation function, which assigns an element in ∆I to each a ∈ I, a subset
of ∆I to each concept and a subset of ∆I ×∆I to each role.

3.2 Constraint Logic Programming

A Constraint Satisfaction Problem (CSP) is defined by a set of variables X =
{X1, . . . , Xn} and a set of constraints C = {C1, . . . , Cm} [8]. Each variable Xi

has a domain Di of possible values. A constraint defines a restriction over the
possible combinations of values of a subset of variables. A solution of a CSP is
an assignment of values to all variables that satisfies all the imposed constraints.
Constraint solving means finding a solution to a given CSP.

Constraint Programming (CP) is a programming paradigm where the rela-
tions among the variables are expressed in the form of constraints. In CP, the
user states the constraints and a general purpose constraint solver tries to solve
them. Constraint Logic Programming (CLP) is a paradigm of programming lan-
guages that merges two declarative paradigms: Logic Programming (LP) and
CP.

A CLP language is defined by the class (sort) of allowable variable do-
mains and constraints. A CLP language over a constraint class X is denoted
as CLP(X) [4]. For instance, CLP(R) is a CLP language in which variables can
range on the reals [5], whereas in CLP(FD) variables range on finite domains.

In CLP(X) the constraints of class X can be added to the body of the usual
logic programming clauses. During Selective Linear Definite (SLD) resolution,
the constraint are not resolved, but they are added to a special data structure,
called the constraint store. The store is then processed by an external solver,



called constraint solver. The constraint solver checks whether the conjunction
of constraints is satisfiable and, in case, modifies the store in order to obtain
a simplified state of the variables. The act of modifying the constraint store is
known under the term of propagation.

Besides variables and constraints, the user can also define an objective func-
tion: a function that the solver tries to maximize or minimize without violating
any constraint. If an objective function is defined, like in our case, then the
problem becomes an optimization problem.

We modelled our problem in Constraint Logic Programming on finite do-
mains (CLP(FD)). Finite domain constraints are usually intended to be arith-
metic constraints over finite integer domain variables. Therefore a CLP(FD)
language needs a constraint system that is able to handle (i.e. store and propa-
gate) this type of constraints.

There exist several implementations of logic programming and CLP(FD). For
this project we decided to adopt ECLiPSe [7]5, which features a library for finite
domains called gfd. This library interfaces ECLiPSe with Gecode’s constraint
solver [10]. To find the optimal solution we use ECLiPSe’s branch-and-bound
approach.

4 Knowledge Representation of Feed Materials

Communion Regulation (EU) 2017/1017 is the legislative text in the European
Union regarding the production of animal feed. It contains the list of all processes
and the list of all categories of feed materials. The list of the processes that feed
materials may undergo is illustrated in Part B of the regulatory text, whereas
the catalogue of feed materials is given in Part C.

As already mentioned in Section 3.1, we used the logical formalism OWL 2,
based on DLs, to represent the knowledge about feed processes and categories.
In particular, we used this regulation to generate an OWL 2 KB, called SORT
Ontology, which can be used by the DSS to check the compatibility between an
order and a food article.

4.1 SORT Ontology

Given the large number of processes and categories, we developed a simple pro-
gram written in Java that parses the XML version of the aforementioned Euro-
pean regulation, and automatically outputs the SORT Ontology.

The tool allows the SORT system to be easily updated to future regulatory
and legal developments. Moreover the ontology supports several languages6.

Figure 2 shows an excerpt from the SORT Ontology in OWL 2 RDF/XML.
Representing the knowledge about feed materials and processes by means of

an ontology allows to exploit a reasoner to check if an article can be used to

5 http://eclipseclp.org
6 Currently supported: Italian, English, Spanish, French and German.

http://eclipseclp.org


<owl:Class rdf:about="#1">
<rdfs:subClassOf rdf:resource="#Feed"/>
<rdfs:label xml:lang="en">Cereal grains and products

derived thereof </rdfs:label>
<rdfs:label xml:lang="it">Cereali e prodotti derivati </

rdfs:label>
...

</owl:Class>

<owl:Class rdf:about="#1.1.1">
<rdfs:subClassOf rdf:resource="#1"/>
<rdfs:comment xml:lang="en">Grains of Hordeum vulgare L.<

/rdfs:comment >
<rdfs:comment xml:lang="it">Grani di Hordeum vulgare L.</

rdfs:comment >
<rdfs:label xml:lang="en">Barley </rdfs:label >
<rdfs:label xml:lang="it">Orzo</rdfs:label >
...

</owl:Class>

Fig. 2. Excerpt from the SORT Ontology in OWL 2 RDF/XML. Here we can see
that subcategory 1.1.1 (Barley) is a subclass of category 1 (Cereal grains and products
derived thereof). Moreover for each feed category and subcategory there are labels and
comments in different languages.

satisfy an order (see Compatible function in Eq. 1 Section 5). Moreover, it allows
to obtain new information about food articles by exploiting other ontologies (see
the Open Food Facts project (https://world.openfoodfacts.org/).

5 CLP Model

In this section we illustrate the CLP model of the DSS and the Prolog imple-
mentation of some constraints.

5.1 Variables

The variables of our model are the list of orders O = {o1, . . . , oK} and the list
of food articles A = {a1, . . . , aM}, where K and M are the number of orders
and articles, respectively. As we mentioned in Section 2, the sorting line, during
the output sorting phase, can have N regular outputs (plus a special output for
articles that should go back to the warehouse), therefore the domain of an order
variable is

∀i ∈ {1, . . . ,K} oi ∈ {0, . . . , N}

where 0 means that the order will not be satisfied.
Each article, instead, can be used to satisfy one and only one order. Therefore

the domain of an article variable contains the order indices plus the values -1
and 0:

∀j ∈ {1, . . . ,M} aj ∈ {−1, . . . ,K}

https://world.openfoodfacts.org/


where 0 means “stay”, i.e. the article is not associated with any order and stays
in the warehouse without moving, whereas -1 represents “go back”, i.e. the article
goes through the Sorter but it will be sent back to the warehouse.

For instance, aj = i with i > 0 means that the j-th food article will be used
to satisfy the i-th order. aj = 0 means that the j-th food article will not be used,
whereas aj = −1 means that the box which contains aj will be opened, some of
its articles will be used to satisfy some orders, but the j-th article will not be
used and it should go back in the warehouse.

5.2 Constraints

We can split the constraints of our model into three categories: article con-
straints, order constraints and constraints for symmetry breaking.

Article Constraints Here we illustrate the constraints relating food articles to
the boxes that contain them. In particular, these constraints are used to maintain
the consistency of the warehouse.

The first article constraint simply states that articles can’t be associated with
incompatible orders

∀j ∈ {1, . . . ,M} ∀i ∈ {1, . . . ,K} ¬Compatible(aj , oi)⇒ aj 6= oi (1)

where Compatible(aj , oi) is a function which checks if article belongs to a feed
category compatible with the feed category requested by an order. To check
the compatibility between an order and a food article a DL reasoner and the
SORT Ontology described in Section 4 can be exploited. In order to save time,
these compatibility checks can be performed before running the CLP engine. For
instance, we could build a dictionary where each order is associated with a list
of compatible articles and then search the best solution.

In the SORT environment, each order consists of a requested quantity of only
one feed material and each article belongs to only one feed category. For this
scenario, our DSS does not perform any reasoning task, at least for now. Function
Compatible checks if feed category of the order matches with the feed category
of the article. However, in the future, for more complex scenarios, ontological
reasoning might be necessary.

The following constraint is fundamental to preserve the consistency of the
boxes contained in the warehouse. In fact, once a box is opened, all of its contents
are poured into the hopper before the Sorter and therefore all the items contained
in that box must be sorted by the Sorter (one of the possible destinations could
be back to stock). It is not possible to have situations in which an article present
in a box goes through the Sorter while the other articles contained in the same
box remain in storage.

∀j ∈ {1, . . . ,M} aj > 0⇒ (∀k ∈ {1, . . . ,M} Box (aj) = Box (ak)⇒ ak 6= 0)
(2)



where Box (aj) is a function which returns the identifier of the box which contains
the article associated with the variable aj .

The following constraint, instead, states that if an article is associated with
an order, then that order must have a destination greater than 0

∀j ∈ {1, . . . ,M} (aj = i, i > 0)⇒ oi > 0 (3)

Order Constraints The following constraint states that is not possible for two
distinct order to share the same destination if they will be both satisfied

∀i ∈ {1, . . . ,K} oi > 0⇒ ∀k ∈ {1, . . . ,K} oi 6= ok (4)

This constraint was implemented by imposing an atmost/3 constraint to the
order variables for each possible destination

for(I, 1, NDest),
param(OrderDestinations)

do
atmost(1, OrderDestinations , I)

where NDest is the number of possible destinations N , i.e. the possible out-
puts of the sorter, and OrderDestinations is the list of the order variables.

If the i-th order must be satisfied (oi > 0), then enough food product must
be available

∀i ∈ {1, . . . ,K} oi > 0⇒
∑
aj=i

Quantity(aj) ≥ Quantity(oi) (5)

where Quantity(·) is a function which returns the quantity of food product con-
tained (requested) in an article (by an order).

If there is not enough food product to satisfy an order, then the order is
unsatisfiable and for sure its destination will be “stay”

∀i ∈ {1, . . . ,K}
∑

Compatible(aj ,oi)

Quantity(aj) < Quantity(oi)⇒ oi = 0 (6)

The following constraint fixes an upper limit of food product that must be
used to satisfy an order. It states that the sum of the quantities of food product
contained in the articles used to satisfy an order must not exceed the quantity
requested by an order plus a surplus quantity of food.

∀i ∈ {1, . . . ,K} oi > 0⇒
∑
aj=i

Quantity(aj) ≤ Quantity(oi) + Surplus (7)

In our model we fixed the surplus quantity to 5 kg.

Symmetry Breaking Constraints In order to improve the search, we prune
the search space by imposing the following “symmetry breaking” constraints
which remove equivalent or symmetric solutions.



Example 2 (Equivalent solutions). Consider the case where we have three order
variables: o1, o2 and o3 and the number of regular outputs of the Sorter is N .
Suppose there exists a feasible solution

{o1 = 1, o2 = 0, o3 = 0}

Since we can associate an order with any output of the Sorter, other solutions
could be

{o1 = 2, o2 = 0, o3 = 0} . . . {o1 = N, o2 = 0, o3 = 0}

We have N equivalent solutions.

To prune the search space and avoid situations like the one described in
Example 2, we impose that the maximum destination value that an order variable
can have is the number of orders that are going to be satisfied (i.e. the number
of order variables greater than 0)∑

oi>0

1 = S = max
i
oi (8)

Example 3 (Symmetric solutions). Consider the case where we have three order
variables: o1, o2 and o3 and the number of regular outputs of the Sorter is N
and constraint 8 has been added in the model. Suppose there exists a feasible
solution

{o1 = 1, o2 = 2, o3 = 0}

A solution symmetric w.r.t. the one above is

{o1 = 2, o2 = 1, o3 = 0}

Symmetries like the one described in Example 3 can be broken by imposing
a total order to the order variables

∀i, j ∈ 1, . . . ,K i < j, oi > 0, oj > 0⇒ oi < oj (9)

This constraint can be simply imposed by exploiting the global constraint
precede/3

numlist(1, NDest , DestinationList),
precede(DestinationList , OrderDestinations).

where NDest is the number of possible destinations.

5.3 Objective function

The aim of the DSS user is maximize the earnings and minimize the costs. In
particular the user wants to maximize the incomes obtained by satisfying the
orders, while minimizing the storage costs, the penalties that must be paid if the



orders are not delivered on time and the processing cost, i.e. the cost for using
machinery for sorting, unpacking and food processing. So far, to compute the
processing cost, only the sorting cost is taken into account.

In order to obtain an optimal solution, we define in our model the following
objective function that should be maximized

Profit =
∑
oi>0

Income(oi)−UnusedArticlesCost

− LatePenalty− SortingPenalty (10)

where the function Income(oi) returns the income obtainable by satisfying the
i-th order. UnusedArticlesCost is the cost of keeping the unused articles one
more day in the storage and it is defined as

UnusedArticlesCost =
∑
aj≤0

StorageCost(aj) (11)

where StorageCost(aj) is a function which returns the daily storage cost of the
j-th article.

LatePenalty is the cost of not satisfying not even today those order whose
deadlines were missed and it is defined as

LatePenalty =
∑

oi∈LateOrders

LateOrderPenalty(oi) ·DaysLate(oi) (12)

where LateOrders is the set of orders with expired deadline, LateOrderPenalty(oi)
is a function which returns the penalty for being one day late to satisfy the i-th
order and DaysLate(oi) returns the number of delay days.

SortingPenalty is a penalty for all those articles that must “go back” and
therefore should go through the sorter machine once again. So far, this is the
only cost taken into account. It is defined as∑

aj=−1
ArticleSortingPenalty(aj) (13)

where ArticleSortingPenalty(aj) returns the penalty of sorting once more the
j-th article.

5.4 Search

To find the optimal solution we use the predicate bb_min/3, which performs
a branch-and-bound algorithm. We separated the search for article and order
variables, in order to allow the use of different heuristics for the two lists of
variables.

bb_min(
(gfd_search:search(OrderDestinations , 0,

SelectOrderVars , ChoiceOrderVars , MethodOrderVars
, []),



gfd_search:search(ArticleDestinations , 0,
SelectArticleVars , ChoiceArticleVars ,
MethodArticleVars , []) ),

Cost ,
bb_options{timeout:Timeout , delta:Delta , strategy:

Strategy} )

In the two predicates gfd_search:search/6, SelectOrderVars and
SelectArticleVars are the variable selection methods for orders and articles re-
spectively; ChoiceOrderVars and ChoiceArticleVars are the choice methods;
MethodOrderVars and MethodArticleVars are the search methods. Among the
available options of bb_min we have Timeout, that is the timeout of the opti-
mization process (its default value is 0, i.e. infinite time), Delta, which is the
minimal absolute improvement of Cost required for each step (default value is
10000), and Strategy, which is the optimization strategy used to find the best
solution.

In order to improve the performances of the search, we developed a custom
variable selection method, called select_income. Considering that the system
sorts the list of orders in descending order by profit, if this heuristics is chosen
for order variables, the order with the least value greater than zero is selected,
which corresponds to the order with the greatest income. If this heuristics is
chosen for article variables, the article that can be used for the most profitable
order is selected.

select_income(Var , Elem) :-
get_domain_as_list(Var , Domain),
first_gt_zero(Domain , Elem).

first gt zero/2 unifies Elem with the first value in the domain greater than
0, if there is not such values it unifies Elem with 0.

6 Experiments

A prototypical plant is under development in the SORT project. In the mean-
while, since real data about orders and article is still not available, to test the
system we generated synthetic random datasets with 30 orders whose incomes
vary from 10,000 to 500,000 and an increasing number of articles. The size of the
datasets is expressed in number of articles. The quantity of food product of each
article randomly varies from 500 g to 5 kg. Whereas the quantity of requested
feed material for each order varies from 50 kg to 100 kg.

We performed two types of experiments. In the first a complete search in the
space of solutions is performed, by taking into account different configurations
and strategies. In the second we set a timeout of 15 seconds and the obtained
solutions are compared with the optimal solutions found with complete search.
For all the experiments we set the sorting penalty to 0 and in the predicate
bb_min/3 we set the option delta to 10,000.

In these tests we evaluated our system by combining several heuristics and
strategies for search and optimization. However, due space limitations it was
impossible to show the results for each heuristics combination. Table 1 shows



some of the heuristics combinations used in our tests whose results are reported
in this paper7.

Table 1. Subset of the possible combinations of heuristics and strategies for search
and optimization.

Name
Article
Select

Article
Choice

Order
Select

Order
Choice

Opt.
strategy

Comb. 1 select_income indomain_max select_income indomain_max continue

Comb. 2 select_income indomain_max input_order indomain_max continue

Comb. 3 select_income indomain_max select_income indomain_max dichotomic

Comb. 4 select_income indomain_max input_order indomain_max dichotomic

Comb. 5 input_order indomain(0) most_constrained indomain_min continue

All the tests were performed on the HPC System Marconi8 equipped with
Intel Xeon E5-2697 v4 (Broadwell) @ 2.30 GHz, using 1 core for each test.

Test 1: complete search We consider a number of articles from 100 to 400 in
steps of 100 and, for each number of articles, we generated 5 datasets.

Table 2 reports the average CPU time in seconds for finding the optimal
solution for 5 different random datasets with the combinations of heuristics il-
lustrated in Table 1. We set a timeout of 1 hour, so the cells with “–” indicate
that the timeout occurred at least in one dataset.

Table 2. Average CPU time (in seconds) for the search of the optimal solution with
different configurations (Test 1) for each dataset size. “–” means that the execution
timed out (1 h) in one dataset at least.

Heuristics 100 200 300 400

Comb. 1 0.154 0.38 1.024 1.726
Comb. 2 0.146 0.372 1.046 1.862
Comb. 3 0.126 0.328 0.980 –
Comb. 4 0.132 0.416 0.994 –
Comb. 5 0.160 – – –

The results showed that the adopted heuristics affect the computational time.
In particular, among all the heuristics combinations used for Test 1 only Comb.
1 and 2 were able to scale up to 500 articles and both combinations use the
custom variable selection method select_income for the article variables.

7 The results for other combinations are shown here: https://goo.gl/J4DWiu.
8 http://www.hpc.cineca.it/hardware/marconi

https://goo.gl/J4DWiu
http://www.hpc.cineca.it/hardware/marconi


Test 2: search with timeout It might be infeasible for the user to wait too
long for the best solution. Sometimes a solution which is suboptimal but obtained
quickly is the best thing for rapid decision making. To evaluate the behaviour
of our system in these scenarios, for each dataset we run the CLP engine twice.
In the first execution the optimal solution is found by performing a complete
search by using Comb. 1 (Table 1) and a timeout of 24 hours. In the second one,
instead, we set a timeout of 15 seconds and we bounded the backtracking search
steps to 1000. Then the (suboptimal) solutions obtained in the second run are
compared with the optimal solutions found with complete search in the first run.

We consider a number of articles from 500 to 1000 in steps of 100 and, for
each number of articles, we generated 5 datasets.

The suboptimal solutions are evaluated using the Mean Absolute Percentage
Error (MAPE) as metrics. The MAPE between the optimal solution obtained

with a complete search (Soptimal
i ) and the solution obtained with a search with

timeout (Stimeout
i ) is given by

MAPE =
100

N

N∑
i=1

∣∣∣∣∣Soptimal
i − Stimeout

i

Soptimal
i

∣∣∣∣∣
where N is the number of datasets in which the complete optimization search
did not reach the timeout.

Table 3. MAPE between the optimal solutions and the suboptimal solutions obtained
with limited search by adopting different configurations for each dataset size (Test 2).
“–” means that the complete optimization search timed out (24 h) at least in one of
the 5 datasets and it was impossible to perform comparisons.

Heuristics 500 600 700 800 900 1000

Comb. 1 0.59 0 – – – –
Comb. 2 0.59 0 – – – –
Comb. 3 1.03 0.76 – – – –
Comb. 4 1.03 0.76 – – – –

Table 3 shows that with datasets containing more than 600 articles the com-
plete optimization search becomes infeasible, whereas with an approximate ap-
proach for each dataset we obtained at least a suboptimal solution.

7 Conclusions

In this paper we presented a DSS which exploits the Constraint Logic Program-
ming paradigm and supports ontology reasoning for finding the optimal solution,
given the availability of articles in the warehouse of the SORT plant.

The experiments showed that CLP is a valid approach for modelling and
solving complex problems such as the SORT process.



In the future, we plan to integrate a DL reasoner in our DSS in order to
tackle more complex scenarios (e.g. scenarios where orders can request mixtures
of feed materials), complete the development of its web interface and test our
DSS with real data on a prototype of the SORT plant. So far, in our model, every
article has the same storage cost, however there are different type of warehouses
(refrigerated, room temperature, etc.); in the future we plan to use different
storage costs depending on the warehouse in which the article was stored. More-
over we will take into account costs for using machinery for unpacking and food
processing. We would also like to extend our model by taking into account not
only articles already in stock, but also those currently being transported to the
SORT plant.

In our approach we used ECLiPSe for representing the constraints and Gecode
to solve them, it could be interesting to encode our problem with MiniZinc [6]
and compare the two approaches. A completely different approach could be to
exploit (Mixed) Integer Programming methods: encode the problem as a linear
problem and solve it with a linear optimiser, such as Gurobi [2]. We reserve the
implementations of these different approaches as future work.

Acknowledgement This work was supported by the SORT project, promoted
by the Italian Ministry of Education, Universities and Research. Code: SCN 00367,
Ministerial Act n. 2427.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description Logics, chap. 3, pp. 135–179.
Elsevier, Amsterdam (2008)

2. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018), http://www.
gurobi.com

3. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybeck, A.:
Global food losses and food waste: extent, causes and prevention (2011), http:
//www.fao.org/docrep/014/mb060e/mb060e00.pdf

4. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages.
pp. 111–119. ACM Press (1987)

5. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.: The clp (r) language and system.
ACM T. Prog. Lang. Sys. 14(3), 339–395 (1992)

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard cp modelling language. In: International Conference on
Principles and Practice of Constraint Programming. pp. 529–543. Springer (2007)

7. Niederliński, A.: A Gentle Guide to Constraint Logic Programming via ECLiPSe.
Jacek Skalmierski Computer Studio (2015)

8. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Pearson (2016)
9. Stenmarck, Å., Jensen, C., Quested, T., Moates, G.: Estimates of european food

waste levels. Tech. rep., IVL Swedish Environmental Research Institute (2016)
10. Team, G.: Gecode: Generic constraint development environment (2006), http:

//www.gecode.org
11. W3C: OWL 2 Web Ontology Language (12 2012), http://www.w3.org/TR/2012/

REC-owl2-overview-20121211/

http://www.gurobi.com
http://www.gurobi.com
http://www.fao.org/docrep/014/mb060e/mb060e00.pdf
http://www.fao.org/docrep/014/mb060e/mb060e00.pdf
http://www.gecode.org
http://www.gecode.org
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

	A Decision Support System for Food Recycling based on Constraint Logic Programming and Ontological Reasoning

