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Abstract. Damages to cultural heritage due to human malicious ac-
tions or to natural disasters (e.g., earthquakes, tornadoes) are nowadays
more and more frequent. Huge work is needed by professional restores
to reproduce, as best as possible, the original artwork or architecture
opera starting from the potsherds. The tool we are presenting in this
paper is devised for being a digital support for this kind of work. As
soon as the fragments of the opera are cataloged, a user (possibly young
students, and even children, using a tablet or a smartphone as playing
with a video game) can propose a partial reconstruction. The final part
of the job is left to an ASP program that first computes a pre-processing
task to find coherence between (sides of) fragments, and then tries to
reconstruct the original object. Experiments are made here focusing on
2D reconstruction (frescoes, reliefs, etc).

Keywords: Answer set programming, 2D object reconstruction, geo-
metric reasoning.

1 Introduction

This paper describes a declarative approach to the automated solution of object
reconstruction problems. In general terms, the goal consists in recomposing an
artifact by assembling the collection of its fragments. Automated tools support-
ing this task have wide application, because variants of such a general problem
arise in many fields. Common, relatively simple, forms of the problem can be
found in cardboard puzzles, such as edge-matching puzzles, packing puzzles, or
jigsaw puzzles [15, 14]. Plainly, these puzzles abstract and expose in a simpler
setting the core difficulties one encounters in restoring a fresco, a wall painting,
or an ancient palace facade that have been damaged, for instance, as conse-
quence of an earthquake [28, 22]. Similar tasks are the assembling of shredded
documents and torn photos usually associated with forensic investigations or his-
torical and philological studies [12, 16, 33, 25]. The hard problem of recomposing
ancient broken artifacts, such as damaged potteries, terracottas, or sculptures,
frequently emerges in archaeology [1, 22, 29].

The object reconstruction problem shares significant aspects with other geo-
metrical optimization problems, such as cutting, bin-packing, and nesting prob-
lems, that are extremely relevant in industrial contexts (see [2, 18, 4], among



many). Vast literature exists on modeling and solving any of these problems and
the proposed techniques and methods are often applicable to the others thanks
to the strict relationship existing among them.

Among the various formalizations, we mention here the so called pixel/raster
method, the nofit polygon method, and the Phi-function method (see [2] and the
references therein for a detailed description). On the one hand, many alternative
approaches have been proposed to solve some variants of the general problem,
by using different tools and techniques such as dynamic programming, genetic
algorithms, linear programming, greedy algorithms, integer programming, par-
ticle swarm optimization, (convex) optimization methods, etc. cf. [19, 28, 32, 23,
18, 27, 26]. On the other hand, while focusing on the 2D object reconstruction
problem, various approaches appeared in the literature put emphasis on differ-
ent aspects/features. A first classification can be done by distinguishing between
apictorial and pictorial techniques. In the former case, the solving methods are
shape-based, namely they only consider the shape of the fragments to be as-
sembled. Often some restriction on the admissible shapes is imposed, e.g., con-
vexity and/or homogeneity of shapes, some degree of smoothness/regularity of
fragments’ edges, etc. (cf. [15, 11, 10]), Conversely, other techniques rely on the
availability of chromatic and pictorial information (image color, texture, features,
orientation, etc.) to achieve better results [25, 12, 26, 16, 33]. Other options are
also sometimes considered in the literature, such as dealing with extraneous frag-
ments, missing fragments, and eroded edges. Consequently, incompleteness and
tolerances in edge-matching have to enter into play, increasing the complexity
of the model/solution.

All mentioned approaches mainly exploit numerical algorithm and analytic
techniques. None of them focuses on declaratively modeling and solving object
reconstruction problems. To the best of our knowledge, few attempts have been
pursued in exploiting logic programming or constraint programming to automate
this kind of spatial/geometrical reasoning. Prolog has been used in [31] to deal
with cartographic map overlay, whereas [3, 24] exploit Constraint Logic Program-
ming (CLP) to model nesting problems of non-convex polygons. A framework
based on Answer Set Programming (ASP) modulo theories supporting generic
spatial reasoning is described in [30]. No proposal has been advanced to deal
with object reconstruction problems in the specific.

In what follows we will make the initial steps towards an ASP-based frame-
work for object reconstruction. We will restrict the treatment to the 2D case,
but the very same ideas can be generalized to the 3D case.

In contrast to the proposals mentioned earlier, a purely declarative approach
enables a higher-level abstraction, focusing on modeling (instead on specifically
tailored algorithms), greater elaboration tolerance, and incremental modeling.
The use of ASP-based non-monotonic reasoning admits incompleteness and un-
certainty in modeling. This allows one to design a framework that can be incre-
mentally completed so as to encompass an increasing number of features, such
as dealing with missing fragments, damaged borders, erosion, partial pictorial



information, errors, approximations, imprecise measures in fragments’ extracted
features, etc.

To start within a simplified setting, we assume that fragments are represented
as polygons (not necessarily convex). Moreover, each edge of a fragment may be
characterized by some features (pictorial info, texture, . . . ) W.l.o.g., we can
represent all these features by associating a single color to the edge. For the
time being we do not consider missing/extraneous fragments and eroded edges.

The paper is organized as follows. In Section 2 we briefly survey syntax and
semantics of Answer Set Programming. In Section 3 we define the desired input
for the instances of the problem as an ASP program for preprocessing of the input
data. The preprocessed data is given as input to the main search core, described
in Section 4. Some initial experimental results are presented in Section 5. Finally,
a brief discussion on current and future work, and some conclusions are drawn
in Section 6.

2 Preliminaries — ASP

Answer Set Programming (ASP) is a dialect of logic programming developed for
Knowledge Representation and Reasoning, that allows a free use of negation as
failure in clause bodies. Disjunctive heads are also allowed in ASP, but we will
not use this feature in this paper, and therefore we will present the simplified
syntax. The meaning of a ASP program is regulated by stable model semantics.
We refer the reader to [17, 20] or to the recent book [13] for all details.

Given a set of propositional symbols (atoms) P, an ASP rule is as follows:

p0 ← p1, · · · , pm,not pm+1, · · · ,not pn (1)

where for i ∈ {0, . . . , n}, pi ∈ P. A rule is a fact if n = 0, namely, if it has the
form p0 ←. Given a rule r, the atom p0 is referred to as the head of the rule (and
denoted by head(r)), while the set of literals {p1, · · · , pm,not pm+1, · · · ,not pn}
is referred to as the body of the rule (and denoted by body(r)). Customarily,
body+(r) = {p1, · · · , pm} and body−(r) = {pm+1, · · · , pn}. An ASP program is a
collection of ASP rules.

ASP syntax allows also first-order atoms of the form p(t1, . . . , tk), where p is
a predicate symbol and t1, . . . , tk are variables and/or constants (nested terms
are not allowed). Given a program P , the ASP program composed by all the
ground rules obtained replacing all variables in a clause with constant symbols
in all possible ways is called the grounding of P . Most ASP solvers start an
execution by grounding the program, thus removing all variables.

As usual, models of programs are Herbrand models that can be described by
a set of atoms M . An atom is true in a model M if it belongs to M and it is
false otherwise. A body is satisfied by a model M if all its positive literals belong
to M and no negated literal of the body belongs to M . A rule is satisfied by a
model M if whenever its body is satisfied, its head is true in M . M is an answer
set of a program P if M is the minimal model of the reduct program PM , which
is obtained from P and M as follows:



– Remove from P all rules r such that M ∩ body−(r) 6= ∅;
– Remove all negated atoms from the remaining rules.

PM is a definite program, i.e., a set of rules that does not contain any occurrence
of negation and as such it admits a unique minimal (Herbrand) model.

A constraint is a rule of the form

← p1, · · · , pm,not pm+1, · · · ,not pn (2)

This is a simply a shorthand for an ASP rule of the form p ← p, p1, · · · , pm,
not pm+1, · · · ,not pn, where p does not occur elsewhere in the program. A con-
straint states explicitly that it is impossible that in a model M all p1, . . . , pm are
true and all pm+1, . . . , pn are not. Other syntactical extensions are commonly
employed, such as choice rules or aggregates. A choice rule is of the form

{p} ← body (3)

If the body is satisfied by a model M then p is justified either to hold or not. An
aggregate has the form op{t:q}, where q is an atom (possibly involving variables),
t is a term possibly sharing variables with q, and op is an aggregate operator
such as #count , #sum, #max , #min. Given an answer set M , t:q stands for the
collection of all ground instances of t that correspond to satisfied instances of q.
Each aggregate is evaluated by applying the operator op to such a collection of
terms. We refer the reader to [9] for a description of these extensions.

3 Input and pre-processing

An instance of our problem is a set of 2D pieces that should be assembled
together. We focus on almost-perfect matches between pairs of sides belonging
to different pieces. In particular, we consider only matches where the positions
of sides’ vertices are closer than a given tolerance.

Let us assume that the input is described by the predicate poly/4 as in
poly(piece-id, vertex, x, y), where piece-id ranges among the pieces.
Each piece is described by a sequence of vertices (a polygon), numbered by
starting from index 0 and proceeding counter-clockwise along the perimeter.
Each vertex is assigned a unique pair of coordinates. Moreover, each side of
each polygon is numbered by the number assigned to its first vertex (in counter-
clockwise order). Additional information can be added (e.g., describing the color
of the side color(piece-id, vertex, color) or stating that the side is “ex-
ternal” in the composed object external side(piece-id, side)). We do not
explicitly deal with this piece of information in what follows. It suffices to say
that the pre-processing stage (described below) is in charge to process such in-
formation in order to evaluate whether two sides are compatible and could be
matched to form the assembled object.

The input file contains the definition of some parameters that are used ei-
ther by the pre-processing stage or by the search stage: tolerance/1, delta/1,
offset/1, rangeX/2, rangeY/2, and borders/1.
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Fig. 1. Representation of pieces of Example 1 and the graph of their possible side-side
matchings. Every segment length occurs exactly twice among the pieces, except for
those colored in red that occur three times.

Example 1. Let us consider a four-pieces example. Pieces 0, 1, 2, 3 are repre-
sented by the following facts (see also Figure 1—left):

poly(0,0,0,0). poly(2,0,33,0).

poly(0,1,13,0). poly(2,1,41,2).

poly(0,2,14,8). poly(2,2,41,8).

poly(0,3,0,4). poly(2,3,27,8).

poly(1,0,15,0). poly(3,0,41,0).

poly(1,1,29,4). poly(3,1,50,0).

poly(1,2,23,12). poly(3,2,50,10).

poly(1,3,15,12). poly(3,3,42,8).

A first simple input pre-processing (a translation) is executed and results are
represented through the predicate poly cooR so as to set vertex 0 of each piece
in position (0, 0). For instance, piece number 3 has the normalized coordinates:

poly_cooR(3,0,0,0). poly_cooR(3,1,9,0).

poly_cooR(3,2,9,10). poly_cooR(3,3,1,8).

Rotations are allowed in order to find sides’ matches, modulo an initial dis-
cretization choice (specified by the predicate delta, in our example the dis-
cretization step is set to 10). Admissible rotations are given by predicate degrees:

degrees(0).

degrees(X + Y) :- delta(Y), degrees(X), X + Y < 360.

For each pair of pieces (p1, p2) and for each pair of sides (i, i + 1), (j + 1, j),
where (i, i+1) is a side of p1 and (j+1, j) is one of p2, we compute whether they
are compatible and what is the relative rotation needed to match them. This
is done by the predicate good match, described below. The auxiliary predicate
numVertices/2 counts the number of vertices of a piece.4

4 Notice that \ denotes the modulo operation in the ASP syntax of the grounder
GRINGO 4. Here it is used to compute the successor of a vertex (0 7→ 1, 1 7→
2, . . . , n 7→ 0) in the order described earlier.



good_match(P1,I,P2,J,Angle,L1,L2):-

poly_cooR(P1,I,I1x,I1y), poly_cooR(P2,J,J1x,J1y),

P1 != P2, numVertices(P1,N1), numVertices(P2,N2),

poly_cooR(P1, (I+1) \ N1, I2x, I2y),

poly_cooR(P2, (J+1) \ N2, J2x, J2y),

... % continued below

First, the relative positions of sides i and j when vertex 0 of the two pieces is put
in (0, 0) are computed. Then, each pair of sides is analyzed to assess if they are
compatible and, in this case, the required rotation is computed. Compatibility
means that they have roughly the same size, namely their length is the same
modulo a tolerance, specified by a predicate set to 16 in our example. Since
ASP only deals with integers, in order to gain enough precision in computing
ratios and trigonometric values, we scale all numbers by 210 (effective tolerance
is therefore 16

1024 = 1
64 of unit). Two auxiliary predicates storing the (discrete)

tables for sine and cosine are used.

V1x = I2x-I1x, V1y = I2y-I1y,

V2x = -J2x+J1x, V2y = -J2y+J1y,

degrees(Angle), cosTable(Angle,Cos), sinTable(Angle,Sin),

%% position of the points after rotation

V2Rx = V2x * Cos - V2y * Sin,

V2Ry = V2y * Cos + V2x * Sin,

V1Rx = 1024 * V1x,

V1Ry = 1024 * V1y,

%% Check of the sizes

tolerance(T1),

V1Rx < V2Rx + T1, V1Rx > V2Rx - T1,

V1Ry < V2Ry + T1, V1Ry > V2Ry - T1.

Going back to Example 1, with a tolerance set to 20 we obtain
good match(0,1,3,3,0). good match(3,3,0,1,0).

good match(1,0,0,2,0). good match(0,2,1,0,0).

good match(2,3,1,1,0). good match(1,1,2,3,0).

good match(2,3,3,1,37). good match(3,1,2,3,323).

good match(3,2,2,0,0). good match(2,0,3,2,0).

Observe, for instance, that side 1 of piece 3 can match with side 3 of piece 2
with an angle of 323 degrees (see also Figure 1—right). Of course the predicate is
symmetric (in the first argument) while angles are explementary to each other.

As last part of pre-processing, the predicate check ccw(P1,I,Sign) com-
putes the vector product of each three consecutive vertices and stores it in Sign.
A constraint enforces that each computed value must be positive (i.e. the vertices
are arranged along the counter-clockwise enumeration).

check_ccw(P1,I,Sign):-

poly_cooR(P1, I, I1x, I1y),



numVertices(P1,N1),

I1 = (I+1) \ N1, I2 = (I+2) \ N1,

poly_cooR(P1,I1,I2x,I2y),

poly_cooR(P1,I2,I3x,I3y),

%% Vectors are computed and used to compute the sign

V1x=I2x-I1x, V1y=I2y-I1y,

V2x=I3x-I2x, V2y=I3y-I2y,

Sign = V1x*V2y - V1y*V2x.

%%% The sign cannot be negative

:- check_ccw(_,_,S), S<0.

4 Main encoding

Given a problem instance, the outcome of the pre-processing consists of the
extensional definitions of the predicates poly cooR, good match, the auxiliary
predicates numVertices/2, polyId/1, the extensional definition of degrees/1,
and the parameters defined by the user. In particular offset/1 is used to define
the predicate range(-Of..Of) :- offset(Of). The trigonometric table is also
included.

Given the set of possible matchings (predicate good match) we would like to
select those that lead to a coherent shape of the composed object. The overall
idea is to place the first piece (i.e., first vertex in (0, 0) keeping the same rotation
as in the pre-processed input) and then placing the others by selecting matchings.
Given our hypothesis, selecting a match imposes a unique roto-translation to be
applied to the next piece and therefore admissible matches eventually lead to a
complete placement of all polygons.

The process is driven by a tree construction, where piece 0 is at the root.
Selected matchings (predicate match) are considered as “directional”, thus lead-
ing from the root to leaves. Each match defines a matching relation between
an already placed piece and the one added next, it also specifies which vertices
are paired. Each match is selected from the good match candidates. Each piece
should appear in the tree, namely it should be reachable from the root following
match edges. Additional constraints are then added to filter out results (e.g.,
to delimit a global bounding box and to impose some “non-overlapping” con-
straints).

Each possible match listed by predicate good match can be non-determinis-
tically elected to a match or not. Only one direction of the matching is retained
and every side of a piece can be matched at most once:

{ match(P1,I,P2,J) } :-

polyId(P1), polyId(P2), P1 != P2,

good_match(P1,I,P2,J,A).

:- match(P2,A,P1,B), match(P1,B,P2,A).

:- match(P1,I,P2,J2), match(P1,I,P3,J3), P2!=P3.

:- match(P1,I1,P2,J), match(P3,I2,P2,J), P1!=P3.



In order to reduce the size of the produced grounding, because of the combina-
torial combination of all admitted rotations and translations of pieces, we decou-
ple the rotations from translations during the first part of the solving/reasoning.
In particular, we compute the rotation for each piece, with respect to piece 0,
as a simple combination of sequence of matches. Starting from the root, each
selected match is associated to an angle obtained as the sum of those angles
needed for the matches in the path leading to it. Furthermore, we impose that
each piece should be reached and that it is reached in a unique way (precisely,
with a unique rotation angle):

reached(0,0).

reached(P2, Ang1+Ang2):-

P2>0,

reached(P,Ang1), degrees(Ang1),

match(P1,I,P2,J),

good_match(P,I,P2,J,Ang2).

:- not reached(P,_), polyId(P).

:- polyId(P), reached(P,A1), reached(P,A2), A1!=A2.

This allow to discard possible sets of matches that are incoherent, from a
rotation point of view, i.e. they build a directed acyclic graph, where a node
should be rotated in multiple angles at the same time. The graph is not required
to be a (spanning) tree. There can be two paths from the root to the same
piece as long as the rotation angle obtained in the two paths is the same. For
simplicity, we refer to a tree structure, being the minimally sufficient one to
produce a complete placement.

When the tree defined by match is generated, we need to check whether
the proposed solution is admissible from the spatial point of view. The process
requires to actually rotate pieces in place and translate them according to vertices
being matched. We compute the placement of the pieces on the basis of the
chosen match. Starting with the knowledge of the coordinates of vertices of the
piece P1, the match of P1 with P2, the already computed absolute Angle, and
the relative shift that should occur between matched vertices, the placement
is computed. (As before, we scale numbers by 210 to add 10 binary digits of
precision.) We also require that all pieces are placed exactly once and discard
solutions that involve multiple placements for any piece.

placement(0,I,1024*X,1024*Y):-

poly_cooR(0,I,X,Y).

placement(P2,J,X2,Y2):-

P2 > 0, degrees(Angle),

range(Deltax), range(Deltay),

best_Shift(P1,P2,Deltax,Deltay),

reached(P2,Angle),

cosTable(Angle,Cos), sinTable(Angle,Sin),

poly_cooR(P2,J,Ox,Oy),
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Fig. 2. Two possible solutions

match(P1,_I,P2,J1),

poly_cooR(P2,J1,Rx,Ry),

X2 = ((Ox-Rx)*Cos - (Oy-Ry)*Sin)+1024*Deltax,

Y2 = ((Oy-Ry)*Cos + (Ox-Rx)*Sin)+1024*Deltay.

:-not placement(P1,_,_,_), polyId(P1).

The predicate best Shift computes the new absolute coordinates (Delta) of
vertex J of the piece P2, i.e. matching the vertex I +1 of the piece P1. Therefore
in the placement, P2 is translated so that J lies in the origin, and then it is
rotated (around vertex J). Finally, it is translated by Delta, so that vertex J
ends up in the correct location.

best_Shift(P1,P2,Deltax,Deltay):-

P2 > 0, range(Deltax), range(Deltay),

match(P1,I,P2,J),

numVertices(P1,N1),

placement(P1,(I+1)\N1,X2,Y2),

X2=1024*Deltax,

Y2=1024*Deltay.

These constraints exclude matchings that allow two different “best shift”:

:-best_Shift(P1,P2,DX1,DY1),best_Shift(P1,P2,DX2,DY2),DX1<DX2.

:-best_Shift(P1,P2,DX1,DY1),best_Shift(P1,P2,DX2,DY2),DY1<DY2.

At the end the values provided by placement are divided by 210 to rescale in
the initial sizes, generating the output predicate poly out/4 which defines the
final positions of pieces. Clearly, more solutions might be possible. For example,
Figure 2 shows two solutions to our sample problem. We list here the results for
the vertices “0” of the four pieces in the leftmost solution of Figure 2:

poly_out(0,0,0,0) poly_out(1,0,0,4)

poly_out(2,0,14,8) poly_out(3,0,13,0)

Input parameters rangeX/2, rangeX/2, and borders are used to set a bound-
ing box around the object to be reconstructed. If the predicate borders is set
to yes, we further require that the sides of the bounding box include a vertex
of a piece.



%%% Bounding Box:

:- poly_out(A,B,X,Y), rangeX(_,Max), X > Max.

:- poly_out(A,B,X,Y), rangeX(Min,_), X < Min.

:- poly_out(A,B,X,Y), rangeY(_,Max), Y > Max.

:- poly_out(A,B,X,Y), rangeY(Min,Max), Y < Min.

%%% Borders filled

p1 :- poly_out(A,B,MinX,MinY), rangeX(MinX,MaxX), rangeY(MinY,MaxY).

p2 :- poly_out(A,B,MinX,MaxY), rangeX(MinX,MaxX), rangeY(MinY,MaxY).

p3 :- poly_out(A,B,MaxX,MinY), rangeX(MinX,MaxX), rangeY(MinY,MaxY).

p4 :- poly_out(A,B,MaxX,MaxY), rangeX(MinX,MaxX), rangeY(MinY,MaxY).

borders :- p1,p2,p3,p4.

borders :- not borders(yes).

:- not borders.

A further constraint is needed to avoid overlaps between pieces.
We experimented with an approach resembling pixel/raster method men-

tioned in the introduction. In this case, the idea consists introducing a dis-
cretization of the plane into points and in marking each point depending on
which piece covers it. This approach turned out to cause too much inefficiency
during the grounding stage and demonstrated not suitable to process instances
of reasonable size. We then opted in favor of a technique that directly checks
that no pairs of sides intersect. The intuition about this approach can be grasped
by considering the following constraint (where, for simplicity, we avoid explicitly
listing the auxiliary predicates used in the body). Namely, given the positions
of two sides (predicate segment) of two different polygons, the constraint rules
out each solution where the two segment cross each-other. Crossing condition is
detected by considering the position of each vertex of a segment with respect to
the other segment (predicate direction).

:- polyId(Pid1), polyId(Pid2),

Pid1 < Pid2,

placement(Pid1,S1,P1x,P1y),

placement(Pid1,S1b,Q1x,Q1y),

placement(Pid2,S2,P2x,P2y),

placement(Pid2,S2b,Q2x,Q2y),

segment(Pid1, S1, P1x, P1y, Q1x, Q1y),

segment(Pid2, S2, P2x, P2y, Q2x, Q2y),

direction(Pid2, S2, P1x, P1y, D1),

direction(Pid2, S2, Q1x, Q1y, D2),

D1*D2<0,

direction(Pid1, S1, P2x, P2y, D3),

direction(Pid1, S1, Q2x, Q2y, D4),

D3*D4<0.

However, also this encoding causes a too much large grounding. To improve
efficiency, some program transformation techniques (such as folding/unfolding of



predicates’ definitions and some precomputation of some predicates’ extensions)
have been applied to the above mentioned encoding, This permitted to achieve
overall acceptable running times in the grounding and in the solving stages.

5 Results

In order to test the tool, we wrote a benchmark generator working in the fol-
lowing way. Let us consider a square of size size (e.g., made of glass). Suppose
now it is broken in exactly p points, where p is 1,2,. . . . The generator randomly
chooses p points and identifies a set of triangular pieces as shown in Figure 3.

Fig. 3. Three simple benchmark instances, with p = 1, 2, 3. Figures comes from a
Postscript file generated by running a script on the clingo output

Tolerance in preprocessing has been fixed to 10 (see Section 3). A smaller
tolerance would reduce the number of possible good matches (but we decided to
leave a bit of redundancy, as needed in real cases where several types of errors
can arise). The size of the box is stored in rangeX and rangeY and used also
in offset. Thus, the predicate range holds for values from −size to +size.
Borders are required to be matched.

Discretization for angles was set to 1◦. This gives a decent degree of approxi-
mation but also makes the grounding stage rather heavy. However, experiments
made with bigger values (e.g., 2, 3, 10) led to similar running times and to poorer
results. If we accept less angles, we need to increase the tolerance to guarantee
the same good matches.

For each size and for each number of internal points p = 1, 2, 3, 4, 5 (save for
very small instances where we used only the small values of p) we generate 5
random instances. In Figure 4 we report the graph of the running times averaged
on the 5 instances. Instances’ size are in the x-axis, running times are in the
y-axis, one line for each number of points p is drawn.

Experiments were conducted on Ubuntu Bash of Windows 10 Pro Desktop,
Intel i7-2600, 3.4GHz, RAM 12GB, using clingo 4.5.4 (gringo 4.5.4, clasp 3.1.4).
Although it does not emerge by looking at the average scenario, it is important
to report that the grounding takes most of the time and that the running time



strongly relies on how many “good matches” the instance admits. As a limit
case, if every side has exactly one good match, matchings are deterministically
assigned, and hence running times are close to zero even for large instances.

As one might expect running time grows either as the box size grows or as
the number of broken points grows.

Redefining the range predicate (currently assigned by the input offset pa-
rameter) proved to be extremely effective. This sensibly reduces grounding and
search time. For instance, in the case of the slowest computation of the set (in-
stance number 5 of the benchmark set with size = 20 and p = 5), replacing the
definition of range(-20..20). with range(1..13). reduced the running time
from 326s to less than 2s. Therefore, a good strategy could be the one of starting
with a low value for offset.

Fig. 4. Results of the running time averaged by random instances of the same size and
number of “broken points”

6 Future work and Conclusions

The future work will focus on scaling to larger and real instances. In particu-
lar, in order to test ASP capabilities in solving such puzzles, we plan to acquire
real jigsaw puzzles (with hundreds of pieces). Some pre-processing with OpenCV
will be deployed to identify the polylines that define each piece. Moreover, image
color, texture and features around borders can be added to the graph of compat-
ibility by edge attributes, as modelled above. In particular, we plan to build a
pipeline that acquires batch of pieces, segments them, extracts the outlines and



Fig. 5. The visualization/interaction tool

finally pairwise compares the shapes/features. The shape compatibility is vector
based and therefore it should efficiently identify the graph. We expect to handle
polylines made of hundreds of segments, in order to capture the piece peculiar
features. The pre-processed output will describe the good match compatibility
graph, to be used as input by the ASP solver. The pre-processing procedure we
have in mind is similar to the one described in [21]. However, the reasoning part
will take advantage of ASP reasoning engine, which differentiate substantially
our work, in comparison to that work and other approaches, e.g. [25, 12, 10]

Current results show that ASP reasoning takes a small fraction of time com-
pared to grounding time. When dealing with larger instances, we expect to face
two main issues: the first is the ground program size, which requires more refined
models and the handling of integers. The second issue is the search itself, which
may show an increase in the reasoning time, due to the NP-complete nature of
the problem. In this case, especially for dense graphs with multiple choices for
each piece, we plan to introduce more tailored graph-based heuristics.

Another line of research is devoted to support semi-automatic solving pro-
cess, where partial solutions are iteratively refined, by interleaving domain expert
feedback and ASP inferences. This is rather common setup for tasks where the
expert can not precisely formalise his/her knowledge into a complete set of rules
that drive the identification of the solution. The core of the tool is under devel-
opment. It is designed to help the assembly process (see Figure 5): it allows to
draw and manipulate pieces, to generate the underlying ASP code and to visu-
alize solutions. In the future, it may interface with 2D/3D scanners and guide
the assisted matching process with interactive suggestions and auto-completions.
Ad-hoc propagators can be exploited during the search following the ideas of [5].

Finally, we believe this problem can well suit a GPU implementation of the
ASP solver [7, 8, 6]. In particular, the presence of 2D/3D geometrical manipula-
tions and the viable parallel exploration of (almost) independent regions of the
graph represent good candidates for an efficient GPU deployment.

To sum up, this paper represents an initial step for the development of tools
for object reconstruction with the advantages of declarative programming and
of the speed of modern ASP solvers.
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