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Abstract. As of today, the question remains open as to whether the
quaternary quartic equation

9 ·
(
u2 + 7 v2

)2 − 7 ·
(
r2 + 7 s2

)2
= 2 , (*)

which M. Davis put forward in 1968, has only finitely many solutions in
integers. If the answer were affirmative then—as noted by M. Davis, Yu.
V. Matiyasevich, and J. Robinson in 1976—every r.e. set would turn out
to admit a single-fold polynomial Diophantine representation.
New candidate ‘rule-them-all’ equations, constructed by the same recipe
which led to (*), are proposed in this paper.
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Introduction

As was anticipated in [3] and then conclusively shown in 1961 [4], every recur-
sively enumerable relation R(a1, . . . , an) ⊆ Nn can be specified in the form

R(a1, . . . , an)⇐⇒ ∃x1 · · · ∃xm ϕ(

variables︷ ︸︸ ︷
a1, . . . , an︸ ︷︷ ︸
parameters

, x1, . . . , xm︸ ︷︷ ︸
unknowns

) , (†)

for some formula ϕ that only involves:

– the shown variables,
– positive integer constants,
– addition, multiplication, exponentiation (namely the predicate xy = z),
– the logical connectives & , ∨, ∃x, = .

This result, known as the Davis-Putnam-Robinson (or ‘DPR’) theorem, was
later improved by Yu. Matiyasevich in two respects: in [7] he showed how to ban
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use of exponentiation, altogether, from (†); in [8], while retaining exponentiation,
he achieved single-fold -ness of the representation, in the sense explained below.1

A representation

∃→
x ϕ(

→
a ,

→
x )

of R in the above form (†) is said to be single-fold if

∀→
a ∀→

x ∀
→
y

[
ϕ(

→
a ,

→
x ) & ϕ(

→
a ,

→
y ) =⇒ →

x =
→
y

]
(i.e., the constraint ϕ( a1, . . . , an , x1, . . . , xm ) never has multiple solutions). The
definition of finite-fold -ness is akin: The overall number of solutions (in the x’s)
that correspond to each n-tuple 〈a1, . . . , an〉 of actual parameters must be finite.

In [6], Matiyasevich argues on the significance of combining his two improve-
ments to DPR, and on the difficulty (as yet unsolved) of this reconciliation. Full
elimination of exponentiation from (†) is generally achieved in two phases: one
first gets the polynomial Diophantine representation of a relation of exponen-
tial growth (see [11]), and then integrates this representation with additional
constraints in order to represent the predicate xy = z polynomially. Unfortu-
nately, though, the solutions to the equations introduced in the first phase have
a periodic behavior, causing the equations that specify exponentiation to have
infinitely many solutions.

One way out of this difficulty was indicated in [2], and has been recently
recalled in [6, 9]: If one managed to prove that there are only a finite number of
solutions to a certain quaternary quartic equation, which M. Davis put forward
in his “One equation to rule them all” [1], then a relation of exponential growth
could be represented by a single-fold Diophantine polynomial equation.

Skepticism concerning the finitude of the set of solutions to Davis’s equation
began to circulate among number theorists after D. Shanks and S. S. Wagstaff
[14] discovered some fifty elements of this set. This is why we sought—and will
present in this paper—new candidates to the role of ‘rule-them-all’ equation, by
resorting to much the same recipe which enabled Davis to obtain his own.

1 Four candidate rule-them-all equations

As of today, there are four competitors for the role of ‘rule-them-all’ equation’
over N (one was originally proposed in [1], the other three were detected by us):

-2: 2 ·
(
r2 + 2 s2

)2 − (u2 + 2 v2
)2

= 1 ;

-3: 3 ·
(
r2 + 3 s2

)2 − (u2 + 3 v2
)2

= 2 ;

-7: 9 ·
(
u2 + 7 v2

)2 − 7 ·
(
r2 + 7 s2

)2
= 2 ;

1 A virtue of the representation proposed in [8] is that the predicate xy = z occurs in
it only once; Matiyasevich was in fact able to ensure singlefold-ness while reducing
(†) to the elegant format

R(a1, . . . , an) ⇐⇒ ∃x0 ∃x1 · · · ∃xm P (a1, . . . , an, x1, . . . , xm) = 4x0 + x0 ,
where P is a polynomial with coefficients in Z.



-11: 11 ·
(
r2 ± r s + 3 s2

)2 − (v2 ± v u+ 3u2
)2

= 2
(four sign combinations).

Each one of these equations stems from a square-free rational integer d > 1
such that the integers of the imaginary quadratic field Q(

√
−d) form a unique-

factorization domain. The numbers in question are known to be 1, 2, 3, 7, 11,
19, 43, 67, 163, and no others. Consider, for each such d except d = 1, also
the equation d y2 + 1 = � (meaning: ‘d y2 + 1 is a perfect square’). As is well
known, this is a Pell equation endowed with infinitely many solutions in N.
The equations we have listed are associated—in the manner discussed below—
with the discriminants −2,−3,−7,−11 of the corresponding Pell equations; in
principle we could have associated a rule-them-all equation also with each one
of −19,−43,−67,−163.

Trivial solutions: A solution in N, for each of the four rule-them-all equa-
tions shown above, is: r = u = 1 , s = v = 0 .

The trivial solutions, in Z, of 11 ·
(
r2 + r s + 3 s2

)2 − (v2 + v u+ 3u2
)2

= 2
are: s = 0, r ∈ {−1, 1} and either v = 0, u ∈ {−1, 1} or u = 1, v = −1.

Non-trivial solutions (in N): As mentioned in the Introduction, at least
50 solutions were found for the rule-them-all equation with discriminant −7.

Two non-trivial solutions for the discriminant −3 were detected, and kindly
communicated to us, by Boris Z. Moroz (Rheinische Friedrich-Wilhelms-Univer-
sität Bonn) and Carsten Roschinski:2

r = 16 , s = 25 , u = 4 , v = 35 ;
r = 124088 , s = 7307 , u = 134788 , v = 54097 .

Presently we know no non-trivial solutions for the discriminants -2 and -11.

Relative to each one of our discriminants −2,−3,−7,−11, we have a notion
of representable number ; to wit, a positive integer which can be written in
the respective quadratic form (with u, v ∈ Z):

-2: u2 + 2 v2 ,
-3: u2 + 3 v2 ,
-7: u2 + 7 v2 ,

-11: v2 + v u+ 3u2 .

Let us also point out, for the respective discriminants, the poison primes:

-2: prime numbers p such that p ≡ 5, 7 (mod 8) ;
-3: prime numbers p such that p ≡ 2 (mod 3) ;
-7: prime numbers p such that p ≡ 3, 5, 6 (mod 7) ;

-11: prime numbers p such that p ≡ 2, 6, 7, 8, 10 (mod 11) .

Thus, it can be proved that the representable positive integers are precisely the
ones in whose factorization no poison prime appears with an odd exponent.3

2 Independently, also Alessandro Logar (Univ. of Trieste) found the same solutions.
3 In the case of −7, this claim must be restrained to the odd representable positive

integers.



2 Quick discussion referring to the discriminant -11

Since we cannot afford discussing at length each of the four candidate rule-them-
all equations, we will offer a bird’s-eye view of how to construct, directly from
the unproven assertion that the quaternary quartic equation

11 ·
(
r2 + r s + 3 s2

)2 − (v2 + v u+ 3u2
)2

= 2 (‡)

has only finitely many integer solutions, a finite-fold polynomial Diophantine
representation of a relation of exponential growth.

Take into account the increasing sequence 〈yi〉i∈N = 〈0, 3, 60, 1197, . . .〉 of all

solutions to the Pell equation 11 y2 + 1 = � . Also consider the relations:

OD(a, b) ⇔Def ∃x
[

(2x+ 1) a = b
]
,

J (u , w ) ⇔Def w ∈ {y22 `+1 : ` > 2} & OD(u , w ) .

It can easily be shown that J is of exponential growth in Julia Robinson’s
sense, namely that:

– J (u, v) implies v < uu ;

– for each `, there are u and v such that J (u, v) & u` < v .

Does the predicate w ∈ {y22 `+1 : ` > 2}—and, consequently, J—admit a poly-
nomial Diophantine representation? It turns out that the following are necessary
and sufficient conditions in order for w ∈ {y22 `+1 : ` > 2} to hold:

(i) w > 3 ;
(ii) 11w2 + 1 = � ;

(iii) ∃ v ∃u
(
w = v2 ± v u+ 3u2

)
;

(iv) [(r2 + r s + 3 s2) · (v2 + vu + 3u2)] - w, for any non-trivial integer

solution to 11 ·
(
r2 + r s+ 3 s2

)2 − (υ2 + υ u+ 3 u2
)2

= 2 .

This results in a Diophantine specification if the number of solutions to the novel
quaternary quartic (‡) is finite ! An issue that must be left open here.

Notice that the only potential source of multiple solutions to the above rep-
resentation of J is condition (iii), which, anyhow, is finite-fold.

The issue as to whether (‡) has only finitely many solutions over N can be
recast as the analogous problem concerning the system{

11 ξ2 − η2 = 2
ξ η = ν2 + ν t+ 3 t2

over Z.

The existence of finite-fold Diophantine representations for all r.e. sets thus
reduces to the finitude of the set of integer points lying on a specific surface.
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A Addendum referring to the discriminant -11

Here we provide clues on how to associate a quaternary quartic, candidate rule-
them-all, equation with the number -11.

Along with the above-considered sequence 〈yi〉i∈N of all solutions to the Pell

equation 11 y2 + 1 = � , take also into account the associated sequence 〈xi〉i∈N =

〈1, 10, 199, 3970, . . . 〉 with xi =
√

11 y2i + 1. Then we have:

– for every h > 0, y2h is representable in the form υ2 + υ u + 3u2 iff 2 - h ,
since y2h = 2h+1 · 15 ·

∏
0<i<h x2i ;

– if y2` (2h+1) is representable (in that form), so are

coprime numbers︷ ︸︸ ︷
3xh + 11 yh and xh + 3 yh ;

– if yn is representable for some n > 0 not a power of 2, then the system X2 − 11 Y 2 = 1 ,
3X + 11Y = υ2 + υ u+ 3 u2 ,
X + 3Y = r2 + r s + 3 s2

has an integer solution for which Y 6= 0 ; consequently, the equation

11 ·
(
r2 + r s+ 3 s2

)2 − (υ2 + υ u+ 3 u2
)2

= 2 (‡)

has a non-trivial integer solution 〈r, s, v, u〉, a solution being dubbed trivial
when it satisfies both of r2 + r s + 3 s2 = 1 and υ2 + υ u+ 3u2 = 3. Such a
solution 〈r, s, v, u〉 will also satisfy

[(
r2 + r s+ 3 s2

)
·
(
υ2 + υ u+ 3 u2

)]
| yn.

Let H stand for the assertion (whose truth, as of today, must be left open):

‖ The equation (‡) has no solutions in integers except the trivial ones.

Moreover, let H′ stand for the weaker—and also open—assertion:

‖ The equation (‡) admits at most finitely many solutions in integers.

Then the above-listed facts yield that:

Theorem 1. H implies that yn is representable for n > 1 if and only if n is an
odd power of 2.

Corollary 1. H implies that { y22 `+1 : ` = 0, 1, 2, . . . } is a Diophantine set.

Lemma 1. H′ implies that { y22 `+1 : ` = 0, 1, 2, . . . } is a Diophantine set.


	Can a single equation witness that every r.e. set admits a finite-fold Diophantine representation?

