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Abstract. In this short paper we describe COCOS, a tool we are currently de-
veloping in order to account for the phenomenon of combining prototypical con-
cepts, an open problem in the fields of AI and cognitive modelling. COCOS is
based on a probabilistic extension of the logic of typicality ALC+TR by inclu-
sions p :: T(C) v D (“we have probability p that typical Cs are Ds”) and it
embeds a set of cognitive heuristics for concept combination.

1 Introduction
Inventing novel concepts by combining the typical knowledge of pre-existing ones is an
important human creative ability. Dealing with this problem requires, from an AI per-
spective, the harmonization of two conflicting requirements that are hardly accommo-
dated in symbolic systems: the need of a syntactic compositionality (typical of logical
systems) and that one concerning the exhibition of typicality effects [1]. According to
a well-known argument [2], in fact, prototypical concepts are not compositional. The
argument runs as follows: consider a concept like pet fish. It results from the composi-
tion of the concept pet and of the concept fish. However, the prototype of pet fish cannot
result from the composition of the prototypes of a pet and a fish: e.g. a typical pet is
furry and warm, a typical fish is grayish, but a typical pet fish is neither furry and warm
nor grayish (typically, it is red).

In this paper we describe our work in progress in this field of research. We describe
COCOS, a software system able to account for this type of human-like concept combi-
nation. COCOS relies on a nonmonotonic Description Logic (DL) of typicality called
TCL (typical compositional logic) recently introduced in [3]. This logic, whose com-
plexity is ExpTime-complete as the underlying standard ALC, combines two main
ingredients. The first one relies on the DL of typicality ALC + TR introduced in [4].
In this logic, “typical” properties can be directly specified by means of a “typicality”
operator T enriching the underlying DL, and a TBox can contain inclusions of the
form T(C) v D to represent that “typical Cs are also Ds”. As a difference with
standard DLs, in the logic ALC + TR one can consistently express exceptions and
reason about defeasible inheritance as well. For instance, a knowledge base can con-
sistently express that “normally, athletes are in fit”, whereas “sumo wrestlers usually
are not in fit” by T(Athlete) v InFit and T(SumoWrestler) v ¬InFit , given that
SumoWrestler v Athlete . The semantics of the T operator is characterized by the
properties of rational logic [5], recognized as the core properties of nonmonotonic rea-
soning.ALC+TR is characterized by a minimal model semantics corresponding to an
extension to DLs of a notion of rational closure as defined in [5] for propositional logic:
the idea is to adopt a preference relation among ALC +TR models, where intuitively



a model is preferred to another one if it contains less exceptional elements, as well as
a notion of minimal entailment restricted to models that are minimal with respect to
such preference relation. As a consequence, T inherits well-established properties like
specificity and irrelevance: in the example, the logic ALC + TR allows us to infer
T(Athlete u Bald) v InFit (being bald is irrelevant with respect to being in fit) and,
if one knows that Hiroyuki is a typical sumo wrestler, to infer that he is not in fit, giving
preference to the most specific information.

As a second ingredient, we consider a distributed semantics similar to the one of
probabilistic DLs known as DISPONTE [6], allowing one to label axioms with degrees
representing probabilities, but restricted to typicality inclusions. The basic idea is to
label inclusions T(C) v D with a real number between 0.5 and 1, representing its
probability, assuming that each axiom is independent from each others. The resulting
knowledge base defines a probability distribution over scenarios: roughly speaking, a
scenario is obtained by choosing, for each typicality inclusion, whether it is considered
as true or false. In a slight extension of the above example, we could have the need of
representing that both the typicality inclusions about athletes and sumo wrestlers have
a probability of 80%, whereas we also believe that athletes are usually young with a
higher probability of 95%, with the following KB: (1) SumoWrestler v Athlete; (2)
0.8 :: T(Athlete) v InFit ; (3) 0.8 :: T(SumoWrestler) v ¬InFit ; (4) 0.95 ::
T(Athlete) v YoungPerson . We consider eight different scenarios, representing all
possible combinations of typicality inclusion: as an example, {((2), 1), ((3), 0), ((4), 1)}
represents the scenario in which (2) and (4) hold, whereas (3) does not. We equip each
scenario with a probability depending on those of the involved inclusions, then we re-
strict reasoning to scenarios whose probabilities belong to a given and fixed range.

The proposed system COCOS is able to tackle the problem of composing proto-
typical concepts. As an additional element we employ a method inspired by cognitive
semantics [7] for the identification of a dominance effect between the concepts to be
combined: for every combination, we distinguish a HEAD, representing the stronger
element of the combination, and a MODIFIER. The basic idea is: given a KB and two
concepts CH (HEAD) and CM (MODIFIER) occurring in it, we consider only some
scenarios in order to define a revised knowledge base, enriched by typical properties
of the combined concept C v CH u CM . We use COCOS for the generation of novel
creative concepts, that could be useful in many applicative scenarios.

2 The COCOS system
The current version of the system is implemented in Pyhton and exploits the translation
of an ALC +TR knowledge base into standard ALC introduced in [4] and adopted by
the system RAT-OWL [8]. COCOS makes use of the library owlready2 1 that allows
one to rely on the services of efficient DL reasoners, e.g. the HermiT reasoner.

Our system relies on the procedures developed for logic TCL. More in detail, we
consider a KB K = 〈R, T ,A〉 where R is a finite set of rigid properties of the form
C v D, T is a finite set of typicality properties of the form

p :: T(C) v D

1 https://pythonhosted.org/Owlready2/



where p ∈ (0.5, 1) ⊆ R is the probability of the typicality inclusion and A is the
ABox, i.e. a finite set of formulas of the form either C(a) or R(a, b), where a and b are
individual names, C is a concept and R is a role.

Given two concepts CH and CM occurring in K, the logic TCL allows one to define
the compound concept C as the combination of the HEAD CH and the MODIFIER
CM , where C v CH uCM and the typical properties of the form T(C) v D to ascribe
to the concept C are obtained by selecting suitable scenarios. Intuitively, a scenario is
a knowledge base obtained by adding to all rigid properties in R and to all ABox facts
in A only some typicality properties coming from either the HEAD or the MODIFIER.
Each scenario is equipped by a probability defined as p1 × . . .× pi × (1− q1)× . . .×
(1−qj), where p1 :: T(E1) v F1, . . . , pi :: T(Ei) v Fi are the typicalities included
in the scenario, whereas q1 :: T(G1) v H1, . . . , qj :: T(Gj) v Hj are those not
included in the scenario.

Intuitively, the selected scenarios are those satisfying the following properties:

1. are consistent with respect to K;
2. are not trivial, in the sense that the scenarios considering all properties that can be

consistently ascribed to C are discarded;
3. are those giving preference to the typical properties of the HEAD CH (with respect

to those of the MODIFIER CM ). Notice that, in case of conflicting properties like D
and ¬D, given two scenarios w1 and w2 such that an inclusion p1 :: T(CH) v D
belongs to w1 whereas p2 :: T(CM ) v ¬D belongs to w2, the scenario w2 is
discarded in favor of w1.

In order to select the wanted scenarios, COCOS applies points 1, 2, and 3 above to
blocks of scenarios with the same probability, in decreasing order starting from the
highest one. More in detail, COCOS first discards all the inconsistent scenarios, then it
considers the remaining (consistent) ones in decreasing order by their probabilities. It
then considers the blocks of scenarios with the same probability as follows:

– it discards scenarios considered as trivial, consistently inheriting all (or most of)
the properties from the starting concepts to be combined;

– among the remaining ones, it discards those inheriting properties from the MOD-
IFIER in conflict with properties inherited from the HEAD in another scenario of
the same block (i.e., with the same probability);

– if the set of scenarios of the current block is empty, i.e. all the scenarios have been
discarded either because trivial or because preferring the MODIFIER, COCOS re-
peats the procedure by considering the block of scenarios, all having the immedi-
ately lower probability.

The output of COCOS corresponds to the set of remaining scenarios.
The knowledge base obtained as the result of combining concepts CH and CM into

the compound concept C is called C-revised knowledge base:

KC = 〈R, T ∪ {p : T(C) v D},A〉,

for all D such that T(C) v D is entailed in all the scenarios selected by COCOS.
Notice that, since the C-revised knowledge base is still in the language of the TCL



Fig. 1. Some pictures of COCOS. In addition to presenting the selected scenario with typical
properties of the combined concept (right on the figure), a slider allows the user to select alterna-
tive scenarios, ranging from more trivial to more surprising ones (center and left on the figure).

logic, we can iteratively repeat the same procedure in order to combine not only atomic
concepts, but also compound concepts.

Some pictures of COCOS are shown in Figure 2. An example of the application of
COCOS for the generation of a new concept is shown in the next concluding section.

3 An Example of Application of COCOS
We exploit the system COCOS as a creative support tool to generate a new type of
character in the field of computational creativity for a video game or a movie.

Let us assume to generate a novel concept obtained as the combination of concepts
Villain (as HEAD) and Chair (as MODIFIER). Let K = 〈R, T , ∅〉 be as follows:

R1 Villain v ∃fightsFor .PersonalGoal
R2 Villain v Animate
R3 Villain v ∃hasValues.NegativeMoralValues
R4 Chair v hasComponent .SupportingSitComponent
R5 Chair v hasComponent .Sit
R6 CollectiveGoal u PersonalGoal v ⊥

and T is as follows:

T1 0.9 :: T(Villain) v ∃hasIconicity .Demoniac
T2 0.75 :: T(Villain) v ∃hasOpponent .Hero
T3 0.75 :: T(Villain) v Protagonist
T4 0.8 :: T(Villain) v Impulsive
T5 0.95 :: T(Chair) v ¬Animate
T6 0.95 :: T(Chair) v hasComponent .Back
T7 0.65 :: T(Chair) v madeOf .Wood
T8 0.8 :: T(Chair) v Comfortable
T9 0.7 :: T(Chair) v Inflammable

We consider the 512 scenarios that can be generated from nine typicality inclusions T1–
T9, from which we discard the inconsistent ones, namely those including T5: indeed,
since R2 imposes that villains are animate, in the underlying ALC +TR we conclude



that Villain u Chair v Animate , therefore all scenarios including T5, imposing that
Villain uChair v ¬Animate are inconsistent. We also discard the most obvious sce-
nario including all the typicality inclusions of T , having probability of 14%. Among the
remaining scenarios, the most probable contains all the inclusions related to the HEAD,
namely T1, T2, T3, and T4, whereas it contains T6, T8, and T9 concerning the MOD-
IFIER. This scenario is the preferred one from a cognitive point of view. However, in
this application setting, we could imagine to use our framework as a creativity support
tool and thus considering alternative - more surprising - scenarios by adding additional
constraints. For example, by imposing that the compound concept should inherit six
properties, we would get that the scenario having the highest probability (3.2%) is the
one including all the properties of the HEAD, namely T1, T2, T3 and T4, and two out
of four properties of the MODIFIER, namely T6 and T8, Similarly, we could decide to
prefer - still more surprising - scenarios, by selecting those with probability of 2.51%,
obtaining the following, plausible but not obvious, creative definitions of villain chair:

T1 0.9 :: T(Villain u Chair) v ∃hasIconicity .Demoniac
T2 0.75 :: T(Villain u Chair) v ∃hasOpponent .Hero
T4 0.8 :: T(Villain u Chair) v Impulsive
T6 0.95 :: T(Villain u Chair) v hasComponent .Back
T8 0.8 :: T(Villain u Chair) v Comfortable
T9 0.7 :: T(Villain u Chair) v Inflammable

T1 0.9 :: T(Villain u Chair) v ∃hasIconicity .Demoniac
T3 0.75 :: T(Villain u Chair) v Protagonist
T4 0.8 :: T(Villain u Chair) v Impulsive
T6 0.95 :: T(Villain u Chair) v hasComponent .Back
T8 0.8 :: T(Villain u Chair) v Comfortable
T9 0.7 :: T(Villain u Chair) v Inflammable
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