
Re-Engineering IoT Systems through ACOSO-Meth:

the IETF CoRE based agent framework case study

Claudio Savaglio*, Teemu Leppänen⁑, Wilma Russo*, Jukka Riekki⁑, Giancarlo Fortino*

* Dept. of Informatics, Modelling, Electronics and Systems (DIMES), University of Calabria, 87036 Rende (CS), Italy

csavaglio@dimes.unical.it, w.russo@unical.it, g.fortino@unical.it,

⁑ Center for Ubiquitous Computing, University of Oulu, FI-90014, Finland

teemu.leppanen@oulu.fi, jukka.riekki@oulu.fi

Abstract—The Agent-based Cooperating Smart Objects

methodology (ACOSO-Meth) fully supports the systematic

development of Internet of Things (IoT) systems from analysis to

implementation by tackling their manifold requirements (e.g.,

self-management, distributed smartness, interoperability). At the

same time, ACOSO-Meth allows the re-engineering of existing

IoT systems, thus enhancing their maintainability, reusability

and extensibility. In such direction, this paper (i) first presents

the integration of the resource-oriented agent framework

complying with the IETF Constrained RESTful Environment

(CoRE) framework into ACOSO-Meth; then (ii) reports a case

study to exemplify the re-engineering of a resource-constrained

agent application through the ACOSO-Meth metamodel-driven

approach.

Keywords—Internet of Things; Smart Objects; Methodology;

Software Agents; Resource-oriented Architecture; IETF CoRE.

I. INTRODUCTION

The Internet of Things (IoT) relies on the seamless
interaction among humans, conventional computers and Smart
Objects (SOs), namely everyday devices augmented with
sensing, actuation, processing, and communication capabilities
[18]. SOs, despite their constrained hardware/software
resources (i.e., limited memory and processing units, small
batteries, lightweight operating systems and communication
protocols), are widely acknowledged as fundamental building
blocks for realizing ubiquitous IoT systems and disruptive
services on top of them, in every application scenario. In
particular, SOs are expected to (i) autonomously operate on
their local environment, observing and collecting data and
executing their tasks; (ii) collaborate to provide cyberphysical
services outside the capabilities of a single SO, sharing
information and utilizing other SOs' resources; (iii) distribute
their smartness and functionality, in a bottom-up fashion,
across the whole IoT system. Such advanced behaviors exactly
match the distinctive software agents’ prerogatives, this is the
reason for the wide adoption of the agent-based computing
paradigm for developing IoT systems in terms of multi-agent
systems (MASs) [17]. Indeed, as opposed to cloud-centric and
client/server architectures (which have led to application-
specific, unscalable and isolated IoT silos), MASs are a natural
selection to realize decentralized architectures based on
autonomous, interoperable, cognitive entities, just like SOs
[18]. However, beside the promises of an open ecosystem
providing innovative cyberphysical services, IoT systems and
SOs pose challenging development issues like scalability (IoT

systems have to cope and perform under the massive SO
diffusion that is expected within the next few years),
interoperability (IoT systems of different domains have to
synergistically interact despite the heterogeneity of SOs’
communication protocols, data standards, enabling
technologies, etc.), efficiency (SOs are typically resource-
constrained and battery-powered, hence requiring ad-hoc
working modalities to perform at their best but saving energy),
and management (massive scaled IoT systems cannot
constantly rely on human administrators, thus claiming for
automatic government mechanisms and self-steering SOs).
Therefore, tackling such complex, heterogeneous
cyberphysical IoT systems without systematic approaches and
proper development frameworks is definitively ineffective,
error-prone and time-consuming.

To address the aforementioned issues and support the IoT
systems development, different methodologies have been
proposed over the years. Some of them provide domain-
specific and technology-dependent approaches. For example,
[19] and [20] deal with interoperability solutions for industrial
contexts, while [25] focus on the optimal deployment of IoT
applications in the Fog. Other methodologies, instead, are
general purpose but do not cover the entire IoT systems
development process. For example, [21-23] fully support IoT
system analysis and design through systematic collections of
guidelines, software engineering abstractions and reference
models, but providing implementation frameworks and tools is
out of the scope. To bridge the gap, ACOSO-Meth [1] has been
proposed as a novel full-fledged, application domain-neutral,
agent-oriented, and metamodel-driven methodology. It
supports the development of SO-based IoT systems (from the
preliminary analysis phase to the implementation) as well as re-
engineering legacy IoT frameworks to enhance their
maintainability, reusability and extensibility (features which
cannot be underestimated in the constantly evolving IoT
scenario, where novel devices and services steadily show up).
In this paper, the ACOSO-Meth approach is exploited for re-
engineering a resource-oriented software agent framework
that is based on the IETF Constrained RESTful
Environments (CoRE) [2,4,7]. The agent framework
(ROAgent) enables heterogeneous, resource-constrained agent-
based SOs interoperating in IoT systems in a standardized way.
The integration of ROAgent framework into ACOSO-Meth is
straightforward, effective and sound, since they share the SO-
based vision, IoT system requirements (interoperability,

81

dynamicity, scalability, etc.) and the enabling paradigms
(agent-based and service-oriented computing).

The rest of the paper is organized as follows. Sections II
and III introduce ACOSO-Meth and ROAgent framework,
respectively. Section IV describes the re-engineering of the
framework according to ACOSO-Meth, whose analysis, design
and implementation metamodels are instantiated on a ROAgent
based SO application in Section V. Finally, conclusions are
drawn and future work briefly delineated.

II. ACOSO-METH

Raised from a thorough state-of-the-art analysis aimed at
the identification of the fundamental development
requirements, ACOSO-Meth [1] supports the engineering of
IoT systems through a metamodel-driven approach and the
joint exploitation of well-known computing paradigms and
programming frameworks (respectively, agent-based
computing and ACOSO middleware). Indeed, a set of
technology-agnostic metamodels, placed at different
abstraction levels but strongly interrelated and completely
decoupled from any specific application context, provide
generality to ACOSO-Meth approach and drive IoT developers
towards the development phases of analysis, design and
implementation.

Analysis phase aims at providing an inclusive, but not too
complex, high-level SO representation that is compliant with
emerging IoT architectural standards such as AIOTI and IoT-A
domain models [21, 22]. Indeed, the metamodel of the Analysis
phase disregards all behavioral elements but highlights those
basic features and static/dynamic information (e.g., physical
properties, location, hardware/software characteristics) which
are suitable to describe any SO at a first glance and in every
domain. Therefore, the High-Level SO Metamodel of this
phase represents the basement for the further design and
implementation processes (see Figure 3), which conversely
provide technology-dependent solutions for both SO-SO and
SO-IoT System interactions.

Design phase focuses, more than on SO data, on SO
functionalities, i.e., communication, augmentation, service
provision and information management. Indeed, metamodel of
the Design Phase highlights the functional components of the
SO and their interactions, eliciting adopted computing
paradigms and enabling mechanisms, independently from
specification or low level details. In particular, ACOSO-Meth
designs an SO as a software agent according to the ACOSO
middleware and its agent model (namely, ACOSO-based SO
Metamodel). SO communication is driven by Events handled
by a CommunicationManagementSubsystem, which provides a
common interface enabling communication toward the SO
itself or toward external entities. Similarly, interactions
between the SO and its augmentation devices, regardless of
their specific technology or protocols, are handled by a
DeviceManagementSubsystem. By means of Tasks, the SO
exploits these subsystems and reacts to external stimulus,
fulfills specific goals and exploits inference rules on
local/remote knowledge bases. Both Events and Tasks are
specialized, respectively, with regard to their sources (e.g.,
InternalEvent if the event source is an SO internal component,

DeviceEvent if the event source is an SO device) and purposes
(i.e., SystemTasks refer to basic SO lifecycle operations while
UserDefinedTasks define specific application-oriented SO
operations).

Implementation phase finalizes the outcomes of the
previous stages and its metamodel (JACOSO Metamodel)
elicits the programming paradigms and technology chosen to
realize SO functionalities of communication, augmentation,
service provision and information management. In particular,
for the SO implementation ACOSO-Meth relies on JADE, a
FIPA-compliant, open-source and Java-based agent platform
whose extensions JADEX and JADE-LEAP also run on
constrained devices (e.g., Java Micro Edition-enabled and
Android-supported devices, motes of wireless sensors
networks). JADE provides an effective agent-oriented
management/communication infrastructure, that comprises an
Agent Management System (AMS), an ACL-based Message
Transport System (MTS) and a Directory Facilitator (DF,
which has been purposely extended for realizing a dedicated
and dynamic SO discovery service according to the High-Level
SO Metamodel data). Aiming at interoperability, two sets of
software adapters allow the management of different
communication paradigms (direct message passing,
asynchronous one-to-may communication, etc.) and
augmentation devices (sensors and actuators supporting typical
IoT standards such as ZigBee, Bluetooth, etc.).

According to well-known and important good practices of
software engineering (more than ever crucial for the IoT
context), the ACOSO-Meth approach guarantees:

(i) a suitable and customizable degree of abstraction,
essential to address the difficulty of complex IoT systems’
modeling, through a high-level analysis metamodel that is
incrementally refined and detailed;

(ii) modularity and maintainability, by delegating SO
functionalities to loosely-coupled dedicated subsystems;

(iii) reusability and extensibility, with a hierarchical
classification of Events/Tasks/Adapters, where most of the
code can either be directly reused (frozen-spots) or at least
customized (hot-spots, programmed by extension) according to
the particular application requirements;

(iv) interoperability and evolvability, with
design/implementation choices (e.g., device and
communication adapters, uniform interfaces) purposefully
aimed at accommodating IoT system heterogeneity and its
dynamic evolution.

These properties together make ACOSO-Meth general and
flexible enough to facilitate and speed up the development of
novel SOs/IoT systems as well as the advantageous re-
engineering of existing ones. Indeed, according to both
identified SO functionality groups (communication,
augmentation, service provision and information management)
and development principles (modularity, reusability, etc.),
customized design and implementation metamodels of an
already existing IoT system can be defined starting from the
High-Level SO metamodel. As shown in Figure 1, the ELDA
framework has been partially re-engineered [24] (ELDA-based
SO aims at being simulated but no executed), while the

82

ROAgent framework has been fully integrated in ACOSO-
Meth, as reported in Section IV. More details on ACOSO-
Meth, in particular about the evolution of SO-related concepts
from high-level abstractions to implementable software
components can be found at [1] (e.g., the SO Service first
abstractly presented in terms of Operations and QoS indicators
at the analysis phase and then refined at both design and
implementation phases as application-level UserDefinedTasks
with related ServiceEvents).

Figure 1 Integration of ELDA and ROAgent frameworks in ACOSO-Meth

III. RESOURCE-ORIENTED AGENT FRAMEWORK FOR IOT

The resource-oriented agent framework (ROAgent) [2,7] is
conceptually based on resource-oriented architecture (ROA)
[9] and its realization is based on two existing standards. First,
the standardized IETF CoRE framework [10] specifications are
followed to integrate resource-constrained embedded IoT
devices into the Internet through optimized embedded Web
protocols. The use of embedded Web services is justified from
the interoperability point of view, as Web technologies are
currently the only viable solution for Internet-scale
interoperability. Within the embedded Web, resources and
services of IoT devices become browsable and searchable
across organizational boundaries for both human-machine
interactions and machine-based automatic IoT application
development. Second, the framework provides a subset of
FIPA functionality on the IoT devices which operate as agent
platforms. The FIPA specifications are followed with regard to
agent framework and platforms. However, the ROAgent
framework does not fully realize FIPA ACL but, instead,
embedded Web protocols are used for agent interactions, as
detailed in [7]. This ROAgent framework is currently the only
fully REST-compliant agent framework and the only one
enabling autonomous agents to interact using embedded Web
protocols. Previous work in the context of IoT and software
agents has utilized Web services and protocols for interactions
[11,13,16], Web documents for hosting agents representations
[14,15] and wrappers for translating between ACL and REST
interactions [12].

Conceptually, the main abstraction in ROA is a resource, as
prescribed by the well-known Representational State Transfer
(REST) architectural principles [9]. Generally, everything that
has value in the system is abstracted as a resource and
identified and addressed through a unique URI. This includes
data, IoT devices, their physical components such as sensors,
other system components and services in the system, regardless

of how they are provided. In addition, REST gives the
constraints to define a uniform interface that enables software
components, e.g. IoT devices and services, to automatically
built distributed applications [9]. The interface is typically
realized with well-known Web protocols, such as HTTP or
CoAP for the embedded Web, because their request-reply
semantics (e.g., GET and POST with resource URIs) are
universally known and proven operationally simple. This
allows realizing a uniform interface, as a RESTful API, for the
IoT system components, including resource-constrained
devices [10].

To comply with ROA, the agent framework integrates
software agents and their properties into the system as
resources [7]. The uniform interface is realized for the
framework through two Web protocols, i.e., HTTP and CoAP.
This way, same methods are provided for all system
components for accessing agent services through the resource
abstraction, but also the agents can interact with other system
services using the same interface. Figure 2 illustrates the
ROAgent framework architecture and infrastructure
components. The FIPA DF (including FIPA Agent and Service
Directories) functionality is provided with Distributed
Resource Directory (DRD) [3]. Following the uniform
interface, each system component registers its resources (their
URIs) into the DRD. System components can then perform
runtime lookups to locate needed resources in the system. The
Proxy component is a protocol translator between HTTP and
CoAP protocols, allowing seamless bidirectional resource
access through the uniform interface. In [7], two types of
ROAgent platforms for resource-constrained IoT devices, i.e.,
Android smartphones and Arduino based embedded boards, are
presented. Both platforms provide the minimum required FIPA
components, i.e., AMS, MTS and DF (through DRD). In the
platforms, either HTTP or CoAP serves as the combined
message transport and agent interaction protocol, realizing the
RESTful uniform interface. Therefore, the agents’ vocabulary
for interactions is limited to the protocol method semantics and
expressive power, as described in detail in [7]. With regard to
agent-based SOs, the framework’s RESTful API and the
ROAgent architecture were extended in [4] to include SO-
specific capabilities and high-level abstractions.

Figure 2. Resource-oriented agent framework

83

To fully benefit from the simplified operational semantics
provided with the REST principles and the uniform interface,
the agent architecture needs also to comply with the REST and
ROA principles. An agent architecture [2,7] is defined where
all the agent components, state and properties are abstracted as
resources and thus have their own (hierarchy-based) URIs. The
benefit is that the resource abstraction allows to distribute
browsability, searchability, interoperability, etc. into the system
components and utilize them similarly with the uniform
interface, regardless of their location. In other words, the agent-
based SO functionality can now be distributed in a fully
transparent way [4].

Table 1 illustrates the resource-oriented agent (ROAgent)
architecture [2,4]. ROAgent itself has a name, i.e., a unique
identifier, that is the agent URI. In the Code segment, the agent
has a set of operations that define the agent functionality and
provide services. Individual tasks can be integrated into a
service. These programs, in turn, utilize the other segments,
e.g., knowledge base, and/or interact with local or remote
resources through their corresponding URIs. The Resource
segment defines the device and system resources that the agent
utilizes in its operation. Lastly, the State segment contains the
values of agent properties, such as service content, task and
interaction results, and metadata such as physical or virtual
location and agent creator. Each agent component has its own
URIs that are organized in an agent-based hierarchy in the
agent architecture. As an example, through the RESTful
uniform interface, the agent service content can be retrieved by
any system component using the request GET /agent_name/ or
specifying a service with GET /agent_name/service. Internally,
agent starts a task with POST /task and receives its results
though request GET /task. Local resources are accessed by an
agent task through GET /sensor. Similarly, the agent can access
remote resources with GET /remote_device/sensor or request
an operation for the resource with POST
/remote_device/actuator.

As described in [2,4,7], the ROAgent framework does not
have its own security mechanisms, but it relies on those
provided by the IETF CoRE specifications, e.g., identification,
authorization, CoAP and lower layer protocol stack security.
Indeed, from ROAgent perspective, both agent platforms and
DRD (which actually handles authentication and authorization)
with its registered resources are considered trusted. Conversely,
for agent interactions with remote IoT systems (e.g., external
Web services) over Internet, resources should be considered
untrusted and are therefore accessed in a secure manner, e.g.,
through HTTPS or a proxy to maintain security.

IV. INTEGRATION OF ACOSO AND ROA AGENT FRAMEWORK

In this Section we describe the application of ACOSO-
Meth to the ROAgent-based SO (ROA_SO), which is
compliant with the ROAgent framework and fully compatible
with IETF CoRE framework.

The integration aims at highlighting ROAgent framework
own features (e.g., support to interoperability, attention for
resource-constrained SOs) and, at same time, providing a
higher degree of modularity, maintainability and evolvability.
The performed re-engineering process covers the three

development phases of analysis, design and implementation,
next described in detail.

A. Analysis phase

Metamodel at Analysis phase abstracts SO basic features,
categorized in four main groups, as shown in Figure 3.

• SO BasicInfo comprises basic SO information and setting.
Status contains a list of key-value pairs that capture the SO
state, e.g., current SO temperature, residual energy, etc.;
Location represents its geophysical position expressed
through latitude and longitude coordinates and/or location
tags; PhysicalProperty is a list of physical properties of the
original object without any hardware augmentation and
embedded smartness, e.g., SO dimensions, weight;
FingerPrint comprises SO information like the SO
identifier, the SO creator, the resource URI, etc.

• SO Service models a digital service provided by an SO.
Each service is characterized by a name, description, type
(e.g., sensing and actuation), input data and output data.
Service is implemented by one or more Operations and by
one or more QoSIndicators (e.g., latency, accuracy) whose
associated values are provided. In detail, an Operation,
which defines an individual operation that may be invoked
on a service, has a description, a set of input data types
necessary for its invocation, and an output related to its
result.

• SO User identifies an entity using the services provided by
an SO. In particular, SO Users can be humans (according
to the conventional man-machine use relationship),
SmartObjects (SOs can take advantage of the services
exposed by other SOs), or DigitalSystems (representing a
generic digital entity, like a web service, software agent,
robot or a more complex system).

• Augmentation defines the hardware and software

characteristics of a device that allows augmenting the

physical object and making it smart. A device can be

specialized in one of the following three categories: (i)

Computer, which represents the features of a processing

unit of the SO, e.g., PC, smartphone, and embedded

device; (ii) Sensor, which models the characteristics of a

sensor node of the SO, e.g., presence/temperature/light

sensor; and (iii) Actuator, which models the

TABLE I. RESOURCE-ORIENTED AGENT ARCHITECTURE

Name Resource URI of the agent

Code Operation
Tasks (agent programs)

Services (agent programs)

Resource

Local
Device

resources

Data, Sensors,

Actuators, Services

Remote
System

resources

Any system resource:

Devices and their

components, Services, ..

State

Service content

Knowledge

base
Task results, interaction results

Metadata Location, Physical Properties, Creator, ..

84

characteristics of an actuator node of the SO, e.g., led,

buzzer, switch.

Figure 3. SO High-Level Metamodel at Analysis Phase

B. Design phase

SO High-Level Metamodel is refined at the Design phase to
obtain the ROA_SO Metamodel complying with the ROAgent
framework, as shown in Figure 4. The SO is modeled as an
event-driven, lightweight and platform-neutral agent that
exploits the resource abstraction and ROAgent architecture for
its operations. The SO lifecycle is specified in terms of
Behavior. Behavior consists of one or more state machine-
based components named Tasks and coordinated by
SO_Manager. Tasks can refer to internal system operations
(SystemTask), e.g., management of the SO lifecycle, or to SO
application-specific agent-based functionalities (ServiceTask).
Inputs required by Tasks are acquired through the uniform
interface and resource URIs, providing transparent access
regardless of resource type and location. Tasks are driven by
Events according to the following interaction model. Whenever
an external request or a response to an internal request arrives
to the SO, it is caught by the uniform interface (SO_Interface),
which creates an Event wrapping the message and delivers it to
the SO_Manager. The SO_Manager instructs Tasks responsible
of the needed resources on how to process either the request or
the response to an earlier request. Similarly, such procedure is
followed if, during the request/response processing, the task
need to access other resources. After the request/response has
been processed, an Event is created that contains the output
data, handled again by the SO_Interface and disseminated to
the requestor, if needed. This way tasks cooperate internally to
the SO and can answer complex or aggregated request.

As done for the Analysis phase, the ROA_SO Design
metamodel’s elements are categorized into four main groups:

SO BasicInfo reported at the Analysis phase is extended to
contain the ROAgent state, its resource descriptions (from the
DRD), e.g., tasks and results, their invoking events and the
content description of its knowledge base.

SO Service provided by the SO are encapsulated in specific
ServiceTasks. The ROA_SO service content is derived from
the ROAgent’s service content, that typically comprises its task
results, and if required, from its knowledge base or through
agent’s interactions. In the ROAgent architecture, each service
and related tasks are invoked using the uniform SO_Interface

by the agent itself or any an external component, e.g., SO
Manager.

Augmentation is provided by the Device and External
Resources, e.g., SO sensors, actuators, local and remote
computing capabilities. To comply with the ROAagent
framework, these components are also modeled as resources.
The ROA_SO utilizes the uniform SO_Interface and resource
abstractions to access any of the hardware or software
components it needs, despite their actual location (internal or
external to the SO).

SO Communication is performed through the uniform
SO_Interface component, which is built on REST principles,
i.e., well-known semantics of standardized Web protocols
(HTTP or CoAP), their methods, the URIs and protocol
response codes [9].

C. Implementation phase

At this phase, ROA_SO Metamodel is implemented with
regard to the heterogeneous ROAgent platforms. On one hand,
the Android platform is implemented with Java atop the
Android OS and provides the hardware/software resources of a
modern smartphone. On other hand, the Arduino platform has
very limited hardware components, e.g., a 8-bit microcontroller
with only a few kilobytes of RAM, and in fact it belongs to the
lowest class of devices, resource-wise, defined in the CoRE
standards. As shown in [2,8], minimal ROAgent can be
implemented into a such platform through the C programming
language. The detailed descriptions of the agent platform
implementations are given in [2,7].

The Implementation phase Metamodel is the following
(Figure 5):

SO BasicInfo are retrieved from the ROAgent knowledge
base and task results (the results are the information in the
knowledge base that can be used by others or returned to a
client). Details of ROAgent task execution and interaction are
given in [7]. The knowledge base is updated through the results
of Task execution and ROAgent interactions. Due to limited
hardware resources in the Arduino platform, typically the
responses contain only a few bytes of data and rules regulating
Tasks invocation are simple as well, for example sensor data
filtering. The platform available memory size further limits the
possibility to execute multiple Tasks and the interaction
capabilities between Tasks and with resources.

Figure 4. ROA_SO metamodel at Design Phase

85

SO Service content is encapsulated into the ROAgent state
and typically composed of the knowledge base, task and
interactions results. An SO Service is accessed through the
uniform interface by using the ROAgent URI. If the ROA_SO
includes several Tasks and Services, the results of each
computational component can be retrieved through the URI
hierarchy. This way also the distributed MAS-based SO
functionality [4] can be realized.

Augmentation capabilities refer to the hardware and
software components of the SO hosting devices. Android
devices typically provide a number of embedded sensors (e.g.,
accelerometer, gyroscope), but also remote devices (e.g.,
Bluetooth connected wearables). These all can be modeled as
resources for the ROA_SO, whenever the platform provides
means to interact with them. In the Arduino platform, due to
limited hardware resources, simple sensors and actuators are
easy to integrate through predefined I/O interfaces as resources.
For interoperability with the IETF CoRE framework, platforms
are required to register their available resources into the system
DRD, so that ROA_SOs can share and discover nearby
resources.

SO Communication is managed by the RESTful uniform
interface, implemented either as HTTP (for Android) or CoAP
(Arduino) server. In both platforms, SO_Manager and uniform
interface functionality are implemented as a part of the FIPA
AMS implementation (AMS in Figure 5). This component is
also responsible for handling the communication with the IETF
CoRE framework components, e.g., to register ROA_SO
resources and possibly to interact with the Proxy. IETF CoRE
Proxies are expected to follow the uniform interface, which
makes the interactions straightforward for ROA_SO. As
discussed above, FIPA ACL is not supported in the ROAgent
framework due to limited resources in the constrained
ROAgent platforms, e.g., Arduino. However, to comply with
FIPA specifications, an external resource, e.g., a wrapper, can
be introduced that translates FIPA ACL messages into
RESTful interactions for the uniform interface as in [12]. The
ROAgent interactions should be then directed into this resource
whenever ACL-based interactions are required.

V. CASE STUDY: SMARTMOBILITY

To demonstrate the effectiveness of ACOSO-Meth in re-
engineering existing IoT systems that have been previously
developed without a systematic approach, we present a
ROA_SO-based IoT application SmartMobility as a case study.

The SmartMobilityDetector is an SO that provides
movement traces of individual users and flocks of users within
the premises of the Faculty of Information Technology and
Electrical Engineering (ITEE) at the University of Oulu,
Finland. Movement traces are initially based on collecting
Android smartphone ID's (i.e., MAC addresses) while they are
connected to the Wi-Fi access points. To provide indoor high
precision location tracking and to perform the flock detection,
the devices are expected to periodically perform a Wi-Fi scan,
and this operation returns a data vector of detected Wi-Fi
access points and their respective signal strengths (RSSI) [5].
The flocks of users are then detected based on similarity
measure of the data vectors of different smartphones, as

described in detail in [6]. In addition, a set of stationary
Arduino-based nodes also execute Wi-Fi scans that provide
reference information, in their physical location, of the detected
access points and their RSSI's. Now, the precise location over
time of the smartphones can be estimated with a similarity
measure between the access points scan data and nodes scan
data. In [6], we outline the following system operation. The
IoT devices, i.e., smartphones and Arduino nodes, have joined
the ROAgent framework and registered their resources into the
DRD. The sensing operation in the devices are controlled by
ROAgents, as in [5, 8], which enables the agents to optimize
the device energy consumption by controlling the sensing
operation in the devices, e.g., scan period and length. In
addition, the SmartMobilityDetector runs in a virtual machine
(VM) in an IoT edge server that performs the computationally
expensive flock detection and trace calculation operations.

Next, we show how the ACOSO methodology is applied
for the re-engineering the SmartMobility case study.

A. SmartMobility Analysis Phase

The Analysis phase metamodel of ROA_SO
SmartMobilityDetector is shown in Fig. 6. As deployed into
the ITEE Faculty premises, the SmartMobilityDetector
exploits, in the infrastructure side, a number of Arduino nodes
(identified as AN#x), which are connected to the ROAgent
framework as system resources. This enables them to update
their data to the edge server. Also, the Wi-Fi access points
(identified as AP#x) are considered infrastructure components
and exploited as sensors (Wi-Fi scan).

The deployed devices define the SmartMobilityDetector

coverage area (e.g., 100x100x5m). The SmartMobilityService

service comprises two Operations:

IndividualMobilityDetection, focused on a single smartphone

mobility trace, and FlockMobilityDetection, which first

identifies a set of flocks by analyzing the sensor data from the

devices and secondly provides the aggregated mobility trace.

Both operations are invoked by defining the

(sub)area/timeframe of interest, and are featured by a certain

reliability (calculated as correlation between user data vector

and historical movement traces, which provides means for

anomaly detection). Client Web services can access, according

Figure 5. ROA_SO Metamodel at Implementation Phase

86

to Administrator (security and building maintenance

operators) requests, the SmartMobilityDetector through the

uniform interface with its resource URI that includes an ID

code for the SO (e.g., SMD#1).

Figure 6. SmartMobilityDetector Analysis Metamodel

B. Smart Mobility Design Phase

The refined SmartMobility ACOSO Design metamodel is
shown in Figure 7.

The SO BasicInfo consists of the ROA_SO knowledge base
and lists of participating devices (from DRD based on real-time
information) and infrastructure components. The ROA_SO
knowledge base contains the following information: 1)
collected raw sensor i.e., Wi-Fi scan data from the devices; 2)
task results, i.e., individual movement traces (IndividualTrace
Task), detected flocks (FlockDetection Task) and their traces
(FlockTrace Task), which are shared among Tasks to refine the
information. The SmartMobilityDetector relies on
infrastructure components (Wi-Fi access points and Arduino
nodes) as DeviceResources, the DRD and ROA_SO ROAgent
knowledge base as InternalResource and the pedestrians’
smartphones as ExternalResource. The ROA_SO services are
implemented as Tasks of the ROAgent. Tasks are driven by
Events, which are delivered from the resources through the
uniform interface. In details, InternalEvents notify that
smartphones join/leave the framework. DeviceEvents notify
that new scan data has been uploaded from the Arduino nodes
or that Wi-Fi access point information has changed.
ServiceEvents (traceEvent and flockEvent) are exploited
whenever a task produces results, which are exploitable by
other tasks. ExternalEvents enable the interaction with the
ROAgent running in the smartphones, e.g., when
SmartMobility service sets the required Wi-Fi scanning

parameters or a ROAgent in a smartphone informs that its
battery level is insufficient to continue participation.

Figure 7 SmartMobilityDetector Design Metamodel

C. SmartMobility Implementation

It is expected that the participating IoT devices run the
ROAgent platform, which enables autonomous smart operation
and also integration into the ROAgent framework. The IoT
edge server implements the SmartMobilityDetector as a VM,
thus encapsulating SO functionality into an executable unit that
can be migrated in the IoT system infrastructure side, following
the common solution for edge computing applications.

The ROAgent-based SmartMobilityDetector follows the
architecture shown in Table 1 and it is shown in Figure 8.
SmartMobilityDetector BasicInfo includes the state of the
ROAgent. The knowledge base is implemented in the Android
platform as a database and in the Arduino platform as a shared
memory component The SmartMobility service is implemented
through Operations, i.e., agent programs for flock detection,
IndividualMobilityDetection and FlockMobilityDetection. The
actual SmartMobility implementation is then a composite of
the Task agent programs and their results, which is responsible
for event-driven execution of the Tasks. In addition, the
ServiceConfigurationTask allows interacting with the
ROAgents in the smartphones and Arduino boards, for
example, in order to set Wi-Fi scan parameters.
SOConfigurationTask, instead, allows setting the SO internal
parameters, such as SO creator, ID, etc. The ROAgent platform
AMS implements the uniform interface, which enables to
utilize internal (ROAgent state and DRD) and external
resources (participating devices) and their data in the service
execution. To interact with the heterogeneous IoT devices, it is
required that the AMS provides both CoAPAdapter (for
Arduino boards) and HTTPAdapter (for Android smartphones).
This realizes the MTS. As an example, HTTP/CoAP POST
method is used to set the Wi-Fi scan operation parameters and
GET method (or CoAP OBSERVE method) is used to retrieve
data from the devices. The ACLAdapter resource is not
required for the SmartMobilityDetector SO.

CONCLUSION
Complexity and requirements characterizing IoT systems

and SOs claim for proper development methodology and

87

frameworks. In this paper the re-engineering of the ROAgent
framework according to ACOSO-Meth methodology has been

Figure 8 SmartMobilityDetector Implementation Metamodel

presented and exemplified with a ROAgent framework–based
crowdsensing application of SmartMobility. In particular, we
showed that ACOSO-Meth-based re-engineering highlights
and enhances both functional (e.g., support to interoperability,
attention for resource-constrained SOs) and non-functional
(e.g., modularity, maintainability, evolvability) features of
ROAgent framework, due to the full-fledged, domain-neutral
and metamodel-driven approach. All the aforementioned
features, both functional and non-functional, generate
fundamental benefits for complex and heterogeneous IoT
scenarios. The integration of ROAgent framework into
ACOSO-Meth is straightforward, effective and sound since
they share the SO-based vision, IoT system requirements and
the enabling computing paradigms (agent-based and service-
oriented). As future work, we plan to study the outlined
SmartMobility application in real-world settings at the smart
university and smart city, to gain deeper understanding on the
challenges of resource-constrained IoT development [26, 27].

ACKNOWLEDGMENT
This work has been carried out under the framework of INTER-

IoT, Research and Innovation action - Horizon 2020 European Project,
Grant Agreement #687283, financed by the European Union.

REFERENCES
[1] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-

Oriented Cooperative Smart Objects: From IoT System Design to
Implementation,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–18, 2017. doi: 10.1109/TSMC.2017.2780618

[2] T. Leppänen, M. Liu, E. Harjula, A. Ramalingam, J. Ylioja, P. Närhi, J.
Riekki, and T. Ojala, “Mobile Agents for Integration of Internet of
Things and Wireless Sensor Networks,” in IEEE Int’l Conf. on Systems,
Man, and Cybernetics (SMC2013), pp. 14-21, Manchester, UK, 2013.

[3] M. Liu, T. Leppänen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila
and T. Ojala, “Distributed resource directory architecture in Machine-to-
Machine communications,” in 9th IEEE Int’l Conf. on Wireless and
Mobile computing, Networking and Communications (WiMob), pp.
319-324, Lyon, France, 2013.

[4] T. Leppänen, J. Riekki, M. Liu, E. Harjula and T. Ojala, “Mobile
Agents-based Smart Objects for the Internet of Things,” in: Fortino and

Trunfio (eds.), Internet of Things based on Smart Objects: Technology,
Middleware and Applications, pp. 29-48, Springer, Heidelberg, 2014.

[5] T. Leppänen, T., J. Alvarez Lacasia, Y. Tobe, K. Sezaki and J. Riekki,
“Mobile Crowdsensing with Mobile Agents,” in Autonomous Agents
and Multi-agent Systems, vol. 31, no. 1, pp. 1-35, Springer, 2017.

[6] J. Alvarez Lacasia, T. Leppänen, M. Iwai, H. Kobayashi and K. Sezaki,
“A method for grouping smartphone users based on Wi-Fi signal
strength,” in Forum on Information Technology, paper J-032,
Information Processing Society of Japan, 2013.

[7] T. Leppänen, “Resource-oriented mobile agent and software framework
for the Internet of Things”. Doctoral dissertation, Acta Universitatis
Ouluensis, C Technica, no. 645, University of Oulu, ISBN 978-952-62-
1813-7, 2018.

[8] T. Leppänen and J. Riekki, “Energy Efficient Opportunistic Edge
Computing for the Internet of Things”, Web Intelligence, IOS Press,
2018 [Accepted].

[9] L. Richardson & S. Ruby, “RESTful web services”, O'Reilly, 2008.

[10] Z. Shelby, “Embedded web services”, IEEE Wireless Communications,
vol. 17, no. 6, 2010.

[11] P. Leong and L. Lu, “Multiagent web for the internet of things,” in IEEE
ICISA2014, pp. 1-4, 2014.

[12] L. Braubach and A. Pokahr, “Conceptual integration of agents with wsdl
and restful web services”, in Int’l Conf. on Autonomous Agents and
Multiagent Systems, pp. 17-34, 2012.

[13] J. Jamont, L. Medini and M. Mrissa, “A web-based agent-oriented
approach to address heterogeneity in cooperative embedded systems,” in
Trends in Practical Applications of Heterogeneous Multi-Agent
Systems. The PAAMS Collection, pp. 45-52, 2014.

[14] J. Voutilainen, A. Mattila, K. Systä and T. Mikkonen, “HTML5-based
mobile agents for Web-of-Things,” Informatica, vol. 40, no. 1, 2016.

[15] D. Mitrovic, et al., “The Siebog multiagent middleware”, Knowledge-
Based Systems, vol. 103, 56-59, 2016

[16] P. Pico, J. Holgado-Terraza, “A Framework for the Development of
Smart Ubiquitous Real-Time Systems Based on the Internet of Agents
and Internet of Services Approaches”, 12th Int’l Conf. on Intelligent
Environments, vol. 21, p. 76, 2016.

[17] C. Savaglio, G. Fortino, M. Ganzha, M. Paprzycki, C. Bădică, and M.
Ivanović, “Agent-Based Computing in the Internet of Things: A
Survey,” in Int’l Symposium on Intelligent and Distributed Computing,
2017, pp. 307–320.

[18] C. Savaglio, G. Fortino, and M. Zhou, “Towards interoperable, cognitive
and autonomic IoT systems: An agent-based approach,” in Internet of
Things (WF-IoT), 2016 IEEE 3rd World Forum on, 2016, pp. 58–63.

[19] D. Slama, F. Puhlmann, J. Morrish, and R. M. Bhatnagar, “Enterprise
IoT: Strategies and Best Practices for Connected Products and Services,”
O’Reilly Media, Inc., 2015.

[20] T. Collins, “A methodology for building the Internet of Things,” 2017.

[21] A. Bassi et al., “Enabling things to talk,” Springer, 2016.

[22] O. Vermesan and P. Friess, “Building the hyperconnected society:
Internet of things research and innovation value chains, ecosystems and
markets,” vol. 43. River Publishers, 2015.

[23] F. Zambonelli, “Towards a general software engineering methodology
for the Internet of Things,” arXiv preprint arXiv:1601.05569, 2016.

[24] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Towards a
development methodology for smart object-oriented IoT systems: A
metamodel approach,” in Systems, Man, and Cybernetics (SMC), 2015
IEEE Int’l Conf. on, 2015, pp. 1297–1302.

[25] S. Venticinque and A. Amato, “A methodology for deployment of IoT
application in fog,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1–22, 2018.

[26] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio and M. Viroli,
“Modelling and Simulation of Opportunistic IoT Services with
Aggregate Computing,” in Future Generation Computer Systems, to
appear.

[27] G. Fortino, and P. Trunfio, “Internet of things based on smart objects:
Technology, middleware and applications,” Springer Science &
Business Media, 2014.

88

89

