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Abstract—The Agent-based Cooperating Smart Objects 

methodology (ACOSO-Meth) fully supports the systematic 

development of Internet of Things (IoT) systems from analysis to 

implementation by tackling their manifold requirements (e.g., 

self-management, distributed smartness, interoperability). At the 

same time, ACOSO-Meth allows the re-engineering of existing 

IoT systems, thus enhancing their maintainability, reusability 

and extensibility. In such direction, this paper (i) first presents 

the integration of the resource-oriented agent framework 

complying with the IETF Constrained RESTful Environment 

(CoRE) framework into ACOSO-Meth; then (ii) reports a case 

study to exemplify the re-engineering of a resource-constrained 

agent application through the ACOSO-Meth metamodel-driven 

approach. 

Keywords—Internet of Things; Smart Objects; Methodology; 
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I.  INTRODUCTION  

The Internet of Things (IoT) relies on the seamless 
interaction among humans, conventional computers and Smart 
Objects (SOs), namely everyday devices augmented with 
sensing, actuation, processing, and communication capabilities 
[18]. SOs, despite their constrained hardware/software 
resources (i.e., limited memory and processing units, small 
batteries, lightweight operating systems and communication 
protocols), are widely acknowledged as fundamental building 
blocks for realizing ubiquitous IoT systems and disruptive 
services on top of them, in every application scenario. In 
particular, SOs are expected to (i) autonomously operate on 
their local environment, observing and collecting data and 
executing their tasks; (ii) collaborate to provide cyberphysical 
services outside the capabilities of a single SO, sharing 
information and utilizing other SOs' resources; (iii) distribute 
their smartness and functionality, in a bottom-up fashion, 
across the whole IoT system. Such advanced behaviors exactly 
match the distinctive software agents’ prerogatives, this is the 
reason for the wide adoption of the agent-based computing 
paradigm for developing IoT systems in terms of multi-agent 
systems (MASs) [17]. Indeed, as opposed to cloud-centric and 
client/server architectures (which have led to application-
specific, unscalable and isolated IoT silos), MASs are a natural 
selection to realize decentralized architectures based on 
autonomous, interoperable, cognitive entities, just like SOs 
[18]. However, beside the promises of an open ecosystem 
providing innovative cyberphysical services, IoT systems and 
SOs pose challenging development issues like scalability (IoT 

systems have to cope and perform under the massive SO 
diffusion that is expected within the next few years), 
interoperability (IoT systems of different domains have to 
synergistically interact despite the heterogeneity of SOs’ 
communication protocols, data standards, enabling 
technologies, etc.), efficiency (SOs are typically resource-
constrained and battery-powered, hence requiring ad-hoc 
working modalities to perform at their best but saving energy), 
and management (massive scaled IoT systems cannot 
constantly rely on human administrators, thus claiming for 
automatic government mechanisms and self-steering SOs). 
Therefore, tackling such complex, heterogeneous 
cyberphysical IoT systems without systematic approaches and 
proper development frameworks is definitively ineffective, 
error-prone and time-consuming. 

To address the aforementioned issues and support the IoT 
systems development, different methodologies have been 
proposed over the years. Some of them provide domain-
specific and technology-dependent approaches. For example, 
[19] and [20] deal with interoperability solutions for industrial 
contexts, while [25] focus on the optimal deployment of IoT 
applications in the Fog. Other methodologies, instead, are 
general purpose but do not cover the entire IoT systems 
development process. For example, [21-23] fully support IoT 
system analysis and design through systematic collections of 
guidelines, software engineering abstractions and reference 
models, but providing implementation frameworks and tools is 
out of the scope. To bridge the gap, ACOSO-Meth [1] has been 
proposed as a novel full-fledged, application domain-neutral, 
agent-oriented, and metamodel-driven methodology. It 
supports the development of SO-based IoT systems (from the 
preliminary analysis phase to the implementation) as well as re-
engineering legacy IoT frameworks to enhance their 
maintainability, reusability and extensibility (features which 
cannot be underestimated in the constantly evolving IoT 
scenario, where novel devices and services steadily show up). 
In this paper, the ACOSO-Meth approach is exploited for re-
engineering a resource-oriented software agent framework 
that is based on the IETF Constrained RESTful 
Environments (CoRE) [2,4,7]. The agent framework 
(ROAgent) enables heterogeneous, resource-constrained agent-
based SOs interoperating in IoT systems in a standardized way. 
The integration of ROAgent framework into ACOSO-Meth is 
straightforward, effective and sound, since they share the SO-
based vision, IoT system requirements (interoperability, 
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dynamicity, scalability, etc.) and the enabling paradigms 
(agent-based and service-oriented computing). 

The rest of the paper is organized as follows. Sections II 
and III introduce ACOSO-Meth and ROAgent framework, 
respectively. Section IV describes the re-engineering of the 
framework according to ACOSO-Meth, whose analysis, design 
and implementation metamodels are instantiated on a ROAgent 
based SO application in Section V. Finally, conclusions are 
drawn and future work briefly delineated. 

II. ACOSO-METH 

Raised from a thorough state-of-the-art analysis aimed at 
the identification of the fundamental development 
requirements, ACOSO-Meth [1] supports the engineering of 
IoT systems through a metamodel-driven approach and the 
joint exploitation of well-known computing paradigms and 
programming frameworks (respectively, agent-based 
computing and ACOSO middleware). Indeed, a set of 
technology-agnostic metamodels, placed at different 
abstraction levels but strongly interrelated and completely 
decoupled from any specific application context, provide 
generality to ACOSO-Meth approach and drive IoT developers 
towards the development phases of analysis, design and 
implementation.  

Analysis phase aims at providing an inclusive, but not too 
complex, high-level SO representation that is compliant with 
emerging IoT architectural standards such as AIOTI and IoT-A 
domain models [21, 22]. Indeed, the metamodel of the Analysis 
phase disregards all behavioral elements but highlights those 
basic features and static/dynamic information (e.g., physical 
properties, location, hardware/software characteristics) which 
are suitable to describe any SO at a first glance and in every 
domain. Therefore, the High-Level SO Metamodel of this 
phase represents the basement for the further design and 
implementation processes (see Figure 3), which conversely 
provide technology-dependent solutions for both SO-SO and 
SO-IoT System interactions. 

Design phase focuses, more than on SO data, on SO 
functionalities, i.e., communication, augmentation, service 
provision and information management. Indeed, metamodel of 
the Design Phase highlights the functional components of the 
SO and their interactions, eliciting adopted computing 
paradigms and enabling mechanisms, independently from 
specification or low level details. In particular, ACOSO-Meth 
designs an SO as a software agent according to the ACOSO 
middleware and its agent model (namely, ACOSO-based SO 
Metamodel). SO communication is driven by Events handled 
by a CommunicationManagementSubsystem, which provides a 
common interface enabling communication toward the SO 
itself or toward external entities. Similarly, interactions 
between the SO and its augmentation devices, regardless of 
their specific technology or protocols, are handled by a 
DeviceManagementSubsystem. By means of Tasks, the SO 
exploits these subsystems and reacts to external stimulus, 
fulfills specific goals and exploits inference rules on 
local/remote knowledge bases. Both Events and Tasks are 
specialized, respectively, with regard to their sources (e.g., 
InternalEvent if the event source is an SO internal component, 

DeviceEvent if the event source is an SO device) and purposes 
(i.e., SystemTasks refer to basic SO lifecycle operations while 
UserDefinedTasks define specific application-oriented SO 
operations). 

Implementation phase finalizes the outcomes of the 
previous stages and its metamodel (JACOSO Metamodel) 
elicits the programming paradigms and technology chosen to 
realize SO functionalities of communication, augmentation, 
service provision and information management. In particular, 
for the SO implementation ACOSO-Meth relies on JADE, a 
FIPA-compliant, open-source and Java-based agent platform 
whose extensions JADEX and JADE-LEAP also run on 
constrained devices (e.g., Java Micro Edition-enabled and 
Android-supported devices, motes of wireless sensors 
networks). JADE provides an effective agent-oriented 
management/communication infrastructure, that comprises an 
Agent Management System (AMS), an ACL-based Message 
Transport System (MTS) and a Directory Facilitator (DF, 
which has been purposely extended for realizing a dedicated 
and dynamic SO discovery service according to the High-Level 
SO Metamodel data). Aiming at interoperability, two sets of 
software adapters allow the management of different 
communication paradigms (direct message passing, 
asynchronous one-to-may communication, etc.) and 
augmentation devices (sensors and actuators supporting typical 
IoT standards such as ZigBee, Bluetooth, etc.). 

According to well-known and important good practices of 
software engineering (more than ever crucial for the IoT 
context), the ACOSO-Meth approach guarantees: 

(i) a suitable and customizable degree of abstraction, 
essential to address the difficulty of complex IoT systems’ 
modeling, through a high-level analysis metamodel that is 
incrementally refined and detailed; 

(ii) modularity and maintainability, by delegating SO 
functionalities to loosely-coupled dedicated subsystems; 

(iii) reusability and extensibility, with a hierarchical 
classification of Events/Tasks/Adapters, where most of the 
code can either be directly reused (frozen-spots) or at least 
customized (hot-spots, programmed by extension) according to 
the particular application requirements; 

(iv) interoperability and evolvability, with 
design/implementation choices (e.g., device and 
communication adapters, uniform interfaces) purposefully 
aimed at accommodating IoT system heterogeneity and its 
dynamic evolution. 

These properties together make ACOSO-Meth general and 
flexible enough to facilitate and speed up the development of 
novel SOs/IoT systems as well as the advantageous re-
engineering of existing ones. Indeed, according to both 
identified SO functionality groups (communication, 
augmentation, service provision and information management) 
and development principles (modularity, reusability, etc.), 
customized design and implementation metamodels of an 
already existing IoT system can be defined starting from the 
High-Level SO metamodel. As shown in Figure 1, the ELDA 
framework has been partially re-engineered [24] (ELDA-based 
SO aims at being simulated but no executed), while the 
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ROAgent framework has been fully integrated in ACOSO-
Meth, as reported in Section IV. More details on ACOSO-
Meth, in particular about the evolution of SO-related concepts 
from high-level abstractions to implementable software 
components can be found at [1] (e.g., the SO Service first 
abstractly presented in terms of Operations and QoS indicators 
at the analysis phase and then refined at both design and 
implementation phases as application-level UserDefinedTasks 
with related ServiceEvents). 

 

Figure 1 Integration of ELDA and ROAgent frameworks in ACOSO-Meth 

III. RESOURCE-ORIENTED AGENT FRAMEWORK FOR IOT 

The resource-oriented agent framework (ROAgent) [2,7] is 
conceptually based on resource-oriented architecture (ROA) 
[9] and its realization is based on two existing standards. First, 
the standardized IETF CoRE framework [10] specifications are 
followed to integrate resource-constrained embedded IoT 
devices into the Internet through optimized embedded Web 
protocols. The use of embedded Web services is justified from 
the interoperability point of view, as Web technologies are 
currently the only viable solution for Internet-scale 
interoperability. Within the embedded Web, resources and 
services of IoT devices become browsable and searchable 
across organizational boundaries for both human-machine 
interactions and machine-based automatic IoT application 
development. Second, the framework provides a subset of 
FIPA functionality on the IoT devices which operate as agent 
platforms. The FIPA specifications are followed with regard to 
agent framework and platforms. However, the ROAgent 
framework does not fully realize FIPA ACL but, instead, 
embedded Web protocols are used for agent interactions, as 
detailed in [7]. This ROAgent framework is currently the only 
fully REST-compliant agent framework and the only one 
enabling autonomous agents to interact using embedded Web 
protocols. Previous work in the context of IoT and software 
agents has utilized Web services and protocols for interactions 
[11,13,16], Web documents for hosting agents representations 
[14,15] and wrappers for translating between ACL and REST 
interactions [12].  

Conceptually, the main abstraction in ROA is a resource, as 
prescribed by the well-known Representational State Transfer 
(REST) architectural principles [9]. Generally, everything that 
has value in the system is abstracted as a resource and 
identified and addressed through a unique URI. This includes 
data, IoT devices, their physical components such as sensors, 
other system components and services in the system, regardless 

of how they are provided. In addition, REST gives the 
constraints to define a uniform interface that enables software 
components, e.g. IoT devices and services, to automatically 
built distributed applications [9]. The interface is typically 
realized with well-known Web protocols, such as HTTP or 
CoAP for the embedded Web, because their request-reply 
semantics (e.g., GET and POST with resource URIs) are 
universally known and proven operationally simple. This 
allows realizing a uniform interface, as a RESTful API, for the 
IoT system components, including resource-constrained 
devices [10].  

To comply with ROA, the agent framework integrates 
software agents and their properties into the system as 
resources [7]. The uniform interface is realized for the 
framework through two Web protocols, i.e., HTTP and CoAP. 
This way, same methods are provided for all system 
components for accessing agent services through the resource 
abstraction, but also the agents can interact with other system 
services using the same interface. Figure 2 illustrates the 
ROAgent framework architecture and infrastructure 
components. The FIPA DF (including FIPA Agent and Service 
Directories) functionality is provided with Distributed 
Resource Directory (DRD) [3]. Following the uniform 
interface, each system component registers its resources (their 
URIs) into the DRD. System components can then perform 
runtime lookups to locate needed resources in the system. The 
Proxy component is a protocol translator between HTTP and 
CoAP protocols, allowing seamless bidirectional resource 
access through the uniform interface. In [7], two types of 
ROAgent platforms for resource-constrained IoT devices, i.e., 
Android smartphones and Arduino based embedded boards, are 
presented. Both platforms provide the minimum required FIPA 
components, i.e., AMS, MTS and DF (through DRD). In the 
platforms, either HTTP or CoAP serves as the combined 
message transport and agent interaction protocol, realizing the 
RESTful uniform interface. Therefore, the agents’ vocabulary 
for interactions is limited to the protocol method semantics and 
expressive power, as described in detail in [7]. With regard to 
agent-based SOs, the framework’s RESTful API and the 
ROAgent architecture were extended in [4] to include SO-
specific capabilities and high-level abstractions. 

Figure 2. Resource-oriented agent framework 
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To fully benefit from the simplified operational semantics 
provided with the REST principles and the uniform interface, 
the agent architecture needs also to comply with the REST and 
ROA principles. An agent architecture [2,7] is defined where 
all the agent components, state and properties are abstracted as 
resources and thus have their own (hierarchy-based) URIs. The 
benefit is that the resource abstraction allows to distribute 
browsability, searchability, interoperability, etc. into the system 
components and utilize them similarly with the uniform 
interface, regardless of their location. In other words, the agent-
based SO functionality can now be distributed in a fully 
transparent way [4].  

Table 1 illustrates the resource-oriented agent (ROAgent) 
architecture [2,4]. ROAgent itself has a name, i.e., a unique 
identifier, that is the agent URI. In the Code segment, the agent 
has a set of operations that define the agent functionality and 
provide services. Individual tasks can be integrated into a 
service. These programs, in turn, utilize the other segments, 
e.g., knowledge base, and/or interact with local or remote 
resources through their corresponding URIs. The Resource 
segment defines the device and system resources that the agent 
utilizes in its operation. Lastly, the State segment contains the 
values of agent properties, such as service content, task and 
interaction results, and metadata such as physical or virtual 
location and agent creator. Each agent component has its own 
URIs that are organized in an agent-based hierarchy in the 
agent architecture. As an example, through the RESTful 
uniform interface, the agent service content can be retrieved by 
any system component using the request GET /agent_name/ or 
specifying a service with GET /agent_name/service. Internally, 
agent starts a task with POST /task and receives its results 
though request GET /task. Local resources are accessed by an 
agent task through GET /sensor. Similarly, the agent can access 
remote resources with GET /remote_device/sensor or request 
an operation for the resource with POST 
/remote_device/actuator.  

As described in [2,4,7], the ROAgent framework does not 
have its own security mechanisms, but it relies on those 
provided by the IETF CoRE specifications, e.g., identification, 
authorization, CoAP and lower layer protocol stack security. 
Indeed, from ROAgent perspective, both agent platforms and 
DRD (which actually handles authentication and authorization) 
with its registered resources are considered trusted. Conversely, 
for agent interactions with remote IoT systems (e.g., external 
Web services) over Internet, resources should be considered 
untrusted and are therefore accessed in a secure manner, e.g., 
through HTTPS or a proxy to maintain security. 

IV. INTEGRATION OF ACOSO AND ROA AGENT FRAMEWORK 

In this Section we describe the application of ACOSO-
Meth to the ROAgent-based SO (ROA_SO), which is 
compliant with the ROAgent framework and fully compatible 
with IETF CoRE framework.  

The integration aims at highlighting ROAgent framework 
own features (e.g., support to interoperability, attention for 
resource-constrained SOs) and, at same time, providing a 
higher degree of modularity, maintainability and evolvability. 
The performed re-engineering process covers the three 

development phases of analysis, design and implementation, 
next described in detail. 

A. Analysis phase 

Metamodel at Analysis phase abstracts SO basic features, 
categorized in four main groups, as shown in Figure 3. 

• SO BasicInfo comprises basic SO information and setting. 
Status contains a list of key-value pairs that capture the SO 
state, e.g., current SO temperature, residual energy, etc.; 
Location represents its geophysical position expressed 
through latitude and longitude coordinates and/or location 
tags; PhysicalProperty is a list of physical properties of the 
original object without any hardware augmentation and 
embedded smartness, e.g., SO dimensions, weight; 
FingerPrint comprises SO information like the SO 
identifier, the SO creator, the resource URI, etc.  

• SO Service models a digital service provided by an SO. 
Each service is characterized by a name, description, type 
(e.g., sensing and actuation), input data and output data. 
Service is implemented by one or more Operations and by 
one or more QoSIndicators (e.g., latency, accuracy) whose 
associated values are provided. In detail, an Operation, 
which defines an individual operation that may be invoked 
on a service, has a description, a set of input data types 
necessary for its invocation, and an output related to its 
result. 

• SO User identifies an entity using the services provided by 
an SO. In particular, SO Users can be humans (according 
to the conventional man-machine use relationship), 
SmartObjects (SOs can take advantage of the services 
exposed by other SOs), or DigitalSystems (representing a 
generic digital entity, like a web service, software agent, 
robot or a more complex system). 

• Augmentation defines the hardware and software 

characteristics of a device that allows augmenting the 

physical object and making it smart. A device can be 

specialized in one of the following three categories: (i) 

Computer, which represents the features of a processing 

unit of the SO, e.g., PC, smartphone, and embedded 

device; (ii) Sensor, which models the characteristics of a 

sensor node of the SO, e.g., presence/temperature/light 

sensor; and (iii) Actuator, which models the 

TABLE I.  RESOURCE-ORIENTED AGENT ARCHITECTURE 

Name Resource URI of the agent 

Code Operation 
Tasks (agent programs) 

Services (agent programs) 

Resource 

Local 
Device 

resources 

Data, Sensors, 

Actuators, Services 

Remote 
System 

resources 

Any system resource: 

Devices and their 

components, Services, .. 

State 

Service content 

Knowledge 

base  
Task results, interaction results 

Metadata Location, Physical Properties, Creator, .. 
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characteristics of an actuator node of the SO, e.g., led, 

buzzer, switch.  

 

Figure 3. SO High-Level Metamodel at Analysis Phase 

B. Design phase 

SO High-Level Metamodel is refined at the Design phase to 
obtain the ROA_SO Metamodel complying with the ROAgent 
framework, as shown in Figure 4. The SO is modeled as an 
event-driven, lightweight and platform-neutral agent that 
exploits the resource abstraction and ROAgent architecture for 
its operations. The SO lifecycle is specified in terms of 
Behavior. Behavior consists of one or more state machine-
based components named Tasks and coordinated by 
SO_Manager. Tasks can refer to internal system operations 
(SystemTask), e.g., management of the SO lifecycle, or to SO 
application-specific agent-based functionalities (ServiceTask). 
Inputs required by Tasks are acquired through the uniform 
interface and resource URIs, providing transparent access 
regardless of resource type and location. Tasks are driven by 
Events according to the following interaction model. Whenever 
an external request or a response to an internal request arrives 
to the SO, it is caught by the uniform interface (SO_Interface), 
which creates an Event wrapping the message and delivers it to 
the SO_Manager. The SO_Manager instructs Tasks responsible 
of the needed resources on how to process either the request or 
the response to an earlier request. Similarly, such procedure is 
followed if, during the request/response processing, the task 
need to access other resources. After the request/response has 
been processed, an Event is created that contains the output 
data, handled again by the SO_Interface and disseminated to 
the requestor, if needed. This way tasks cooperate internally to 
the SO and can answer complex or aggregated request. 

As done for the Analysis phase, the ROA_SO Design 
metamodel’s elements are categorized into four main groups: 

SO BasicInfo reported at the Analysis phase is extended to 
contain the ROAgent state, its resource descriptions (from the 
DRD), e.g., tasks and results, their invoking events and the 
content description of its knowledge base.  

SO Service provided by the SO are encapsulated in specific 
ServiceTasks. The ROA_SO service content is derived from 
the ROAgent’s service content, that typically comprises its task 
results, and if required, from its knowledge base or through 
agent’s interactions. In the ROAgent architecture, each service 
and related tasks are invoked using the uniform SO_Interface 

by the agent itself or any an external component, e.g., SO 
Manager.  

Augmentation is provided by the Device and External 
Resources, e.g., SO sensors, actuators, local and remote 
computing capabilities. To comply with the ROAagent 
framework, these components are also modeled as resources. 
The ROA_SO utilizes the uniform SO_Interface and resource 
abstractions to access any of the hardware or software 
components it needs, despite their actual location (internal or 
external to the SO). 

SO Communication is performed through the uniform 
SO_Interface component, which is built on REST principles, 
i.e., well-known semantics of standardized Web protocols 
(HTTP or CoAP), their methods, the URIs and protocol 
response codes [9]. 

C. Implementation phase 

At this phase, ROA_SO Metamodel is implemented with 
regard to the heterogeneous ROAgent platforms. On one hand, 
the Android platform is implemented with Java atop the 
Android OS and provides the hardware/software resources of a 
modern smartphone. On other hand, the Arduino platform has 
very limited hardware components, e.g., a 8-bit microcontroller 
with only a few kilobytes of RAM, and in fact it belongs to the 
lowest class of devices, resource-wise, defined in the CoRE 
standards. As shown in [2,8], minimal ROAgent can be 
implemented into a such platform through the C programming 
language. The detailed descriptions of the agent platform 
implementations are given in [2,7].  

The Implementation phase Metamodel is the following 
(Figure 5): 

SO BasicInfo are retrieved from the ROAgent knowledge 
base and task results (the results are the information in the 
knowledge base that can be used by others or returned to a 
client). Details of ROAgent task execution and interaction are 
given in [7]. The knowledge base is updated through the results 
of Task execution and ROAgent interactions. Due to limited 
hardware resources in the Arduino platform, typically the 
responses contain only a few bytes of data and rules regulating 
Tasks invocation are simple as well, for example sensor data 
filtering. The platform available memory size further limits the 
possibility to execute multiple Tasks and the interaction 
capabilities between Tasks and with resources.  

Figure 4. ROA_SO metamodel at Design Phase 
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SO Service content is encapsulated into the ROAgent state 
and typically composed of the knowledge base, task and 
interactions results. An SO Service is accessed through the 
uniform interface by using the ROAgent URI. If the ROA_SO 
includes several Tasks and Services, the results of each 
computational component can be retrieved through the URI 
hierarchy. This way also the distributed MAS-based SO 
functionality [4] can be realized. 

Augmentation capabilities refer to the hardware and 
software components of the SO hosting devices. Android 
devices typically provide a number of embedded sensors (e.g., 
accelerometer, gyroscope), but also remote devices (e.g., 
Bluetooth connected wearables). These all can be modeled as 
resources for the ROA_SO, whenever the platform provides 
means to interact with them. In the Arduino platform, due to 
limited hardware resources, simple sensors and actuators are 
easy to integrate through predefined I/O interfaces as resources. 
For interoperability with the IETF CoRE framework, platforms 
are required to register their available resources into the system 
DRD, so that ROA_SOs can share and discover nearby 
resources. 

SO Communication is managed by the RESTful uniform 
interface, implemented either as HTTP (for Android) or CoAP 
(Arduino) server. In both platforms, SO_Manager and uniform 
interface functionality are implemented as a part of the FIPA 
AMS implementation (AMS in Figure 5). This component is 
also responsible for handling the communication with the IETF 
CoRE framework components, e.g., to register ROA_SO 
resources and possibly to interact with the Proxy. IETF CoRE 
Proxies are expected to follow the uniform interface, which 
makes the interactions straightforward for ROA_SO. As 
discussed above, FIPA ACL is not supported in the ROAgent 
framework due to limited resources in the constrained 
ROAgent platforms, e.g., Arduino. However, to comply with 
FIPA specifications, an external resource, e.g., a wrapper, can 
be introduced that translates FIPA ACL messages into 
RESTful interactions for the uniform interface as in [12]. The 
ROAgent interactions should be then directed into this resource 
whenever ACL-based interactions are required.  

V. CASE STUDY: SMARTMOBILITY 

To demonstrate the effectiveness of ACOSO-Meth in re-
engineering existing IoT systems that have been previously 
developed without a systematic approach, we present a 
ROA_SO-based IoT application SmartMobility as a case study.  

The SmartMobilityDetector is an SO that provides 
movement traces of individual users and flocks of users within 
the premises of the Faculty of Information Technology and 
Electrical Engineering (ITEE) at the University of Oulu, 
Finland. Movement traces are initially based on collecting 
Android smartphone ID's (i.e., MAC addresses) while they are 
connected to the Wi-Fi access points. To provide indoor high 
precision location tracking and to perform the flock detection, 
the devices are expected to periodically perform a Wi-Fi scan, 
and this operation returns a data vector of detected Wi-Fi 
access points and their respective signal strengths (RSSI) [5]. 
The flocks of users are then detected based on similarity 
measure of the data vectors of different smartphones, as 

described in detail in [6]. In addition, a set of stationary 
Arduino-based nodes also execute Wi-Fi scans that provide 
reference information, in their physical location, of the detected 
access points and their RSSI's. Now, the precise location over 
time of the smartphones can be estimated with a similarity 
measure between the access points scan data and nodes scan 
data. In [6], we outline the following system operation. The 
IoT devices, i.e., smartphones and Arduino nodes, have joined 
the ROAgent framework and registered their resources into the 
DRD. The sensing operation in the devices are controlled by 
ROAgents, as in [5, 8], which enables the agents to optimize 
the device energy consumption by controlling the sensing 
operation in the devices, e.g., scan period and length. In 
addition, the SmartMobilityDetector runs in a virtual machine 
(VM) in an IoT edge server that performs the computationally 
expensive flock detection and trace calculation operations.  

Next, we show how the ACOSO methodology is applied 
for the re-engineering the SmartMobility case study. 

A. SmartMobility Analysis Phase 

The Analysis phase metamodel of ROA_SO 
SmartMobilityDetector is shown in Fig. 6. As deployed into 
the ITEE Faculty premises, the SmartMobilityDetector 
exploits, in the infrastructure side, a number of Arduino nodes 
(identified as AN#x), which are connected to the ROAgent 
framework as system resources. This enables them to update 
their data to the edge server. Also, the Wi-Fi access points 
(identified as AP#x) are considered infrastructure components 
and exploited as sensors (Wi-Fi scan).  

The deployed devices define the SmartMobilityDetector 

coverage area (e.g., 100x100x5m). The SmartMobilityService 

service comprises two Operations: 

IndividualMobilityDetection, focused on a single smartphone 

mobility trace, and FlockMobilityDetection, which first 

identifies a set of flocks by analyzing the sensor data from the 

devices and secondly provides the aggregated mobility trace. 

Both operations are invoked by defining the 

(sub)area/timeframe of interest, and are featured by a certain 

reliability (calculated as correlation between user data vector 

and historical movement traces, which provides means for 

anomaly detection). Client Web services can access, according 

 
Figure 5. ROA_SO Metamodel at Implementation Phase 
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to Administrator (security and building maintenance 

operators) requests, the SmartMobilityDetector through the 

uniform interface with its resource URI that includes an ID 

code for the SO (e.g., SMD#1).  

 

 
Figure 6. SmartMobilityDetector Analysis Metamodel 

B. Smart Mobility Design Phase 

The refined SmartMobility ACOSO Design metamodel is 
shown in Figure 7.  

The SO BasicInfo consists of the ROA_SO knowledge base 
and lists of participating devices (from DRD based on real-time 
information) and infrastructure components. The ROA_SO 
knowledge base contains the following information: 1) 
collected raw sensor i.e., Wi-Fi scan data from the devices; 2) 
task results, i.e., individual movement traces (IndividualTrace 
Task), detected flocks (FlockDetection Task) and their traces 
(FlockTrace Task), which are shared among Tasks to refine the 
information. The SmartMobilityDetector relies on 
infrastructure components (Wi-Fi access points and Arduino 
nodes) as DeviceResources, the DRD and ROA_SO ROAgent 
knowledge base as InternalResource and the pedestrians’ 
smartphones as ExternalResource. The ROA_SO services are 
implemented as Tasks of the ROAgent. Tasks are driven by 
Events, which are delivered from the resources through the 
uniform interface. In details, InternalEvents notify that 
smartphones join/leave the framework. DeviceEvents notify 
that new scan data has been uploaded from the Arduino nodes 
or that Wi-Fi access point information has changed. 
ServiceEvents (traceEvent and flockEvent) are exploited 
whenever a task produces results, which are exploitable by 
other tasks. ExternalEvents enable the interaction with the 
ROAgent running in the smartphones, e.g., when 
SmartMobility service sets the required Wi-Fi scanning 

parameters or a ROAgent in a smartphone informs that its 
battery level is insufficient to continue participation. 

 

Figure 7 SmartMobilityDetector Design Metamodel 

C. SmartMobility Implementation  

It is expected that the participating IoT devices run the 
ROAgent platform, which enables autonomous smart operation 
and also integration into the ROAgent framework. The IoT 
edge server implements the SmartMobilityDetector as a VM, 
thus encapsulating SO functionality into an executable unit that 
can be migrated in the IoT system infrastructure side, following 
the common solution for edge computing applications. 

The ROAgent-based SmartMobilityDetector follows the 
architecture shown in Table 1 and it is shown in Figure 8. 
SmartMobilityDetector BasicInfo includes the state of the 
ROAgent. The knowledge base is implemented in the Android 
platform as a database and in the Arduino platform as a shared 
memory component The SmartMobility service is implemented 
through Operations, i.e., agent programs for flock detection, 
IndividualMobilityDetection and FlockMobilityDetection. The 
actual SmartMobility implementation is then a composite of 
the Task agent programs and their results, which is responsible 
for event-driven execution of the Tasks. In addition, the 
ServiceConfigurationTask allows interacting with the 
ROAgents in the smartphones and Arduino boards, for 
example, in order to set Wi-Fi scan parameters. 
SOConfigurationTask, instead, allows setting the SO internal 
parameters, such as SO creator, ID, etc. The ROAgent platform 
AMS implements the uniform interface, which enables to 
utilize internal (ROAgent state and DRD) and external 
resources (participating devices) and their data in the service 
execution. To interact with the heterogeneous IoT devices, it is 
required that the AMS provides both CoAPAdapter (for 
Arduino boards) and HTTPAdapter (for Android smartphones). 
This realizes the MTS. As an example, HTTP/CoAP POST 
method is used to set the Wi-Fi scan operation parameters and 
GET method (or CoAP OBSERVE method) is used to retrieve 
data from the devices. The ACLAdapter resource is not 
required for the SmartMobilityDetector SO. 

CONCLUSION 
Complexity and requirements characterizing IoT systems 

and SOs claim for proper development methodology and 
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frameworks. In this paper the re-engineering of the ROAgent 
framework according to ACOSO-Meth methodology has been 

 
Figure 8 SmartMobilityDetector Implementation Metamodel 

presented and exemplified with a ROAgent framework–based 
crowdsensing application of SmartMobility. In particular, we 
showed that ACOSO-Meth-based re-engineering highlights 
and enhances both functional (e.g., support to interoperability, 
attention for resource-constrained SOs) and non-functional 
(e.g., modularity, maintainability, evolvability) features of 
ROAgent framework, due to the full-fledged, domain-neutral 
and metamodel-driven approach. All the aforementioned 
features, both functional and non-functional, generate 
fundamental benefits for complex and heterogeneous IoT 
scenarios. The integration of ROAgent framework into 
ACOSO-Meth is straightforward, effective and sound since 
they share the SO-based vision, IoT system requirements and 
the enabling computing paradigms (agent-based and service-
oriented). As future work, we plan to study the outlined 
SmartMobility application in real-world settings at the smart 
university and smart city, to gain deeper understanding on the 
challenges of resource-constrained IoT development [26, 27]. 
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