

Lessons Learned from Developing Prototypes for

Customer Complaint Validation

JERE GRÖNMAN, PETRI RANTANEN, MIKA SAARI, PEKKA SILLBERG AND HANNU

JAAKKOLA, Tampere University of Technology

This research introduces two prototypes installed in vehicles and a cloud service for autonomous collection of data. The

prototypes utilize camera, location data, and timestamps to help those responsible for managing customer complaints, and to

improve the overall quality of the provided customer service. The use of the system is illustrated by two cases: tracking and

photographing bus stops, and tracking and photographing recycling areas. The first prototype is implemented for the Android

mobile platform and the second one for the Raspberry Pi single-board computer. This paper discusses the differences and

challenges faced in designing and implementing the two prototypes for different platforms.

1. INTRODUCTION

The Internet of Things (IoT) is the expansion of Internet services, which connects everyday physical

objects to a network. This connection between network and physical world objects makes it possible

to access remote sensor data and to control the physical world devices from a distance. One study

addressing the IoT, which is cited quite often, is “The Internet of Things: A survey” [Atzori et al.

2010].

In this research, the focus has been redirected toward the Wireless Sensor Network (WSN) type of

solution. The basic features of sensor networks were compiled in a survey by Akyildiz et al. in 2002.

In this research, we present two different prototypes for collecting data. These prototypes were

designed as nodes of WSN. The design processes were iterative and the main goal was to improve the

prototype in every iteration round. This study is a “lessons learned” type of research on software

quality and prototype testing, where we present the problems encountered and the solutions to them.

This research is a continuation of our research into different areas of IoT [Saari et al. 2016; Saari et

al. 2017; Grönman et al. 2018]. Often, the Agile method is used more than the traditional plan-

driven methods (such as the Waterfall method) when developing prototype systems. The authors of

this paper have discussed the challenges of modeling in an earlier study [Jaakkola et al. 2016].

The motivation for this study came from two transportation companies. Their customers often

complain that the service is not at an acceptable level (e.g. the bus was not on time, or did not stop;

trash was not collected on time). For companies, it can be difficult to ascertain the validity of the

complaints, possibly causing unnecessary expenses when repeated complaints occur. This study and

the two use cases presented in this paper illustrate configurable conditions for area observations

(based on location, speed of the vehicle, cameras, and other sensors). In the past, the drivers

photographed locations and made observation reports manually, but this process turned out to be

tedious and error-prone. Thus, it was decided to design a system that could work autonomously

without input from the driver. The companies can use the collected data to validate customer service

requests/complaints, and to improve the overall quality of the provided customer service.

Author's address: J. Grönman, Tampere University of Technology, Pori, P.O. Box 300, FI-28101 Pori, Finland; email:

jere.gronman@tut.fi.

Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.

In: Z. Budimac (ed.): Proceedings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring,

Improvement, and Applications, Novi Sad, Serbia, 27–30.8.2018. Also published online by CEUR Workshop Proceedings

(http://ceur-ws.org, ISSN 1613-0073)

4

http://ceur-ws.org/

4:2 • Jere Grönman et al

There has been a lot of research on position systems such as vehicle tracking systems. For

example [Lee et al. 2014; Jisha et al. 2017] introduced vehicle tracking systems, where the location

data are stored to the database or cloud and the data could be shown with an Android mobile

application. Jisha et al. deal with bus tracking systems. In these studies, the focus was on real-time

tracking using the Global Positioning System (GPS). The main idea was a tracking service for

customers, and the quality assurance of the transportation service was not discussed.

In our use cases the sensor nodes (mobile phones and Raspberry Pi 3 computers) send the data to

the cloud service. The idea and the model of the data gathering node system were introduced in

[Saari et al. 2015]. The rest of this paper is structured as follows. In Section 2, we outline the

research environment and its components. In Section 3, we describe the “bus stop” case and in

Section 4 the “garbage truck” case. Section 5 includes a discussion where the findings of this

prototype development process are handled. The study is summarized in Section 6.

2. HIGH-LEVEL ARCHITECTURE

The goal of the system is to provide a tool for those processing customer complaints. In our case, two

use cases acted as pilot studies for testing the functionalities of the system. The first case, “bus

stops,” consists of tracking a bus traveling on the route by collecting images, location data, and

timestamps. The bus company participating in our pilot study reported that common complaints

reported by customers are about the bus not arriving on schedule (too early, too late or not arriving

at all) or the bus not stopping even though there were people waiting at the bus stop. The latter

issue especially can be difficult to validate, and the bus company was interested in improving the

quality of their bus service by finding out if and when the complaints reported a real problem.

The second use case, “garbage truck,” collected the same data (images, location, timestamps). The

purpose was to keep track of when the garbage truck visited the recycling area and if the bins were

not emptied, and whether there was something in the area that prevented the truck from doing its

work. In some cases, pictures were already being taken by the garbage truck drivers in the area

around Pori, but this is, in general, manual work, and capturing and managing the pictures can be

tedious and error-prone. Similarly to the bus company, the company running the garbage collection

receives complaints about the quality of the work, and the company was interested in an automatic

system for collecting data around the recycling sites to validate the complaints.

Fig. 1. High-level diagram of the system.

Figure 1 illustrates the high-level architecture. The system consists of a central service, which

provides representational state transfer (REST) application programming interface (API) for client-

side interaction and remote procedure call (RPC) functionality for delivering tasks to (back end)

devices or for submitting task results. A simple web portal is implemented using Hypertext Markup

Language (HTML) and JavaScript, which interacts with client-side methods. The web user interface

 Lessons Learned from Developing Prototypes for Customer Complaint Validation • 4:3

allows the user to create tasks (#1, Figure 1), which contain the pre-conditions for device operation,

the selection of devices that participate in the tasks, and the desired output parameters. The tasks

are delivered to the target devices (#2, Figure 1).

The pre-conditions contain options such as coordinates (or areas), time intervals (e.g., only take

pictures during working hours), and velocities (e.g., should the device be moving at a certain speed or

stationary). The output parameters notify the devices as to what information should be returned in

the result responses (#3, Figure 1), such as pictures or location data – by default, all responses must

contain timestamps.

The results can be returned in near real-time or in batches. In our use cases, there is no need for

immediate responses and in general, the results can be returned at a time most convenient for the

device as long as the results arrive within a reasonable time period (for example, within 24 hours). In

general, the tasks do not contain information on the expected amount of output data. In our use case,

most of the transmitted data consists of captured images. The amount of images is highly dependent

on the speed at which the vehicle is moving and how long the vehicle stays within the designated

area. The prototype application will attempt to compensate for the vehicle velocity (e.g., by capturing

more pictures when the device is moving faster), but the tasks themselves do not contain any

guidance for this functionality. The primary reason for this is that the device is better equipped to

estimate its own capabilities and features than the service and providing overly detailed parameters

would only complicate the tasks by requiring individual customization for each device.

The submitted results (#3, Figure 1) are indexed in the service and can be freely browsed by the

user (#4, Figure 1), for example, by selecting a bus stop (coordinate) and the time reported in the

complaint. The core service uses a platform developed in a previous project [Iftikhar et al. 2018], and

for historical reasons messages based on the Extensible Markup Language (XML) are used, though

other formats (e.g., JavaScript Object Notation) could be used in our use case as well.

In our current implementation no further image analysis is performed either on-device or in the

service. In principle, it would be beneficial if image processing could be utilized to detect problems

reported in customer complaints. In practice, the variations in environments (location, time of day,

snow, rain, etc.) and different use cases (detection of people, undesired objects) make it very

challenging to develop a reliable algorithm. As long as a reasonable amount of pictures is shown to

the person responsible for processing the complaints, a human observer can detect problems by

looking at the pictures

3. USE CASE: BUS STOPS

In the first use case, a prototype was installed in a bus traveling along a bus route within the City of

Pori. The prototype is fully autonomous and does not require any input from the bus driver. The

stops on the route were assigned to the prototype as GPS coordinate targets. The program code reads

GPS coordinates continuously and compares them to the assigned targets. When the coordinates

match, a picture is taken. The program code utilizes an implementation of the Haversine Formula,

which determines the great-circle distance between two locations and is relatively simple to

implement yet accurate enough for our use cases. The application can be installed on any reasonably

new Android device and takes advantage of the built-in sensors and camera of the device.

The prototype keeps taking pictures in a predefined interval as long as it remains within the

range of the target. The prototype scales both the time interval and the range from the target based

on the speed of the bus to enable taking pictures at varying speeds, and also to compensate for the

delay in waking up the camera. The idea was to take pictures of the approach to the bus stop to find

out whether customers were present at the bus stop and also to obtain evidence (photos, timestamps,

and location data) that the bus had passed – or stopped at – the bus stop on a certain date. The

approach to one bus stop is illustrated in Figure 2.

4:4 • Jere Grönman et al

Fig. 2. Approach to a bus stop showing pictures taken at varying distances from the target.

A background process was created in the application for sending the pictures after capture,

although, depending on the network connection speed, the upload may not be real-time. A route with

fewer bus stops and a smaller number of customers was chosen for the first prototype. In our case,

the route had a few dozen stops, but within the city limits some routes may have several hundred

stops (especially if the route is traveled in both directions). Furthermore, the local bus company was

instructed to provide us routes with higher than average amount of complaints.

4. USE CASE: GARBAGE TRUCK

In this use case, a prototype was installed in a garbage truck. The truck has a predefined route

where there are certain recycling areas nearby shopping centers. The locations were assigned to the

prototype as GPS coordinate targets. A route with frequently visited targets was provided by the

garbage truck company participating in our project. The goal was to select targets of varying size (a

gas station, a supermarket, and a larger shopping center) located around the City of Pori. The

location tracking was performed in an identical fashion to the “bus stop” case, with the applicable

code re-written in Python. Similarly, the prototype is fully autonomous and does not require any

input from the driver.

The prototype consists of a combination of a Raspberry Pi 3 single-board computer and commonly

available sensor components (Adafruit Ultimate GPS HAT and Raspberry Camera Module V2 NoIR).

Its operating system is Raspbian Stretch and the program code was made in Python, which is one of

the commonly used languages for prototyping with Raspberry Pi. The prototype requires a 3G/4G -

wireless modem to establish an Internet connection via Wi-Fi.

Fig. 3. Three pictures taken from the recycling area. On the left: in daylight; in the center: at night; on the right: a blocking

obstacle.

In this use case, a connection to the cloud service was established once a day. During the test

period of three months, more than 6500 pictures were taken of the targets. Pictures were taken both

in daylight and at night. Figure 3 presents a comparison between day and night. Figure 3 also shows

 Lessons Learned from Developing Prototypes for Customer Complaint Validation • 4:5

a situation where an obstacle, in this case, a car, is blocking the truck’s access to the recycling bins.

The first two pictures in Figure 3 present normal daily operation, but in the case of the third picture,

the car could have prevented the truck from emptying the garbage bins, possibly causing later

complaints from customers about full containers.

5. LESSONS LEARNED

The development process for the use case prototypes was iterative in nature. Our goals were to both

validate our ideas and to ascertain in a short period of time which technical solutions would work in

realizing the prototypes.

One approach would have been to install cameras at each location, but in practice this was not

feasible. In both cases all locations were outdoor locations and it would have required a considerable

effort to guarantee the availability of electricity, and that the devices would not get wet, vandalized,

or broken in the cold weather. The assumption was that installation in-vehicle would be easier. A

minor concern was the operating temperature as the vehicles would be stored outside in Finnish

winter when not in use. The Android implementation was not tested in wintertime, but there were

no problems with the Raspberry Pi during the three-month trial run. The device itself did not

contain ambient air temperature sensors, but the average temperature during the December-

February period was slightly below zero Celsius with the coldest nighttime temperature reaching -21

°C in February [Foreca 2018]. The device was always on during the trial, running on the continuous

power provided by the vehicle batteries. This approach also reduced the risk of the device failing to

boot up due to cold weather. In the case of the garbage truck, obtaining constant power was a simple

matter of using the cigarette lighter plugs, but, in the bus, re-wiring was necessary as the connectors

inside the bus did not provide electricity when the main power was turned off.

A bigger problem than electricity was the attachment of the devices (both Android and Raspberry

Pi) to the vehicle. In our case we selected a garbage truck that loaded the trash using a lift located in

the front of the vehicle. The company also had vehicles that were loaded from the back, but this

would have meant that the truck would have approached the recycling area in reverse, requiring

camera installation at the back of the vehicle – possibly on the outside of the vehicle. For simplicity,

it was decided to only use a camera to take photos through the windscreen. This left the rare case

when the vehicle would be approaching the location from an unusual angle, e.g., around the corner of

a building, from the side or from an otherwise bad direction for taking pictures through the

windscreen. Especially in the bus stop case, there were no pictures available of every bus stop, and

even if there had been, we did not want to make individual setups for hundreds of locations. Thus, it

was impossible to know how the vehicle would approach each location. Regardless, it was decided to

choose the windscreen approach to get the testing underway.

In practice, this approach provided more problems than expected. Initially, there was slight

concern about reflections on the glass surface. In practice, this turned out not to be a big problem,

because the camera would take several pictures when the vehicle was approaching the location and

major reflections did not occur often enough to pose a real problem. However, a more serious problem

was how to install the devices in the vehicles.

The curved windscreen of the truck and bus made the traditional suction cup-based attachments

unusable. The vibration and movement of the vehicle caused the device to fall off of the window.

Additionally, a permanent installation of the prototype was not desirable as there might have been a

need to remove the device during testing. It would also have been impractical to make extensive

modifications to the vehicles because the vehicles were in regular use by the companies. The

installation of the Raspberry Pi was slightly easier as the camera as well as the GPS antenna could

be detached and installed in a different place to the device itself. This meant that the components

that needed to be installed near the windscreen were more lightweight than a smartphone, which

4:6 • Jere Grönman et al

contains all the components in one package. The ideas for a final prototype installation ranged from

ordering various attachment holders from the Internet to using a 3D printer to create a custom

casing. In the end, the installation consisted of a lot of two-sided tape. The solution was not pretty

and was passable at best. All in all, our primary concern was the device itself, the software, and

testing our idea, but perhaps a little more thought should have been put into how to setup the device

in a real environment regardless of the trial nature of the tests.

The members of our research team had previous experience in programming applications for the

Android platform and also in using the Java programming language. Furthermore, our research

team had readily available Android devices - both personal devices and devices provided by the

university – that could be used in prototype development and testing. This meant that the prototype

development process could be started without the need to learn the basics for a new platform. The

two most popular mobile platforms (Android and iOS) provide similar starting points for our use case

requirements: APIs for controlling the camera, accessing the Internet, and tracking the device

location, making the choice mostly about developer preference.

Creation of a simple application for tracking the location, firing the camera in pre-designated

coordinates, and uploading the pictures to a remote service was relatively simple – the APIs are well

documented and a simple web search provides plentiful examples for common use cases. In general,

only two problems were met related to the programming.

Firstly, we used a pre-existing service developed for previous research projects, which utilized the

XML-based data format. Unfortunately, by default, the Android platform does not support standard

annotation-based class definitions (e.g., Java Architecture for XML Binding), which meant that we

could not directly use the same Java code as we had used in previous Java applications. This is an

example of one of the generally minor problems caused by the fact that Android does not provide full

API compatibility with Oracle’s Java. The problem was fixed by creating an XML parser using the

Android’s XML pull parser and serializer, which are relatively simple to use though perhaps are

slightly more error-prone by requiring modifications to the parser code when the format is modified

as opposed to annotation-based solutions, which only require modifications to the class declarations.

The second programming related issue was with our implementation of the camera use. For some

unknown reason, especially on older Android devices (Nexus 7 tablet and Samsung A5), using the

camera repeatedly and sometimes in quick fashion caused application crashes or the camera got

“stuck,” capturing only a black screen. Fixing the issue required several attempts with various

programming solutions and the implementation was never as stable as we had hoped for.

The issues with stability caused an additional problem. In our initial trials, a member of our

research team was present in the bus, and could make corrections or restart the application when

problems occurred, but in the future this would not be the case. In the next phase, the device would

be installed in the vehicle for a period of three months, during which there could be a need for fixing

problems and to further improve the prototype software. Repeatedly visiting the company for

prototype maintenance would be a tedious process for the research team and also problematic for the

company as their vehicles were in use on a daily basis.

Remotely accessing the mobile device, for example, for restarting an application or installing a

new application version was a real challenge. As our application was not available in the Google

application store, we could not take advantage of the remote installation options provided by the

store, and directly accessing the device over the public Internet – i.e. accessing the dynamically

assigned Internet protocol (IP) address – would have been difficult without developing extensive

support mechanisms. This was one of the primary reasons (in addition to the unstable camera

implementation and problems with installing the device to the vehicle) for dropping the Android

implementation and looking for alternative options.

The Raspberry Pi-based solution provided much needed help for the remote access problem. The

device is, in practice, a Linux-enabled computer, which means that many of the methods available

 Lessons Learned from Developing Prototypes for Customer Complaint Validation • 4:7

for desktop application development are available. In our previous projects we have had some

experience with Raspberry Pi in particular, making it a logical choice, though many of the other

single-board computer solutions available on the market should work as well. In any case, by using a

dynamic Domain Name System (DNS) update it was possible to keep track of the public IP address

assigned by the Internet provider. It was also possible to directly use version control (in our case,

sub-version) as a “cheap alternative” for deploying new application versions on the device, and access

to the device can be achieved using Secure Shell (SSH). On Linux, the applications can also be easily

set up to start up on boot or at designated intervals either as services or by utilizing crontab.

Crontab was also utilized to run scripts that periodically checked whether our application was still

alive, logging the application status, and restarting the application if it had crashed.

OpenJDK is readily available for Linux and can also be used with the Raspbian operating system,

enabling the use of Java applications. The advantage was that most of our previously written utility

code (accessing the Internet, XML parsing from our server-side implementation, etc.) could be

directly used on Raspberry. The disadvantage was that all code that accessed the device sensors and

the camera would be re-written as no compatible APIs existed, and the preferred programming

language was different (Java vs. Python). Accessing the camera (using the raspistill command line

tool) or GPS data (using the gpsd service daemon) with Python is not difficult, though the level of

API documentation is not on a par with the Android documentation. It can also be more challenging

to find pre-made examples. Many of the example projects found online are, for the lack of a better

word, “hacks”, and the re-usability of code is more difficult than on the commonly used mobile

platforms. This is also one issue that one should keep in mind when deciding which platform to use

for rapid prototyping. On the positive side, a more low level API access is available on Raspberry Pi,

if such functionality is required.

An important note is that remote access also creates a potential security vulnerability, which

should be taken into account, especially when using potentially unstable or vulnerable prototype or

development versions of applications. Using a dynamic DNS service also seems to create a hot spot

for attempts at breaking into the device using dictionary and brute-force attacks. As a minimal

configuration, the default SSH port and passwords should be changed and remote root access

disabled. In our case, we used a separate 4G modem because Raspberry Pi does not provide a 3G/4G

connection, and the modem was also set up to work as a firewall.

This remote access approach worked fairly well even though there were a few minor problems.

Around the heavy industry area and the power plant located in Pori there were problems with cell

reception and data transfer. The modem initially chosen also had issues with energy management.

Regardless of the configuration options, after a longer period of inactivity the modem would go into a

power-safe state, cutting remote access to the Raspberry Pi and sometimes the modem would “hang”

requiring a physical restart. Periodically pinging the remote server seemed to fix both issues, though

it would have been better if the modem had been configured to function as intended. Another minor

issue with the modem was that if power were lost for whatever reason, the modem would not

automatically connect to the Internet, and would instead require the user to press a button on the

device. In our case a continuous power supply was made available both in the bus and in the truck to

fix the issue. Nevertheless, it became clear that it can be challenging to figure out without testing

how well a specific modem will work in various conditions and what configuration options are

available, especially if cheaper devices targeted to end-user customers are utilized.

6. CONCLUSIONS

This paper presented a high-level diagram for a service designed to help those responsible for

managing customer complaints, and to improve the overall quality of the provided customer service.

The use of the system was illustrated by two cases: tracking and photographing bus stops, and

4:8 • Jere Grönman et al

tracking and photographing recycling areas. Both cases utilized cameras installed in vehicles and

location data. Furthermore, this paper discussed the issues faced in the design and implementation

of the use cases. Based on a brief discussion with the companies, the initial reaction towards the

prototype applications was positive, and the system was seen as an improvement over the previously

utilized manual data collection. Still, to fully assess how the system contributed on the improvement

of the customer complaint validation process, a more in-depth study would be required.

In any case, the use cases show that mobile platforms can work as a quick starting point for rapid

prototyping – documentation and examples are easily found and the devices contain a number of

built-in sensors. The disadvantage of mobile platforms is the lack of options for remote management,

and single-board computers (e.g., Raspberry Pi) could provide a better platform if remote access is

required. Unfortunately, it can be more challenging to find applicable examples and documentation

when compared to commonly used mobile platforms. Additionally, both cases highlighted the

importance of environmental factors – such as the availability of electricity, telecommunications, and

installation of the prototype – even in cases when the primary goal of prototyping is in software

testing or running short trials. The importance is seen especially when the testing is done in a real

environment and should not disrupt the daily operation of the participating companies.

REFERENCES

Ian F. Akyildiz, Su Wy, Yogesh Sankarasubramaniam, and Erdal Cayirci. 2002. Wireless sensor networks: a survey.

Computer Networks 38, 4 (Mar 2002), 393–422.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks 54, 15 (Oct

2010), 2787–2805.

Foreca. 2018. Havaintohistoria. Website. Retrieved May 14, 2018 from https://www.foreca.fi/Finland/Pori/havaintohistoria

Jere Grönman, Petri Rantanen, Mika Saari, Pekka Sillberg, and Juha Vihervaara. 2018. Low-cost ultrasound measurement

system for accurate detection of container utilization rate. In 2018 41st International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO). IEEE.

Ahmad Iftikhar, Petri Rantanen, Pekka Sillberg, Jorma Laaksonen, Shuhua Liu, Thomas Forss, Aqdas Malik, Marko

Nieminen, Rakshith Shetty, Satoru Ishikawa, Jarno Kallio, Jukka P. Saarinen, Moncef Gabbouj, and Jari Soini. 2018.

VisualLabel Integrated Multimedia Content Management and Access Framework. Information Modelling and Knowledge

Bases XXIX (2018), 321 – 342.

Hannu Jaakkola, Jaak Henno, Tatjana Welzer Družovec, Bernhard Thalheim, and Jukka Mäkelä. 2016. Why information

systems modelling is difficult. CEUR Workshop Proceedings 1677 (2016), 29–39.

R.C. Jisha, Aiswarya Jyothindranath, and L Sajitha Kumary. 2017. IoT based school bus tracking and arrival time prediction.

In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 509–514.

SeokJu Lee, Girma Tewolde, and Jaerock Kwon. 2014. Design and implementation of vehicle tracking system using

GPS/GSM/GPRS technology and smartphone application. In 2014 IEEE World Forum on Internet of Things (WF-IoT).

IEEE, 353–358.

Mika Saari, Ahmad Muzaffar bin Baharudin, and Sami Hyrynsalmi. 2017. Survey of prototyping solutions utilizing Raspberry

Pi. In 2017 40th International Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO). IEEE, 991–994.

Mika Saari, Ahmad Muzaffar bin Baharudin, Pekka Sillberg, Petri Rantanen, and Jari Soini. 2016. Embedded Linux

controlled sensor network. In 2016 39th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO). IEEE, 1185–1189.

Mika Saari, Pekka Sillberg, Petri Rantanen, Jari Soini, and Haruka Fukai. 2015. Data collector service - practical approach

with embedded Linux. In 38th International Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), 2015, 25-29 May 2015, Opatija, Croatia (International convention on information and

communication technology, electronics and microelectronics). IEEE, 1037–1041.

