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A Case-Control Study on the Server-Side Bandages
Against XSS
JUKKA RUOHONEN and VILLE LEPPÄNEN, University of Turku

This paper surveys the server-side use of security-related options for protecting websites against cross-site scripting (XSS)

attacks. By using data from a bug bounty platform, the use of these header-based options is approached with a case-control

study that contrasts popular Internet domains against less popular domains that have explicitly been verified to have been
vulnerable to XSS. According to the results based on the analysis of nearly 800 thousand domains, (a) the header-based

security options are only infrequently used. However, (b) the domains known to have been vulnerable to XSS have been much

less likely to use these options compared to popular domains. Furthermore, (c) the options surveyed tend to statistically form
clear latent dimensions, which can be speculated to relate to the effort required to enforce strict security policies for websites.

1. INTRODUCTION

Cross-site scripting vulnerabilities have continued to frequently appear in the top-rankings of the
most common security bugs in web applications [OWASP 2018]. The essence behind these security
bugs is simple: an attacker injects malicious executable code to a vulnerable website, and a client’s
web browser executes this code during rendering of the website. The consequences for clients may
range from stealing of web cookies and browsing history to phishing and even key logging.

If time, resources, and talent are all available, the “best strategy for protecting webservers is to write
secure Web applications from scratch” [Stritter et al. 2016]. Combined with the commonplace lack of
time, resources, and talent, the sheer complexity and the chaotic nature of the current Web have
prompted the introduction of many countermeasures against XSS. Most of these are bandages that
merely patch the symptom—the only real remediation against cross-site scripting is arguably proper
input validation. However, as it is deviously difficult to do this in practice [Weinberger et al. 2011],
different remediation solutions have been considered practically on all sides of the current Web [Strit-
ter et al. 2016]. On the infrastructure side, remediation is deep-rooted in the fundamental issues af-
fecting web standards, encryption of hypertext transfer protocol (HTTP) traffic, the global public key
infrastructure, the domain name system, the so-called same-origin policy, and ultimately the whole
client-server paradigm. On the client-side, the mitigation solutions include sandboxes, blacklists, and
different heuristics to profile the execution of JavaScript. On the server-side, the remediation solu-
tions include web application firewalls, algorithmic solutions, and different options that can be set in
HTTP header responses for instructing browsers about intended behavior. Although much of exist-
ing research has focused on the detection and prevention of XSS vulnerabilities with algorithms and
heuristics [Hydara et al. 2015], the header options are noteworthy for a couple of important reasons.

First, many of these satisfy the desirable property of bandages: these are easy to apply to fix bleed-
ing in existing implementations, and these are recognized by most browsers due to (implicit) stan-
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dardization [Ross et al. 2013; W3C 2016; 2017]. Second, these have enlarged the scholarly intersection
between web application security research and the increasingly popular large-scale Internet measure-
ment research [Lekies et al. 2013; Tajalizadehkhoob et al. 2017; Vasek et al. 2016; Weissbacher et al.
2014]. This intersection is also the area to which this paper contributes. The contribution stems from
the data used. While numerous studies have collected data based on blacklists and related collections
about domains and websites associated with spam, phishing, and malware [Ruohonen et al. 2016; Ta-
jalizadehkhoob et al. 2017; Vasek et al. 2016], these are only implicitly related to web vulnerabilities.
In contrast, this paper uses data from a so-called bug bounty specialized to the discovery and disclosure
of XSS vulnerabilities in particular. In other words, a part of the data used is explicitly about websites
that have been verified to have been vulnerable to security bugs the headers surveyed are meant to
partially address. Equipped with this improvement to the always difficult ground truth problem, the
paper sets to answer to the following three research questions (RQs):

—RQ1: How common is the use of HTTP headers for XSS prevention?
—RQ2: Are different HTTP header fields used in conjunction with other fields designed to mitigate XSS?
—RQ3: Is there a difference in the use of XSS-related HTTP header fields between popular Internet

domains and less popular domains that have been vulnerable to XSS according to data from a bug
bounty?

To answer to these three questions, the paper proceeds by introducing the materials and methods in
Section 2. The empirical results are presented in Section 3 and further discussed in the final Section 4.

2. MATERIALS AND METHODS

The following discussion will outline the headers surveyed, the empirical materials, and the methods
used.

2.1 Header Fields

The header fields surveyed are listed in Table I. The listing is not comprehensive; only well-known
fields either explicitly or at least implicitly related to XSS are surveyed. Even with this narrowing of
the scope, it is not easy to demarcate between fields related to cross-site scripting and those not related
to it. In other words: in many attack scenarios, XSS can be used to facilitate other attacks, or cross-site
scripting can be facilitated by other attacks. The header fields surveyed can be further elaborated as
follows:

—The HttpOnly field can be set for cookies to prevent these from being accessible by scripts executed
by a client’s browser [Ruohonen and Leppänen 2017b]. Setting this flag is generally recommended
for session cookies in order to mitigate theft of session information via XSS.

—A value nosniff can be set to prevent some browsers from deducing about media types and file
formats (i.e., MIME types) that do not match the declared Content-Type. The rationale for sniffing
MIME types relates to the lack of universally accepted meta-data for web content and the common
occurrence of incorrectly defined types. Unfortunately, this sniffing exposes XSS attacks [Barth et al.
2009].

—X-Frame-Options are not directly related to XSS per se, although the so-called clickjacking can be
used in conjunction with XSS, cross-site request forgery (CSRF), and related attacks [Kim and Kim
2015; Takamatsu and Kono 2014]. The values specified for X-Frame-Options can mitigate some of
these attacks by either preventing or restricting a client’s browser from displaying web content
through <frame> and <iframe> elements [Ross et al. 2013]. The three available values forbid framing
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altogether, restrict it to the same origin than the content itself, or allow framing only from explicitly
specified origins.

—Referrer-Policy governs the information a client sends along with the Referer header to the land-
ing page. A certain class of XSS attacks are known to be possible with the Referer information
[Gremwell BVBA 2010], although privacy and other security concerns (including CSRF) have been
more pressing [Barth et al. 2008; W3C 2017]. Some of these attacks and related concerns can
be remedied by forbidding referrer information to be sent with a no-referrer value. In addition,
more fine-grained control is possible with other values [W3C 2017]. The metric labeled REFERRER-
ORIGIN groups values that tighten the default client-side policy, excluding the strictest no-referrer
policy.

—X-XSS-Protection is a HTTP response header field that can be set to instruct some web browsers to
enable either sanitization or filtering of reflected XSS attacks [Mozilla Foundation et al. 2017]. The
main targets of the field are inline resources, such as inline event handlers and inline <script> or
<style> elements. In general, this field has been augmented by the more comprehensive Content-
Security-Policy.

—Content-Security-Policy (CSP) is currently the most comprehensive header-based mitigation solu-
tion against cross-site scripting. The basic idea behind CSP is to use a policy document for listing
those domains that are allowed to execute scripts, load web resources, or embed cross-domain func-
tionality [W3C 2016]. The explicitly defined policy directives are grouped into the metric CSP-SRC.
The metric CSP-URI, in turn, captures the presence of policy restrictions based on uniform resource
identifiers. Reflecting CSP’s complexity, there are numerous additional directives that can be set
for further restrictions. These are grouped into CSP-MISC. Finally, it is worth remarking that the
deprecated reflected-xss has similar functionality to X-XSS-Protection.

Table I. Metrics and Header Fields
Field METRIC Description / operationalization
Set-Cookie HTTPONLY ? A cookie with HttpOnly.
X-Content-Type-Options NOSNIFF ? A value nosniff is present.
X-Frame-Options X-FRAME-DENY ? X-Frame-Options: deny is set.

X-FRAME-SAMEO ? X-Frame-Options: sameorigin is set.
X-FRAME-AFROM ? X-Frame-Options: allow-from is set.

Referrer-Policy REFERRER-NO ? A value no-referrer is present.
REFERRER-ORIGIN ? A value origin, same-origin, strict-origin, origin-when-

cross-origin, or strict-origin-when-cross-origin is defined.
X-XSS-Protection X-XSS-FILTER ? X-XSS-Protection: 1 is present.

X-XSS-BLOCK ? X-XSS-Protection: 1; mode=block is present.
Content-Security-Policy CSP-SRC ? A value default-src, script-src, object-src, style-src,

img-src, media-src, frame-src, child-src, font-src, connect-src,
or manifest-src is defined.

CSP-URI ? A base-uri, form-action, or frame-ancestors is set.
CSP-MISC ? A value sandbox, script-nonce, referrer, plugin-types,

block-all-mixed-content, or upgrade-insecure-requests is present.
CSP-XSS ? A CSP contains reflected-xss.

Much of the current XSS-related standardization work concentrates on CSP. Because the current
(v.3) revision [W3C 2016] is detailed and complex, applying a strict CSP successfully requires careful
fine-tuning on per-site basis. Due to the complexity, it should be also stressed that the four simple
metrics in Table I only probe CSP’s surface by counting the policy directives themselves; the actual
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values specified for these directives differentiate a secure policy from an insecure one [Liu et al. 2016;
Weissbacher et al. 2014].

2.2 Data

The dataset is based on two sources. The first source is the Alexa’s conventional list of top-million
most popular Internet domains [Alexa Internet, Inc. 2017]. Although generalizability remains an open
question, Alexa’s popularity lists have been the de facto benchmark sources for different Internet mea-
surement studies [Lekies et al. 2013; Liu et al. 2016; Ruohonen and Leppänen 2017a; Tyson et al.
2017; Weissbacher et al. 2014]. The second source comes from the web vulnerabilities disseminated
through the Open Bug Bounty (OBB) [2017] platform. This bug bounty is a community-based platform
for dissemination of XSS and CSRF vulnerabilities in particular [Ruohonen and Allodi 2018]. Unlike
some other bug bounties, OBB neither pays for vulnerabilities nor targets some particular vendors or
websites.

Given the two data sources, the retrieval of the headers was implemented by following the simple
scheme illustrated in Fig. 1. Before continuing further, it should be noted that a success is defined as
a query that returned a status code starting either with a number 2 or with a number 3. A failure,
in turn, includes all other status codes as well as queries failed for undefined or unknown reasons.
Despite of these disqualification criteria, it should be emphasized that initial redirections (status code
301) were followed during the retrieval.

Each domain in both samples was queried three times in order to rule out timeouts, domain name
resolution failures, and other temporary errors. Although OBB provides uniform resource locators
(URLs) pointing to the vulnerable web applications, Alexa’s list only contains domain names. To main-
tain a uniform retrieval scenario for both samples, also the entries in the OBB sample were queried
based on the host field in the URLs (hence, a domain that has been exposed to multiple vulnerabil-
ities is counted only once). The host field was further restricted to cover only fully qualified domain
names. In other words, Internet protocol (IPv4) addresses were excluded during pre-processing of the
OBB sample. Like in previous empirical research [Tyson et al. 2017], the actual retrieval was done
with the conventional HTTP/1.1 via which the headers were retrieved based on GET requests. If an
HTTP query failed, however, another GET request was attempted over the transport layer security
protocol. If both requests failed for three times for a given domain during the retrieval in November
2017, the domain was finally excluded from the empirical analysis. This retrieval scenario could be
further extended (for instance, by querying the domains also with www-prefixes; see Weissbacher14),
but some limitations would still be present [Ying and Li 2016]. While acknowledging the imperfection
of the retrieval routine, more than enough data was retrieved from both sources (see Fig. 2).

Try three times for each
domain in both samples

Headers already
successfully retrieved?

GET via HTTP GET via HTTPS

X

�

Yes

No

Success

Failure

Success

Failure

Fig. 1. A Simple Routine for Header Retrieval

OBB

(n = 111, 001)

Alexa

(n = 771, 435)∩

Fig. 2. Case (OBB), Control (Alexa), and Headers (n)
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Finally, a few words are required about the parsing required for the metrics listed in Table I. The
header fields are delivered as case-insensitive key-value pairs. As the details for standards-compliant
parsing are fairly detailed, the headers were parsed line-by-line with simple string searches after
both the keys and the values had been transformed to lower-case letters. As an example: to construct
the X-XSS-BLOCK metric, a character 1 and a string block were searched from the value delivered
via the transformed x-xss-protection key. These heuristic searches avoid some ambiguities (such as
those related to semicolons and white-space). Nevertheless, it should be remarked that some outlying
domains observed may be interpreted as having set an option—even though actual web browsers may
interpret the option as incorrectly specified.

2.3 Methods

The following three methods are used:

(1) To answer to RQ1, the first “method” simply plots the relative share of all metrics enumerated
in Table I. For this plotting, a symmetric difference (i.e., a union without an intersection) of the
two sources is used. To determine the intersection, Alexa’s popularity ranks are used. A domain
is classified as belonging to both sets in Fig. 2 when: (a) the domain is present in both samples,
or (b) a popularity rank is provided for the domain indirectly through OBB. This twofold detection
is necessary because OBB provides its own historical Alexa-ranks [Ruohonen and Allodi 2018]. In
other words, some of the domains in the OBB sample may have appeared in some older ranking
that is no longer publicly available from Alexa.

(2) To answer to RQ2, the principal component analysis (PCA) is used by examining whether the
metrics can be reduced into smaller dimensions. As all metrics have the same scale, a sample
covariance matrix is used as the input to PCA, and the number of components is approximated
with a so-called scree plot (for the details refer to Zuur et al. [2007], i.a.). The symmetric difference
is again used for the two samples.

(3) To answer to RQ3, a small case-control study is computed. Case-control studies are classical ways
to conduct experimental studies in fields such as medicine and epidemiology [Rundle et al. 2012],
but these have recently gained traction also in security research [Vasek et al. 2016]. By removing
the intersection in Fig. 2, the case is composed of the vulnerable domains in the OBB subsample,
while the domains in the Alexa subsample constitute the control. Due to the definition given for the
intersection of the two samples, the case refers also to less popular domains, which are compared
against the control group of popular domains. Given the 1 ≤ i ≤ 13 metrics, the resulting case-
control setup is illustrated in Table II.

Table II. The Case-Control Setup (frequencies nij)

OBB Alexa Odds ratio

METRICi = 1 (present) n11 n12 n11 × n22

n12 × n21METRICi = 0 (absent) n21 n22

Thus: if the nonintersecting OBB and Alexa subsamples do not differ in terms of the i:th metric,
the corresponding odds ratio equals unity. A value smaller (larger) than one indicates that the vul-
nerable OBB domains are less (more) likely to have had a header-based XSS protection in place
compared to the control domains. Given the unequal sample sizes (see Fig. 2), a simple resampling
computation [Rundle et al. 2012] is used by drawing 1000 random subsets from the Alexa subsam-
ple, the size of each subset equaling n11 + n21. Arithmetic mean is used to report the odds ratios
from the thousand draws.
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3. RESULTS

The answer to RQ1 is clear: the HTTP header fields related to security are only infrequently used. The
most common use case is to restrict the accessibility of session cookies (see Fig. 3). Roughly around one
tenth of the domains observed have also restricted MIME sniffing, enforced the same-origin policy for
framing, and adopted X-XSS-Protection. The use of CSP is strikingly rare.
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CSP-XSS
CSP-MISC

X-XSS-BLOCK
X-XSS-FILTER

REFERRER-NO
NOSNIFF
CSP-SRC

HTTPONLY
REFERRER-ORIGIN

X-FRAME-AFROM
X-FRAME-SAMEO

X-FRAME-DENY
CSP-URI

Odds Ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.7

0.7

0.7

1.0

1.3

Overall mean = 0.6
Sampling iterations = 1000

Fig. 4. Odds Ratios

50 60 70 80 90 100

Cumulative proportion of variance explained (%)

PC

2
4
6
8

10
12 n =  786,827

Fig. 5. A Scree Plot (PCA)

Principal component (PC)

PC1 PC2 PC3
HTTPONLY 0.94
X-XSS-FILTER -0.51
X-XSS-BLOCK -0.49
NOSNIFF -0.54
X-FRAME-SAMEO -0.93

Fig. 6. Loadings (≥ 0.4 or ≤ −0.4 shown for 3 PCs)

The top-5 metrics in Fig. 3 explain as much as about 90% of the total variation in the sample (see
Fig. 5). When looking at the relevant PCA loadings (see Figure 6), it seems that there are three latent
dimensions: cookie restriction (PC2), XSS protection (PC1), and partial enforcement of the same-origin
policy (PC3). The answer to RQ2 is positive: the easily enforced XSS restrictions are used in conjunction
with the other fields requiring little effort. The answer to RQ3 is also clear: the less popular OBB
domains (without Alexa’s ranks) have been much less likely to use HTTP header fields for security
improvements. The odds ratios are equal or greater than one only for two metrics (see Fig. 4), which
are only infrequently used in general (see Fig. 3). The fields explicitly related to cross-site scripting—
including NOSNIFF and the X-XSS-Protection options—attain odds ratios clearly smaller than unity.
Thus, when compared to popular domains, the less popular domains that have explicitly been known
to be vulnerable to XSS have failed to enforce basic protections—or, alternatively, these domains may
have been vulnerable due to the lack of the protections.
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4. DISCUSSION

This paper surveyed the use of HTTP header options designed to mitigate XSS and related attacks.
According to the results, the use of these headers is still at a modest level even among popular Internet
domains (RQ1). This result supports recent empirical observations; even simple techniques such as
JavaScript-restricted cookies and X-XSS-Protection are only infrequently used on the server-side of
the current Web [Ruohonen and Leppänen 2017b; Tajalizadehkhoob et al. 2017]. However, not all
websites are equal.

The results clearly show that less popular domains that have been verified to have been vulnerable
to XSS are much less likely to use header-based protections (RQ3). Although the statistical compu-
tations are exceptionally clear in this regard, this result should be still taken only tentatively. The
reason for this caution is well-known. The most challenging part in the design of a case-control study
is the selection of a control group [Rundle et al. 2012; Vasek et al. 2016]. Even with the careful sub-
setting of the two subsamples, the Alexa’s top-million list can hardly be taken as a bulletproof control
group. Furthermore, the results are only approximations because it is impossible to deduce whether
the domains in the OBB subsample used header-based mitigation at the time when the vulnerabilities
were disclosed through the bug bounty [Ruohonen and Allodi 2018]. A third limitation relates to the
sampling strategy (see Fig. 1), which only probes a domain’s main page [Ying and Li 2016]. While ac-
knowledging these three limitations—which largely apply also to many related Internet measurement
studies in general, the case-control study presented demonstrates that data from bug bounties can
sharpen the assumptions about vulnerable websites.

Finally, the results further show that the XSS-related header fields tend to statistically parcel
into distinct latent dimensions (RQ2). If these dimensions are interpreted to reflect effort [Tajal-
izadehkhoob et al. 2017], it seems that the dimensions that require little effort are more frequently
enforced. A plausible explanation relates to the ever increasing amount of dependencies to external
websites [Ruohonen et al. 2018]. As the empirical results also support the existing observations about
CSP’s adoption problems [Weissbacher et al. 2014], it seems fair to conclude with a remark that web
developers may have difficulties to implement and enforce security policies when third-party domains
or URLs must be explicitly stated.
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