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Abstract.  

We present a compact model for blind multiparty verification of compilation re-

sults. By employing a simple incentive scheme, we construct a mechanism, 

staking a deposit value on the correctness of compiled and deployed byte code. 

A blind committee of peers evaluate the authenticity of the deployed byte code 

by re-computing the task, hashing the source and target code into checksums, 

and submitting bids to the contract. If the evaluation round reveals inconsisten-

cies in the checksums provided by the peers, the contract can be rejected and the 

deposit shared amongst contenders.  

 

Keywords: Domain Specific Languages, Computational Verification, Block-

chain Technology.  

1 Introduction 

With the proliferation of blockchain and peer-to-peer technologies [2, 5], an increas-

ing emphasis has been placed on verification of both programming languages and 

compilers. This is manifested in a growing demand for formally verifiable solutions, 

strictly typed or purely functional programming languages. [6,9,11,12,20,24,25,37] 

This development is, arguably, for good reason. The Ethereum blockchain, a smart 

contract platform currently supporting a plethora of digital assets, has been subject to 

multiple episodes resulting in the loss of funds. [33,40,41] The Ethereum blockchain 

executes smart-contracts in the Ethereum Virtual Machine, (EVM) a replicated stack 

machine maintained by nodes in the network. Programmers predominately write smart 

contracts in the higher level scripting language: Solidity, a JavaScript inspired contract 

language compiling directly to EVM. [46] Due to the complexity of Solidity, episodes 

involving coordinated or accidental loss of funds are often connected to delicate as-

pects of the EVM semantics. [6, 33,40,41]  

Atzei et al. [1] defines a taxonomy of exploits and vulnerabilities observable in smart 

contracts, written in Solidity. Luu et al. allocates a set of known vulnerabilities in 

8,883 of 19,366 smart contracts deployed on the Ethereum blockchain, utilizing the 

open source symbolic execution tool, Oyente [28,32]. As is commonly known, the 



immutable characteristics of the deterministic environment afforded by blockchain 

technologies, does not permit debugging. Even minor errors, exploits or vulnerabili-

ties can result in severe losses of funds, thus the adage: "Code is law". At the surface, 

the continuous stream of issues in smart contract technologies, may seem puzzling. 

After all, smart contracts are simple but high risk computations. So, why is it so diffi-

cult to produce correct code? Amongst many plausible causes, a common culprit is the 

complexity of native scripting languages available today. The DAO hack [40,41] and 

the Parity multi-sig Wallet incident [33], are well-documented cases, both resulting in 

significant loss of value. Both cases involved fairly simple computations, expressed in 

complex programming languages. Due to the openness of the Ethereum blockchain, 

any user can call the public methods defined in a contract. [6] Writing and verifying 

contracts shielded from any potential abuse, has proven to be a difficult task. Fortu-

nately, low fault tolerance in code execution, is not a problem isolated to the domain 

of blockchain technology. The issue is commonly known in a variety of fields, con-

cerned with safety and mission critical software development. Consider the notorious-

ly prohibitive safety requirements in the aerospace engineering industry as an exam-

ple. [47] In mission critical software development, the use of domain specific lan-

guages (DSL) is commonly known as good practice. While open-source projects and 

exhaustive literature on domain specific languages is widely available, 

[12,15,20,24,25,26] the broad application of DSL in financial peer-to-peer systems 

remains absent. One can think of multiple reasons for the lack of language plurality in 

the blockchain space. A dominant cause, we submit, is the bottleneck occurring in the 

compilation and deployment of domain specific languages. When a community tasked 

with the development maintenance of a programming language is small, [43] verifying 

the integrity of the compilation process, can prove a cumbersome process. Though 

language plurality may serve the growing community of users well, the long term 

implication of the current situation, could be the concentration of open-source partici-

pation in just a few select programming languages. Developing a domain specific 

language requires ressoruces and talent, bearing little probability of any revenue. We 

perceive this partially, as a problem of trust. How can the end-user verify that her 

counterparty has compiled the correct contract, to the blockchain? Unless a verifiably 

correct implementation of a compiler is available online, the user will be required to 

read and verify assembly code by hand. By proposing a compact solution for the veri-

fication of correct compilation in a multitude of programming languages, we aim to 

encourage language pluralism in blockchain and distributed ledger technologies. Veri-

fying the authenticity of a compiled and deployed contract by imposing simple games 

for rational agents may, in turn, create a platform of trust for communities or individu-

als involved in developing domain specific languages. The monetization of such a 

platform may contribute much needed resources, towards the maintenance and devel-

opment of open-source niche languages for a variety of use-cases.  
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1.1 Honest Deployment 

We introduce the problem of honest deployment with the following parable: Alice 

and Bob are non-technical end-users or financial service providers, looking to deploy 

a series of specific financial contracts to the blockchain. Eve has created a strictly 

typed, formally verified, domain specific language, perfectly suitable for writing these 

contracts. Eve is able to write compile and securely deploy any contract specified by 

Alice and Bob. Now, how can Alice and Bob verify that Eve is compiling and deploy-

ing the correct contract?  

 

Similar challenges have mobilized attention, in times where out-sourcing large 

computational tasks has become a viable business model for corporations with large 

server capacities. Suppliers and consumers of infrastructure-as-a-service (IaaS) share 

issues, well aligned with the problem addressed here. [35,39] In most cases, consum-

ers do not have the capacity, know-how or time to re-execute computations. On the 

other end of the trade, service providers lack the means to demonstrate the validity of 

their services to their clients or end-users. [44] The question is thus; how can consum-

ers verify computations, without having to re-execute them locally? As suggested by 

Walfish and Blumberg [45] we can formulate the problem as the following: The client 

delivering an input denoted by x, provides the worker computing the task with a speci-

fication, denoted by p. The worker computes an output y, now having to provide the 

client with succinct proof that y = p(x). A few obvious restrictions apply to a solution 

for problems of this nature. First, verifying the output y has to be less computationally 

costly than computing p(x), if the model is to remain relevant. Second, p has to result 

in a deterministic output, unless very sophisticated and costly verification methods are 

available. Third, the worker must deliver tangible evidence that malicious behavior 

would, with high probability, be more expensive than the potential gains of attempting 

an attack. 

 

1.2 Existing Solutions 

We consider currently existing solutions to similar problems in computational veri-

fication and associated theory. Due to the generally applicable nature of problems in 

the verification of computations, the literature on the subject is rich. Theoretical and 

practical implementation predominantly subscribe to Micali's notion of a Computa-

tionally Sound proof (CS proof). Amongst the required properties of a CS proof, Mi-

cali lists convenience, feasibility, reasonable complexity, universality, transferability 

and confidence in the soundness of the proof. [31] Research on the practical imple-

mentation of probabilistic proof schemes has made great advancements in meeting 

these requirements. Most recently, practical implementations of proofs in quantum 

computing has generated new interest in the field. [14] Yet, the general range of prac-

tical implementations often prioritize highly specific applications for single classes of 

computations. Existing implementations are typically composed of hybrid abstractions 

of interactive proofs and probabilistically checkable proofs 

[7,17,18,19,30,35,36,38,39]. Interactive proofs rely on the exchange of a series of 

messages, determining the authenticity of a proof certificate.  PCP proofs generally 

269



proceed by checking random selection of bits in a correctly formatted proof. Here, the 

prover provides the verifier with an encoded transcript of the operation, in the attempt 

at convincing the verifier that the computation has been correctly executed.1 A com-

mon denominator in these and similar operations, is the overhead and setup costs as-

sociated with the required computations. [44,45] While an extensive cost-profile is 

permissible in certain scenarios, the aforementioned use-case does not tolerate extra-

neous costs. As is evident, a cost profile for Alice and Bob, relies more on the proba-

bility of Eve acting benevolently, than on the costs associated with a series of trivial 

compilations and the deployments of contract code. Here, we note the importance of 

externalities in the verification of computations. The extant literature predominantly 

approaches verification as a bilateral process between two publically known agents: 

prover and verifier. In the conventional verification paradigm, the agent’s identity is 

public knowledge, while communications are kept private. Public blockchain technol-

ogy reverses this tendency with the introduction of openness as a fundamental proper-

ty. On a public blockchain, communication between agents in the form of transactions 

or computations are public. To provide a level of anonymity, identities are kept pseu-

donymous, discernable only by public keys or addresses. [16] Consequently, the envi-

ronment presented by public blockchain technologies does not permit tacit notions of 

reputation in the verification process.2 A malicious agent is perfectly capable of 

switching both public keys and addresses at any point, discarding any association with 

a previous address. This property poses a difference to the general literature on out-

sourced computations, building on a set of implicit assumptions on the location and 

identity of agents and infrastructure. When utilizing cloud services, we trust that ques-

tionable performance will, eventually, impede financial penalties on the service pro-

vider. Whether in the form of lost revenue or contractual penalties, we confide in the 

public association between brand and output. A practical verification scheme must 

replicate the relationship between performance and penalty, in the presence of strate-

gic agents with pseudonymous identities.  

 

Teutsch et al. and Reitweißner [42,29,22] addresses this problem in detail. With the 

TrueBit system, users can submit a computation to the network of Solvers and Chal-

lengers. Extending the aforementioned terminology, Solvers compute p(x) and pose a 

simple proof that y = p(x). Challengers may dispute the solution by computing the 

same task with a conflicting result. When a challenger disputes a solvers results, a 

subroutine, known as the 'verification game' is initiated [42]. A verification game is, 

essentially, a search problem, in which Solver and Challenger proceed by configuring 

the disputed computation in ranges. Each range is represented by a Merkle tree, con-

taining the entire state. By indexing the Merkle root for each range on the blockchain, 

the Challenger can allocate the discrepancy between the two computations and pass 

this information on to the Solver. This loop is repeated in several iterations, until the 

range in which Solver and Challenger computes conflicting results is well defined. At 

this point, the disputed range is executed on-chain. The dispute is resolved by distrib-

uting a staked deposit value to the winning party. The TrueBit system offers a novel 

1 We recommend Walfish et al. (2015) rich survey of exciting practical implementations for an 

overview of the field.  
2 We address this issue further, in the discussion. 
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contribution to the extant literature, by introducing of financial incentives to the veri-

fication of computations. As both Solvers and Challengers are prompted to deposit a 

predefined value in the TrueBit contract, agents can be penalized and rewarded ac-

cordingly. Nevertheless, this implementation of the TrueBit system is not ideal for 

simple or trivial computations involving high-risk, such as the compilation of smart 

contracts written in domain specific languages.  

 

2  A Verification Scheme for Simple Computations 

  

In extension of the model presented and discussed by Teutsch and Reitweißner et 

al. [42] we present a verification scheme in the form of an extended game, with per-

fect information about other player’s previous moves, but not their types. [23] As 

noted above, the verification of third party computations is a rich and complex issue, 

addressed at length in the literature. Following the work presented by Teutsch et al. 

[22 ,42] this implementation deviates from the general methodologies derived from IP 

or PCP based proof systems. Departing from these technically dense methodologies, 

we provide a simple incentive scheme for the peer verification of computational re-

sults. The mechanism is an indirect implementation with sequential messages, reveal-

ing information about other player’s intention. The group of agents in each 'game' is a 

tuple of n participants, for this limited example N ={A,B,C}. Players have type 

 as elaborated below types are either benevolent or malicious/naive. 

In this model, types are only defined by weather or not the agent is able to verifiably 

compute y = p(x). For reasons of simplicity, this implementation only discriminates 

between two types of agents. We denote type θ1 as the benevolent agent, correctly 

computing y = p(x). Any other agent is treated as a malicious, naive or otherwise 

compromised, denoted by type θ2.  

 

When Eve executes a compilation and deploys the contract code for Alice and Bob, 

she is required to deposit assets corresponding to a ratio of the contractual value-at-

risk. The deposit is locked on-chain with the fees gathered by Alice and Bob. The 

source code and the compiled byte code is hashed into checksums and logged on 

chain. The source code is then distributed amongst seven randomly selected peers. 

Before Alice and Bob signs or executes the deployed contract, the code deployed by 

Eve is subject to a blind peer review. Five out of seven peers challenge the results by 

submitting their checksums. If Eve is proven to have computed the contract correctly, 

the contract is signed and released by Alice and Bob. This action transfers the deposit 

(d) and the fee (f) back to Eve. If the computation is disputed, the deposit is shared by 

consenting contenders. The following process details the implementation proposed in 

this paper. We advise the reader follow along, by viewing the state chart in appendix 

A. Appendix B provides a visualization of step one through four providing additional 

visual aid.  
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Step 1: Alice A and Bob B, presents a contract x and a set of specifications p to Eve C.  

 

  Step 1a: The required deposit d is calculated from the estimated value-at-risk,  

  denoted vu. The value at risk is multiplied by  the deposit to contract value ratio r, 

  expressed as: 

 

d = (Avu + Bvu) * r 
 

 Step 1b: The service-fee f demanded by C, is stored with the deposit d on chain, 

  for the remainder of the process.  

 

 

Step 2: C presents a compilation result y to A and B as a transitional proof of  

y = p(x).  
 

Step 3: A,B,C independently produce hashed checksums of the source-code yc and 

the output: xc  

 

Step 3a: If (A,B(yc,xc)) ≠ C(yc,xc) the contract is rejected. 

 

Step 3b: If A(yc,xc)∧B(yc, xc) = C(yc,xc) the contract is accepted, and C  

 can deploy y  

 

Step 3c: With deployment, A,B,C encode the hashed check sums (yc,xc) as 

input transaction data, together with the compiler pragma (version), denoted by 

z. Alternatively, simple functions  such as uintstoredData on the Ethereum net-

work can be applied. The only requirements for logging data on-chain is that the 

hashed checksums and the compiler pragma can be easily associated with the 

contract under scrutiny. 

 

Step 4: Once the contract is deployed and the checksum and the compiler pragma 

(yc,xc,z) is logged on the blockchain, C must prove the correctness of y before A,B 

signs or executes the deployed bytecode, y. 

 

Step 5: A,B,C distributes x to 7 randomly selected contenders on the network, de-

noted by: T1....T7. 

 

Step 5a: Out of contenders T1....T7  at least 5 contenders should respond by chal-

lenging the validity of y = p(x). A challenge is submitted by computing and hashing 

p(x) with the correct compiler pragma (version) denoted by z. Once a reasonable 
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amount of contenders has challenged the result, the tally can be concluded. If a ma-

jority of contesters return the equivalent SHA256 checksums such that: 

 

Tn (yc, xc) = (A,B(yc, xc)) 

 

We can assume C to be benevolent, If: 

 

∀(Tn(yc,xc)) = (A,B(yc, xc)) ├ C=θ1 
 

In this example, if ≧3 contesters return SHA256 checksums such that,  

 

(Tn (yc, xc)) ≠ (A,B(yc, xc)) 

 

We can treat C as malicious, if: 

 
 ∃Tn (yc, xc) ≠ (A,B(yc, xc))├ C=θ2 

 
If the randomly selected contenders does not arrive at consensus, the contract can 

be rejected and f, d returned to A,B,C. High value contracts may require full consen-

sus with more challengers. Low value contracts may require only one or two blind 

peer reviewers. 

 

Step 6a: Having derived the type of C from the verification game, we can now dis-

pose of the deposited values: d, f. If,  

 

C├ C=θ1 

 

A, B can sign and release the deployed code x. This transfers d, f to C and the pro-

cess is complete. 

 

Step 6b: If the anonymous voting process showed that: 

 

C├ C=θ2 

 

f is returned to A,B and d divided amongst contesters T1....T5  in consensus.  

 

Step 7: The division of d to winning contenders can be distributed according to any 

bespoke mechanism, incentivizing the preferred agent behavior. Here, auction theory 

may provide useful inspiration. One might consider adopting a Dutch-auction model, 

allocating the potential d in a descending order, [50, 25, 12.5, 6.25%] incentivizing 

agents to compute and send their bid as fast as possible. 
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3  Discussion  

 
We have shown a potential implementation of an incentive scheme for blind peer 

verification of simple computational results. The general framework produced in this 

paper, has been applied to the verification of compiled and deployed byte-code of 

smart-contracts. This scheme may be ported to other verticals, calling for the verifica-

tion of mission critical computations. Adding incentive schemes to the verification of 

computations is applicable in situations where multiple agents with heterogeneous 

types are facing a) risk of manipulation, b) risk of hardware malfunction, or c) poten-

tially compromised software. Depending on the computational class in question, add-

ing an incentive layer to the validation of a proof may provide additional certainty, 

that the agent charged with completing the computation will be financially penalized 

for any misnomer.  

 

 

3.1 Potential Concerns in the Suggested Implementation 

 

We address challenges in the suggested implementation described above. First, we 

might question the source of true randomness in the peer selection process in step 5. 

Provable generation of true randomness is a non-trivial issue, addressed widely in the 

literature. Recent advancements in the field, alongside an increasing attention paid 

towards this issue, [8] leads us to the assumption that we will see positive develop-

ments in the generation of randomness on public blockchains. Another, similarly per-

tinent, issue is privacy. This model necessitates the sharing of source-code, which 

obviously is an undesirable property. The partial encryption and verification of 

source-code is a potential solution, but has not been pursued in this paper. A different 

frontier is the habits of strategic agents. If not restrained, agents might attempt to 

match hashes before submitting their bids, in the attempt at saving transaction fees. 

This can be mitigated either by encoding bids and evaluating after the tally is final, or 

by tweaking the incentive scheme as suggested in step 7. Along similar lines, we 

might be concerned with the frequency of malicious/naive behavior. [42] Indeed, how 

often does malicious behavior need to occur before the model becomes self sustaina-

ble? The TrueBit system proposes that system moderators simply inject falsified com-

putations at randomized intervals. This measure incentivizes continuous search for 

malicious agents. Depending on the implementation, number of compiler pragma (z) 

and contestants, similar considerations might prove necessary in a practical implemen-

tation. A necessary concern is the networks capability of handling new releases. This 

implementation has shown a static scenario, in which only a single pragma or di-

rective is applicable. An optimal implementation must account for multiple possible 
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pragma, whilst supporting the propagation of software updates throughout the net-

work.  

 

 

 

 

3.1 Potential Optimizations to the Suggested Implementation 

 

We discuss potential optimizations of the model presented in this paper. First, we 

might reduce on-chain logging by concatenating checksum hashes and compiler 

pragma into a Merkle tree, indexing only the Merkle root on the blockchain. This 

design might allow more contenders and faster process times, as checksum matching 

can be reduced to a simple operation. Additional efficiency gains can be achieved by 

hashing only the first, and last, n bits of the source and target code. This might en-

hance the models applicability in verification of slightly larger computational tasks.  

 

The quality of an agent’s reputation may be quantified utilizing Token Curated Regis-

try schemes (TCR). [27] Agents serving as verifiers and challengers in a certain subset 

of compiler pragma can be qualified by the number of reputation tokens associated 

with a designated address. TCR schemes comprise an interesting development in these 

novel fields, as we may discriminate further amongst the perceived qualifications of 

agents, without requiring association with identity or location. The scheme proposed 

here may be instructed to issue a specific number of reputation tokens upon the com-

pletion of a successful verification round. Adjacent to the scheme defined above, repu-

tation tokens may be staked with the deposit value (d). Such a model would facilitate 

the quantification of reputation, as trusted agents would be able to stake large amounts 

for high-risk computations. Consequently, agents in possession of large quantities of 

reputation tokens, may require higher fee (f) for their services.  

 
4  Conclusion 

 
Smart contracts are generally simple computations, often involving financial risks. 

The emerging ecosystem for financial applications on public blockchain infrastruc-

ture, can benefit from a broader variety of domain specific languages. However, there 

is little incentive for talent to engage in the commercial development of domain spe-

cific languages or verified compilers. We attribute this state of affairs, partially to the 

problem of honest deployment. How can a non-technical user verify the integrity of a 

compilation, without re-executing the computation locally? Departing from the extant 

literature, predominantly consisting of technically dense and computationaly complex 

solutions, we develop a basic verification scheme for simple high-risk computations. 

The scheme proposes a solution to the problem of honest deployment, through the 

introduction of financial incentives. Agents tasked with the compilation of source 

code is asked to deposit values corresponding to the value at risk in a given contract. 

The computation is re-executed by a randomly selected committee of peers. If the 

computation is shown to be flawed or manipulated, the deposit is shared amongst 
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contenders and the fee reimbursed. If the computation is shown to be correct, the de-

posit is returned and the round is concluded. The current implementation does not 

account for reputation systems and software updates. We identify these issues as po-

tential future work on this or related models.  
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