
Modeling Bitcoin Protocols with Probabilistic
Logic Programming

Damiano Azzolini1, Fabrizio Riguzzi2, Evelina Lamma1, Elena Bellodi2, and
Riccardo Zese1

1 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

damiano.azzolini@student.unife.it,

[fabrizio.riguzzi,evelina.lamma,elena.bellodi,riccardo.zese]@unife.it

Abstract. Bitcoin is one of the first decentralized, peer to peer, pay-
ment systems based on the so-called Proof-of-Work (PoW). PoW is an
algorithm that requires the computation of a hard function in order to
gain access to a resource but, at the same time, the correctness of the
computed result should be easily checked. The use of a PoW removes
the necessity of a centralized third party and so the consistency of the
network may be altered directly by the involved users. Peers, to solve the
PoW more efficiently, usually organize themselves into mining pools, to
increase the overall computational power: this situation, unfortunately,
leads to a network centralization. In this paper we consider two typical
scenarios of a Bitcoin network and we model them by probabilistic logic
programming (PLP): the centralization of the hashing power by large
pools and the “double spending attack”. In the first one, we verify the
effectiveness of a protocol that attempts to discourage the formation of
large pools. In the second one, we compute the probability of success of
an attacker. Both scenarios are modeled using the PLP package cplint.

Keywords: Bitcoin, Blockchain, Probabilistic Logic Programming.

1 Introduction

Bitcoin is a payment system based on a decentralized protocol that has captured
the attention of many users and developers. The key of Bitcoin (and more in
general, blockchain) success is the possibility to create new currencies and new
methods of payment without the need of a centralized trusted third party. Trust
between peers is obtained through a process called Proof-of-Work. Involved peers
usually group themselves in pools in order to reduce the variability of rewards.
Pool formation, on the other hand, decreases the decentralization of the system
and centralizes the computational power in the hands of only few miners (cur-
rently, in Bitcoin network, the first three pools hold more than 50% of the total
hash power and the first 10 more than 90% [15]). This situation can eventually

allow few people to control the whole network and lead to the so-called 51% or
majority attack. In this paper we analyze a protocol proposed in [8] to tackle
hashing power centralization, and we evaluate the probability of a double spend-
ing attack. The analysis is based on an encoding of the models by Probabilistic
Logic Programming. Results obtained are similar to the ones described in [13]
and [20]. A similar scenario is analyzed both in [11] and [14].

The paper is organized as follows: in Section 2 we introduce Probabilistic
Logic Programming. In Section 3 we briefly present the Bitcoin protocol. In
Section 4 we analyze a solution to large pools formation proposed in [8] and
model the probability of a double spending attack. Section 5 concludes the paper.

2 Probabilistic Logic Programming

We consider Probabilistic Logic Programming (PLP) languages under the dis-
tribution semantics [21], that have been shown expressive enough to represent a
wide variety of domains [2,19,1]. A program in a language adopting the distri-
bution semantics defines a probability distribution over normal logic programs
called instances or worlds. Each normal program is assumed to have a total
well-founded model [23]. Then, the distribution is extended to queries and the
probability of a query is obtained by marginalizing the joint distribution of the
query and the programs.

A PLP language under the distribution semantics with a general syntax is
that of Logic Programs with Annotated Disjunctions (LPADs) [24]. We present
here the semantics of LPADs for the case of no function symbols, if function
symbols are allowed see [18].

In LPADs, heads of clauses are disjunctions in which each atom is annotated
with a probability. Let us consider an LPAD T with n clauses: T = {C1, . . . , Cn}.
Each clause Ci takes the form: hi1 : Πi1; . . . ;hivi : Πivi :− bi1, . . . , biui , where
hi1, . . . , hivi are logical atoms, bi1, . . . , biui

are logical literals and
Πi1, . . . ,Πivi are real numbers in the interval [0, 1] that sum to 1. bi1, . . . , biui

is indicated with body(Ci). Note that if vi = 1 the clause corresponds to a
non-disjunctive clause. We also allow clauses where

∑vi
k=1Πik < 1: in this case

the head of the annotated disjunctive clause implicitly contains an extra atom
null that does not appear in the body of any clause and whose annotation is
1−

∑vi
k=1Πik. We denote by ground(T) the grounding of an LPAD T .

Each grounding Ciθj of a clause Ci corresponds to a random variable Xij

with values {1, . . . , vi} where vi is the number of head atoms of Ci. The random
variables Xij are independent of each other. An atomic choice [16] is a triple
(Ci, θj , k) where Ci ∈ T , θj is a substitution that grounds Ci and k ∈ {1, . . . , vi}
identifies one of the head atoms. In practice (Ci, θj , k) corresponds to an assign-
ment Xij = k.

A selection σ is a set of atomic choices that contains an atomic choice
(Ci, θj , k) for each clause Ciθj in ground(T). Let us indicate with ST the set
of all selections. A selection σ identifies a normal logic program lσ defined as
lσ = {(hik :− body(Ci))θj |(Ci, θj , k) ∈ σ}. lσ is called an instance, possible world

or simply world of T . Since the random variables associated to ground clauses are
independent, we can assign a probability to instances P (lσ) =

∏
(Ci,θj ,k)∈σΠik.

We consider only sound LPADs where, for each selection σ in ST , the well-
founded model of the program lσ chosen by σ is two-valued. We write lσ |= q
to mean that the query q is true in the well-founded model of the program lσ.
Since the well-founded model of each world is two-valued, q can only be true or
false in lσ.

We denote the set of all instances by LT . Let P (LT) be the distribution over
instances. The probability of a query q given an instance l is P (q|l) = 1 if l |= q
and 0 otherwise. The probability of a query q is given by

P (q) =
∑
l∈LT

P (q, l) =
∑
l∈LT

P (q|l)P (l) =
∑

l∈LT :l|=q

P (l) (1)

Example 1. Let us consider the UW-CSE domain [12] where one of the objectives
is to predict the “advised by” relation between students and professors. In this
case a program for advisedby/2 may be

advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B).

advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

where project(C,A) means that C is a project with participant A, ta(C,A)
means that A is a teaching assistant (TA) for course C and taughtby(C,B)
means that course C is taught by B. The probability that a student is advised
by a professor depends on the number of joint projects and the number of courses
the professor teaches where the student is a TA: the higher these numbers the
higher the probability.

Suppose we want to compute the probability of q = advisedby(harry, ben)
where harry is a student, ben is a professor, they have one joint project and ben
teaches one course where harry is a TA. Then the first clause has one grounding
with head q where the body is true and the second clause has one grounding
with head q where the body is true. The worlds where q is true are those that
contain at least one of these ground clauses independently of the presence of other
groundings, so P (advisedby(harry, ben)) = 0.3 · 0.6 + 0.3 · 0.4 + 0.7 · 0.6 = 0.72.

3 Bitcoin

Bitcoin is one of the first decentralized, peer to peer, payment systems based
on Proof-of-Work (PoW). It was proposed in 2008 by Satoshi Nakamoto [13].
Due to its decentralization, there is no need to have a trusted centralized third
party. Trust between peers is obtained with a distributed public ledger, called
blockchain: each peer in the network has a copy of this ledger and can see all
the transactions that took place since the beginning of the network.

Peers can send each other coins, issuing a transaction. A transaction consists
of one or multiple inputs (which are references to outputs of previous transac-
tions) and one or multiple outputs (specifying the address of the receiver, the
value that needs to be transferred and the fees for the miner). Once the transac-
tion is set, if it is valid, it will be moved into a pool of unconfirmed transactions.

To be confirmed, the transaction needs to be included into a block and then
stored into the blockchain. Adding a block to the chain can be done by solving
a cryptographic puzzle, the so called Proof-of-Work. This process is best known
as mining. PoW consists in finding a value called nonce (that can be changed
arbitrarily during this brute-force process) such that, when appended to the
current block header (composed of meta-data), SHA256(SHA256(blockHeader))
≤ T where T is a value called target and SHA is the hash function “Secure Hash
Algorithm” [4,17]. The target value is dynamically changed every 2016 blocks
found to ensure that new blocks will be generated at regular intervals, one every
10 minutes on average. The goal is to produce exactly 2016 blocks in two weeks: if
this value is reached in a different time, every Bitcoin client compares the actual
time it took to generate these blocks with the two weeks goal and modifies the
target accordingly, making PoW more or less difficult [22], i.e., if the goal has
been reached in less than two weeks, the target value will decrease and so mining
will become more difficult and vice versa. If a peer is able to find the correct hash,
it is rewarded with a certain number of bitcoins plus the fees of the transactions
included in the blocks. The number of bitcoins which can be mined is limited
to 21 millions so, once all available bitcoins will be mined, transaction fees will
become the only mining income.

Once the correct hash is found, the block is added to the chain. All the
blocks are linked together by adding the hash of the last validated block inside
the header of the block which has to be inserted into the chain. The chain
can have different branches, and the miners add the block to the longest branch.
Blockchain is spread over a huge network, so two valid blocks can be broadcast at
the same time but be received in different order. In this case, peers will continue
to build the chain on top of the received block (i.e. someone will build upon
the first block, someone else on the second one). This double branch is deleted
when a new block is broadcast: the new block will have one of the two previous
blocks as ancestor and so will make one of the two branches longer than the
other one. This behaviour suggests that each participant receiving bitcoins in a
transaction waits for some blocks (number of confirmations) before considering
the transaction fully valid. Generally, a transaction remains unconfirmed until
it has at least 6 blocks over it, since another chain could be the valid one. Even
if 6 is the suggested number to wait for the authors of [5], according to [6] a
recent attack on Bitcoin Gold (one of the many forks of Bitcoin) has reverted 22
blocks. This scenario opens up several possibilities for attack. One of the best
known and studied attacks is the so called “double spending attack” [7], which
will be presented in detail in Section 4.2.

4 Protocol Models

4.1 Preventing Large Pools Formation

PoW is a hard problem and the probability of success (i.e. finding the correct
hash of a block) is proportional to the hash rate owned by each miner. Nowadays,
the probability that a single miner can find a correct block is close to zero [10].
To increase the probability of success, miners usually organize themselves into a
mining pool, to work together on each block and share the revenues in case of
success. The pool is typically maintained by a pool operator who may take a fee,
such as a fixed percentage of the block reward, for his services. The formation of
large mining pools, on the other hand, can generate a super pool that holds more
than 50% of the total hash power. This situation happened in July 2014 when
GHash.io held more than 51% of the hashing power [9] and therefore was the-
oretically capable of performing a successful double spending attack publishing
fraudulent transactions.

To prevent the centralization of the hashing power, the authors in [8] and [3]
proposed a 2-phase PoW protocol not yet adopted in practice. This new method
consists of a PoW organized in 2 steps: the first step is to find a double hash
of the header SHA256(SHA256(header)) that is smaller than a certain value X
(this is the current PoW). The second one consists in signing the header with the
private key of the address that will receive the mining reward and then finding
a new hash SHA256(SIG(header,privateKey)) smaller than a value Y . The ratio
between X and Y is crucial to avoid the creation of large pools but, at the same
time, let small pools exist (and incentivize the participation of new miners).
Unfortunately, the original paper does not show how to choose the correct rate
between these two values. This solution disincentivizes the formation of large
pools because the pool operator should share his private key with all the compo-
nents of the pool, in order to complete the second phase. Doing that, he allows
every peer to access and potentially steal the newly mined coins. Therefore, the
pool operator will share his private key only to trusted peers and not to everyone
who wants to join the pool, reducing the probability of large pool formation.

Considering the above-described situation, a peer can be in one of the fol-
lowing 4 states:

– State 0 (a0): a miner generates a hash using a certain nonce. If this hash is
correct, it will move to state 1, if it’s not, it will stay in a0.

– State 1 (a1): the miner has already solved the first hash puzzle (he has found
a nonce value such that SHA256(SHA256(header)) is less than a difficulty
parameter X) and now needs to solve the second one (find a hash value such
that SHA256(SIG(header,privateKey)) is less than a difficulty parameter Y).

– State 2 (a2): the miner has solved both hashes, is rewarded and now is ready
to mine another block (back to state 0).

– State 3 (a3): another miner has solved the second hash, so the first miner
can now stop working on this hash and move to another one (back to state
0).

a0start a2

a1a3

Fig. 1. Markov chain of the Model.

This scenario can be modeled using the Markov chain shown in Figure 1.
The chain can be represented using the cplint package for Probabilistic Logic
Programming [1].

In this example, we consider both X and Y having a finite value (in [8] and
[3], X has a finite value while Y is infinite, i.e. each hash is good). The following
LPAD models a race between two peers, a and b:

a_found_y(_):0.15.

b_found_y(_):0.25.

b_found_x(_):0.10.

found_y(S):- a_found_y(S); b_found_y(S).

As an example, we suppose that a will find the right Y hash with 15% probability
and b with 25% probability. found_y/1 is true when a or b have found the correct
Y hash at state S.

trans(a0,S,a1):1.0/50; trans(a0,S,a0):1.0-1.0/50:- \+b_found_x(S).

trans(a1,S,a2):0.15;trans(a1,S,a1):1.0-0.15:- \+b_found_y(S).

Transition between a0 and a1 will happen with probability 1/50 and only if b
has not found the correct hash for the current block (in this case, there’s no need
to keep searching for this hash). Similarly, a will move from a1 to a2 with 15%
of probability, only if b has not found the hash.

trans(a0,S,a3):- b_found_x(S).

trans(a1,S,a3):- b_found_y(S).

trans(a2,S,a0):- found_y(S).

trans(a3,S,a0):- found_y(S).

In case b has found X or Y , a will reach state a3 if it was in a0 or a1. If a reaches
node a2 or a3, it means that Y has been found, respectively by a or b. Then, a
will reach a0 to start mining a new hash. In this LPAD, we have modelled only
a. Peer b can be defined in a similar way.

Finally, transitions between states can be modelled with the predicate reach/3,
starting at state S at instant I, state T is reachable if there is a transition from
state S to state U at instant I and if T is reachable from U at next instant:

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, _, S).

We can approximate the probability P to reach state a2 from state a0 by
sampling:

?- mc_sample(reach(a0,0,a2),1000,P).

P = 0.068

The predicate mc_sample/3 performs approximate inference by sampling 1000
times reach/3 and returning the estimated probability that a sample is true.

4.2 Double Spending Attack

Probabilistic Logic Programming can also be used to model the scenario of an
attacker trying to double spend, i.e. trying to spend the same bitcoin twice [7].
The process goes as follows: first the attacker creates a transaction T1 with an
address A as output.

Then secretly, he starts mining his own fork of the chain: this new chain does
not include T1 but a new transaction T2 whose output is not A, but the address
of the attacker himself (Fig.2).

B0 B1

B2

Fig. 2. Initial state of the double spending attack. Block B1 with transaction T1 is
inserted in the chain after B0, while the attacker starts mining another block (B2)
with B0 as ancestor, without T1 inside.

After a certain number of blocks (transaction confirmations) built on top of
block B1, the recipient of the transaction is convinced that T1 is valid and can,
ideally, send goods to the attacker (Fig.3).

B0 B1 B3 B4 B5

B2 B6

d

Fig. 3. General case. The “honest” chain has built 3 confirmation blocks on B1
(B3, B4, B5) while only one block (B6) has been built on top of B2 by the attacker.
In this figure, d represents the distance between the honest and the secret chain and
is used to evaluate the advantage of the honest chain over the attacker.

Now the attacker, to double spend, needs to make his own chain longer than
the honest one. If it succeeds, he will publish all the mined blocks on his own
fork. In this way, all the transactions stored in blocks between B1 (including
transaction T1) and the last block of the honest chain will be invalidated (Fig.4).
If this happens, if a user A sends some money to a user B in one of the invalidated
transactions, B will no longer have this money and A will be able to spend it
again, unbeknownst to B.

B0 B1 B3 B4 B5

B2 B6 B7 B8 B9

Fig. 4. Successful attack. The attacker has built a longer chain (marked in red). The
attacker will now publish all blocks from B2 to B9 and so all blocks from B1 to B5 in
the black chain will not be considered valid because they are part of a chain which is
not the longest one.

In this model, some simplifications are made:

– The total hash rate of the whole network is constant.
– The mining difficulty is constant.
– There is only one attack going on: all the peers, except for the attacker, are

mining over the honest chain.

The whole attack can be described by two functions: the attacker’s potential
progress function and the catch up function.

The attacker’s potential progress function relates the number m of blocks
that are mined by the attacker, while the honest chain has mined n blocks. In
Nakamoto’s paper [13], this function is described by a Poisson distribution:

P (m) =
e−λλm

m!
, (2)

where λ = nq/p, q hash rate of the attacker, p = 1 − q hash rate of the honest
miners.

On the other hand, Rosenfield [20] describes this process with a binomial
negative distribution (also known as Pascal distribution):

P (m) =

(
m+ n− 1

m

)
pnqm, (3)

where q is the probability of success (in this case, a success represents a block
found by the attacker), and p = 1− q.

In both cases, even if the attacker has created a chain longer than the honest
one, he cannot publish his secret chain until N confirmations are reached: the
victim of the attack would be aware of the attack and so would not send him
the goods. Once N confirmations are obtained, the race between the honest and
the attacker’s chain starts.

In this scenario, we are not interested in how long the attacker will take to
build a chain longer than the honest one, but only if this will eventually happen.
This process, according to [13] and [20], can be described as a binomial random
walk, that can be modeled with a discrete time Markov chain.

If we define d as the difference between the length of the two chains (Fig. 3),
an increase of d by 1 means that the honest chain has found a block before the
attacker’s chain.

We can define the probability that the attacker will catch up from Z blocks
behind as PCZ :

PCZ =

{
1 if q ≥ p
(q/p)z if q < p

(4)

Using PLP, this can be expressed with:

move(T,1):0.7; move(T,-1):0.3.

walk(InitialPosition):-

walk(InitialPosition,0).

walk(0,_).

walk(X,T0):-

X > 0,

X < 1000, % threshold for not winning

move(T0,Move),

T1 is T0+1,

X1 is X+Move,

walk(X1,T1).

In this example, we suppose that, with 70% probability, the distance between the
two chains increases by one. We model the binomial random walk described in
function 4 using walk/2: in each step, we compute if the difference will increase or

decrease by one. If the two chains have the same length, the attack has succeeded
and the secret chain can be published. Usually, due to the difference of the hash
power, the probability for a successful attack is very small. To avoid an infinite
loop, if the difference between the two chains is greater than 1000, we suppose
that the attack has failed.

Nakamoto’s [13] and Rosenfield’s [20] proposals can be modeled as follows:

attacker_progress_poisson(X):poisson(X,Lambda).

attacker_progress_pascal(X):pascal(X,N,P).

success_poisson:-

attacker_progress_poisson(A),

V is NumberOfConfirmations - A,

(V = 0 ->

true;

walk(V)

).

success_pascal:-

attacker_progress_pascal(A),

V is NumberOfConfirmations - A,

(V = 0 ->

true;

walk(V)

).

with attacker_progress_poisson/1 and attacker_progress_pascal/1 we sam-
ple, respectively, a value from a Poisson probability distribution with parameter
Lambda and a value from a Pascal probability distribution with parameters N

and P where N is the number of failures and P the success probability. After
that, we compute the difference V of length between the two chains (the d value
from Fig. 3). If the difference is 0, the attack is successful, otherwise we start a
binomial random walk with V as initial position.

To get the probability values, we can query, for instance:

?- mc_prob(success_poisson,P).

P = 0.036.

?- mc_sample(success_pascal,1000,P).

P = 0.049.

Predicate mc_prob/2 returns in P the approximate probability of success ac-
cording to a Poisson distribution (see formula 2), while predicate mc_sample/3

samples 1000 times success_pascal/0 and returns in P the probability of
success according to the Pascal distribution. These values are obtained using
Lambda = 10(0.3/0.7), N = 10, X = 0.3 and NumberOfConfirmations = 10.

Fig. 5 shows the success probability as a function of the number of transaction
confirmations according to both probability distributions. The results are in
accordance with those obtained in [13] and [20].

1 5 10 15 20

10

20

30

40

50

60

Number of Confirmations

S
u
cc

es
s

P
ro

b
a
b
il
it

y
(%

)
Poisson Distribution

Pascal Distribution

Fig. 5. Success probability of an attacker in a double spending attack according to the
Poisson and Pascal probability distributions.

5 Conclusion

In this paper we have shown that Probabilistic Logic Programming can be used
both to model the current Bitcoin protocol and to analyze some proposals for
improvements. This analysis could be extended to blockchains in general and so,
to other cryptocurrencies, such as Ethereum. The models could be also further
specialized, considering a variable hash rate over time and a variable difficulty
of PoW. Probabilistic Logic Programming could be also applied to model other
validation types, such as Proof-of-Stake and Delegated-Proof-of-Stake, in order
to compute, for instance, expected block reward or expected validation time.

References

1. Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: cplint on SWISH: Prob-
abilistic logical inference with a web browser. Intell. Artif. 11(1), 47–64 (2017)

2. Alberti, M., Cota, G., Riguzzi, F., Zese, R.: Probabilistic logical inference on the
web. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS,
vol. 10037, pp. 351–363. Springer International Publishing (2016)

3. Bastiaan, M.: Preventing the 51%-attack: a stochastic analysis of two phase
proof of work in bitcoin. In: Available at http://referaat. cs. utwente.
nl/conference/22/paper/7473/preventingthe-51-attack-astochastic-analysis-of-
two-phase-proof-of-work-in-bitcoin. pdf (2015)

4. Bryson, P.J.: Secure hash standard (shs)(federal information processing standards
publication 180-4) (2012)

5. Confirmation, https://en.bitcoin.it/wiki/Confirmation, accessed May 30,
2018

6. Double spend attack on exchanges (2018), https://forum.bitcoingold.org/t/
double-spend-attack-on-exchanges/1362, accessed May 30, 2018

7. Double spending, https://en.bitcoin.it/wiki/Irreversible_Transactions,
accessed May 30, 2018

8. Eyal, I., Sirer, E.G.: How to disincentivize large bitcoin mining pools.
Blog post: http://hackingdistributed. com/2014/06/18/how-to-disincentivize-
large-bitcoin-mining-pools (2014)

9. Ghash.io, https://en.bitcoinwiki.org/wiki/GHash.IO, accessed May 30, 2018
10. Hash rate, https://blockchain.info/charts/hash-rate, accessed May 30, 2018
11. Karame, G., Androulaki, E., Capkun, S.: Two bitcoins at the price of one? double-

spending attacks on fast payments in bitcoin. IACR Cryptology ePrint Archive
2012(248) (2012)

12. Kok, S., Domingos, P.: Learning the structure of Markov Logic Networks. In: ICML
2005. pp. 441–448. ACM (2005)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
14. Pinzón, C., Rocha, C.: Double-spend attack models with time advantange for bit-

coin. Electronic Notes in Theoretical Computer Science 329, 79–103 (2016)
15. Pool distribution, https://btc.com/stats/pool, accessed May 30, 2018
16. Poole, D.: The Independent Choice Logic for modelling multiple agents under

uncertainty. Artif. Intell. 94, 7–56 (1997)
17. Proof of work, https://en.bitcoin.it/wiki/Proof_of_work, accessed May 30,

2018
18. Riguzzi, F.: The distribution semantics for normal programs with function symbols.

Int. J. Approx. Reason. 77, 1 – 19 (October 2016)
19. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic pro-

gramming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (10 2016)
20. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009 (2014)
21. Sato, T.: A statistical learning method for logic programs with distribution seman-

tics. In: Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)
22. Target, https://en.bitcoin.it/wiki/Target, accessed May 30, 2018
23. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general

logic programs. J. ACM 38(3), 620–650 (1991)
24. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated

Disjunctions. In: ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer (2004)

https://en.bitcoin.it/wiki/Confirmation
 https://forum.bitcoingold.org/t/double-spend-attack-on-exchanges/1362
 https://forum.bitcoingold.org/t/double-spend-attack-on-exchanges/1362
https://en.bitcoin.it/wiki/Irreversible_Transactions
https://en.bitcoinwiki.org/wiki/GHash.IO
https://blockchain.info/charts/hash-rate
https://btc.com/stats/pool
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Target

	Modeling Bitcoin Protocols with Probabilistic Logic Programming

