
Measuring the Complexity of Product Configuration
Systems

Amartya Ghosh and Katrin Kristjansdottir and Lars Hvam1 and Élise Vareilles2

Abstract.1 The complexity of product configuration systems is an
important indicator of both development and maintenance effort of
the systems. Existing literature proposes a couple of effort
estimation approaches for configurator projects. However, these
approaches do not address the issues of comprehensibility and
modifiability of a configuration model. Therefore, this article
proposes a metric to measure the total cognitive complexity of the
configuration model corresponding to a product configuration
system, expressed in the form of an UML class diagram. This
metric takes into account the number and the type of attributes,
constraints and the relationships between classes in an UML class
diagram. The proposed metric can be used to compare two
configuration models, in terms of their cognitive complexity.
Moreover, a relation between development time for a PCS project
and the total cognitive complexity of the corresponding
configuration model is established using linear regression. To
validate the proposed approach a case study is conducted where the
cognitive complexity is calculated for two configuration models.

1 Introduction
Information technology tools, such as product configuration
systems (PCSs), are widely used to handle the increased amount of
information shared amongst customers, sales and production
departments at companies, arising out of an increase in the demand
of product customization [1]. PCSs are knowledge-based IT
systems which fulfil a configuration task. A configuration task is a
special type of design activity [2] facilitated by a number of
components, their corresponding properties and ports, and
constraints which restrict the number of feasible combinations
associated with the components [3].

PCSs contain detailed information about the companies’
offerings. The information included in the configuration models
depend on the type of the configuration system and usually include
different components, attributes and rules of how the different
components can be combined. Generally, the PCSs are not
standalone IT systems. These systems are linked to existing IT
systems within the companies (e.g., ERP, CAD, PLM, PDM, and
calculation systems) either through integrations and/or interfaces.
Coupled with the inherent complexity of the product knowledge
modelled into the system, the integrations to other IT systems will
render these configuration systems to be highly complex.

Practitioners in the industry are interested in metrics for
comparing different PCS [5] and predicting the resource
consumption required for developing, maintaining and extending
the systems [6], [7]. The approach proposed in [6] defines a load

1 Engineering Management Department, Technical University of Denmark,
email: amgho@dtu.dk, katkr@dtu.dk, lahv@dtu.dk
2 Toulouse University, email: elise.vareilles@mines-albi.fr

estimation function that takes into account the impact of the
industry and the organization on the project and the size and
complexity of the product under consideration. The activities
associated with the PCS development project include modelling the
product structure and programming this model into a configuration
software. However, this approach does not explicitly take into the
consideration the complexity of the configuration model, while
estimating the load required. Another approach to estimating the
costs associated with PCS projects is to calculate the functional
size of the UML class diagram of the configuration knowledge
base using the IFPUG Function Point Analysis (FPA) technique
[7]. This approach, however, is subjective in nature with regards to
the definition of internal and external logical files (ILFs and ELFs).
Moreover, the function point approach does not clarify the
definition of one unit of function point [8]. The parametric
complexity approach proposed in [5] involves calculating a metric
on the basis of the number of business rules and the number of
attributes, across two categories: field of engineering (sales,
engineering and/or both) and the integration to other IT systems.
However, the parametric complexity approach fails to take into
account the complexity associated with the manner in which the
configuration problem has been modelled into a PCS. A method to
analyse the complexity of PCS is, therefore, needed.

This paper proposes a complexity metric that captures the
different aspects associated with the PCS by focusing on the
cognitive complexity of the configuration model. The metric can
be used to effectively compare different PCS both developed on
the same configuration software platforms or on different
platforms. Also, the metric can be used to identify the impact of the
complexity on the resource consumption for the development and
maintenance activities associated with the PCS. Given that
resources required for these activities are valuable and have limited
availability, it is imperative that practitioners in the field have some
metrics for predicting the extent of resource consumption required.

The proposed complexity metrics build on the approaches
proposed in Felfernig (2004) and Kristjansdottir et al. (2017) by
ascertaining the cognitive complexity of the UML class diagram
associated with a given configuration problem. The proposed
metric takes into account the effort required to understand and
modify the way in which the PCS has been modelled, in terms of
generalizations and aggregation structures, and the number and the
type of business rules and attributes present in the configuration
model.

The remainder of the paper is structured as follows. In Section 2
the concept of cognitive complexity known of software systems is
introduced. The research methodology employed to carry out the
analysis is explained in Section 3. Section 4 provides an overview
of the mapping of the cognitive complexity metric of software

mailto:lahv@dtu.dk

systems to configuration models. Section 5 then presents the
findings from applying the method in a case company. Finally,
Section 6 discusses the results and provide guidance for further
studies.

2 Theoretical Background
This section presents the theoretical background for the proposed
complexity metric for configuration models. It provides an
overview of the existing literature on the topic of cognitive
complexity of software systems.

Cognitive complexity is a measure of the functional complexity
associated with designing and understanding a software system,
based on the basic control structures (BCSs) existing in the system
[9]. BCSs are considered to the building blocks of any software
system. They are a collection of fundamental flow control
mechanisms which are necessary for constructing the logical
architecture of a software system [8]. Initially, Hoare et al. [10]
identified three types of primitive commands (SKIP, ABORT and
Assignment) and five types of more complex commands
(sequential composition, non-determinism, conditional, iteration
and recursion) in programming languages. Later, two further BCSs
(function call, interrupt) were identified in system modelling by
Wang [11]. Considering the sequential BCS as being representative
of a unit BCS, a different cognitive weight is assigned to each
BCS. The cognitive weight of a BCS is considered to be
proportional to the effort required by a user in understanding the
functionality and the semantics of the BCS, relative to the
sequential BCS. Table 1 summarizes the BCSs and the
corresponding cognitive weights:

Table 1: Cognitive weights of basic control structures (Adapted from

Wang, 2006 [9]
Category of BCS BCS Cognitive Weight

Sequential Sequence (SEQ) 1

Branch If-Then-
Else (I-T-E)

2

Case 3
Iteration For-do 3

Repeat-until 3
While-do 3

Embedded Function Call (FC) 2
Recursion (REC) 3

Concurrency Parallel (PAR) 4

Interrupt (INT) 4

Existing literature proposes several approaches for calculating

the cognitive complexity of programs written in object-oriented
programming languages, based on the cognitive weights of the
BCSs. Object-oriented programs comprise a number of classes,
each of which consist of a number of attributes and methods, and
are linked to other classes through aggregation, generalization or
association structures. The overall complexity of object-oriented
programs is obtained by calculating the cognitive complexity of the
constituent classes based on the relationships between the classes.
The class complexity (CC) is calculated by taking into
consideration the cognitive complexity of the individual methods,

which in turn are made up of the blocks of BCSs, and the
constituent attributes [12]. Therefore, the cognitive complexity of a
method comprising q linear blocks of m layers of nesting BCSs
with n linear BCSs in each layer, is calculated using the following
equation (1):

 (1)

Where,
MC: total cognitive weight of the method
𝑤𝑤𝑐𝑐(𝑗𝑗, 𝑘𝑘, 𝑖𝑖): cognitive weights of individual BCSs

Moreover, the attributes of a class are assigned cognitive
weights according to a categorization of the cognitive phenomena
associated with their datatypes [13]. The cognitive weights for the
attribute categories are summarized in Table 2. The attribute
complexity (AC) of a class is calculated by multiplying the number
of attributes belonging to a particular datatype category and its
corresponding cognitive weight.

Table 2: Cognitive weights assigned to attributes (Adapted from

Arockiam and Aloysius [13])
Attribute
Datatype

Associated Cognitive
Phenomena

Cognitive Weight

Primary Sub-concious cognitive
function

1

Derived Meta cognitive function 2

User-defined Higher cognitive function 3

Therefore, for a class containing ‘m’ number of methods, with the
i-th method having a complexity of MCi, and having an attribute
complexity, AC, equation (2) shows the cognitive complexity of
the class (CC).

 (2)

The reusability of software code in object-oriented
programming languages is facilitated through the concept of
inheritance. However, the use of several levels of inheritance
often has an adverse impact on the maintainability and
comprehensibility of software systems [14], [15]. Therefore, a
number of cognitive complexity metrics have been proposed to
penalise the use of inheritance structures in OOPs [14], [16].

At the class level, the cognitive complexity of a class, CCi,
takes into account the number and complexity of the inherited
classes, as shown in the following equation (3) [14][17]:

 (3)
Where,

: cognitive complexity of the i-th class due to inheritance
: cognitive complexity of an inherited class of class i

𝑘𝑘: the number of inherited classes of class i
𝑙𝑙: the number of constituent methods in class i

: the cognitive complexity of the j-th method of class i

Another approach to account for the presence of inheritance
structures involves changing the way in which the total cognitive
complexity of the program is calculated, depending on the level of
inheritance of individual classes [16]. In this case, if the classes
are on the same level of inheritance, their cognitive complexity

values are added together. However, if the classes are children of
parent classes, then their values are multiplied. This is shown in
the following equation (4) :

 (4)
Where,
𝑇𝑇C: cognitive complexity of the program
WCC𝑗𝑗𝑘𝑘: cognitive complexity of k-th class at level j of inheritance.

The cognitive complexity approach has been applied to
empirically calculate the complexity of UML class diagrams. The
cognitive complexity of UML class diagrams has been shown to
be correlated to the generalization and association structures, with
an increase in the number of classes and attributes leading to an
increase in the cognitive complexity and also the time required to
understand and modify the class diagrams [18]. This implies that,
given the UML class diagram of a configuration model and,
consequently, the cognitive complexity of the configuration
model, the required man-hours for developing and maintaining
the PCS can be estimated. In turn, this will make it possible for
better resource planning for PCS projects, allowing more accurate
business cases to be developed, prior to the initiation of projects.

3 Methodology
The authors have adopted the case study research method to
calculate the complexity of a configuration model and,
subsequently, propose a relation, which expresses the development
time in terms of the proposed complexity metric.

The case company is a world leader in catalysts and surface
science. It offers a variety of catalysts and a complete range of
proprietary equipment, spare parts, and consumables. The company
first launched a PCS in 2013 and has since then been building up
the configuration area at the company. Currently the company uses
five PCSs in the company, while two configurators are under
development. The PCSs used by the company support the sales
process of both catalysts and equipment at the company and where
the first PCS supporting the engineering process, or the detail
design of an equipment is being tested. The complexity of the
PCSs used at the company has quite variations but the lack of
method for analysing the complexity makes it difficult both to
predict maintenance effort for the different PCS in utilization at the
company and development effort required for new PCS. Thus, the
company’s challenges were aligned with the research focus of the
article.

In this study, the authors have analysed the configuration
models pertaining to two PCSs. For each PCS, the following
dataset was extracted from the configuration platform and used in
the analysis:

• Model properties and statistics

o Number of business rules
o Number of attributes
o Number of classes

• Documentation of the configuration model
o Class structure
o The attributes and their domains for each class
o The business rules for each class

These parameters are utilized to calculate the cognitive complexity
metric for each configuration model.

Moreover, the information regarding the development time and
maintenance time for both the PCSs were also collected, in order to
establish a relation between the cognitive complexity metric and
the development time and maintenance time. However, the time
registrations for these PCSs are not accurately maintained by the
company, thereby requiring an assessment of the reliability of the
data. After an initial analysis of the data, coupled with discussions
with the members of the configuration team at the case company,
the authors decided to analyse the two PCSs for which the time
registrations were accurate and reliable. The relation between the
development time for the PCSs, the cognitive complexity metrics
and the unknown time constants were framed in the form of an
objective function. The objective functions were solved to obtain
the values for the time constants, by means of linear regression.

4 Proposed Cognitive Complexity Metric for
Configuration Models

As addressed earlier, existing literature proposes a number of
approaches for measuring the cognitive complexity of OOPs.
However, the application of this concept to UML class diagrams of
product configuration models presents an important deviation from
those pertaining to OOPs. As PCSs are knowledge-based systems,
the complexity of business rules (BRs) have a vital impact on the
development and maintenance efforts of these systems [7]. In order
to account for the impact of the BRs, the authors have assumed that
each BR corresponds to a single method with a single block of
layered BCS. Each constituent BCS of a BR has been assigned a
cognitive weight, based on the classification proposed by Wang
[8]. Table 3 summarises the cognitive weights for BCSs for each
BR.

Table 3: Cognitive weight of BCS for BR

Category of BCS BCS Cognitive Weight
Assignment Assignment (ASS) 1

Branch If-Then-Else (I-TE)
or implication

2

Iteration Iteration 3
Embedded User Function Call

(UFC)
2

Standard Function
Call (SFC)

1

Thus, the cognitive complexity of a BR (BRC), consisting of m

layers of nesting BCSs with nj linear BCSs in each layer, can be
calculated using the following equation (5):

 (5)
Where,
𝑤𝑤𝑐𝑐(𝑗𝑗, 𝑖𝑖): cognitive weight of the i-th BCS in the j-th layer of a
nesting BCS pertaining to a BR.
nj: number of BCS in the j-th layer of a nesting BCS pertaining to
a BR

Another feature of UML class diagrams specific to

configuration models is the cardinality of the classes representing
the aggregation structure. This particular feature is accounted for

by the presence of the iteration BCS. A nested BR containing an
iteration BCS would only be invoked in cases wherein more than a
single instance of a particular class is required to be created.

As mentioned earlier, the cognitive complexity of a class also
comprises the cognitive complexity of the attributes. Table 4 shows
the possible attribute domains present in the configuration platform
used at the case company categorised according to the datatype
categories mentioned in Table 2.

Table 4: Cognitive Weights of Attribute Datatypes
 Datatype Category Attribute Domain Cognitive Weight

Primary Integer, Float,
Boolean

1

Derived Named Domain 2
User-defined Function, Class 3

Therefore, given a configuration model, the cognitive
complexity of a constituent class (CCi), comprising ‘m’ methods,
‘n’ attributes and ‘p’ business rules, is calculated by adding the
cognitive complexities of the methods (MCj), attributes (AC) and
the business rules (BRCk), as shown in equation (6):

 (6)

However, as the source codes of the configuration platforms
(such as Tacton, Configit, SAP Configurator and so on) are
generally confidential in nature and not available publicly, the
authors decided to consider only the attribute complexity and the
complexity of the business rules. Therefore, the final form of the
cognitive complexity metric for a class used in the analysis is
shown in equation (7).

 (7)

As an example to illustrate the various calculations, an excerpt
of an UML class diagram, depicting the configuration model
pertaining to a bicycle, is presented in Figure 1. The model
comprises three classes (class Frame, class Suspension and class
Fork). The model comprises two aggregation relationships
(wherein class Suspension and class Fork are “parts of” the class
Frame) but no inheritance structures. The corresponding
cardinalities, attributes and business rules are also shown in the
figure.

Figure 1: Descriptive example of bicycle

In case of the class Frame in Figure 1, the calculation for the
attribute complexity is shown below in Table 5.

Table 5: Descriptive example of bicycle: Calculation of attribute
complexity

Attribute
Name

Domain Datatype
category

Cognitive
Weight

Attribute
Complexity
(AC)

Size Integer Primary 1
1+2 = 3 Material Named

Domain
Derived 2

For calculating the BRC for the class Frame, the nature of the BRs
are established and the component BCSs are assigned their
cognitive weights based on the categorization of BCSs.

BR_1 comprises of a single layer of nesting BCS (if statement)
consisting of a single assignment BCS within it. Therefore, the
BRCBR_1 is calculated using equation (5) as shown below:

BRCBR_1 = (Cognitive weight of if statement) * (Cognitive weight
of assignment statement)
BRCBR_1 = 2*1 = 2

BR_2, on the other hand, is categorized as a standard function in
the PCS software which has been used to model the configuration
problem. Therefore, the business rule complexity of BR_2,
BRCBR_2, is assigned the cognitive weight of 1. Therefore, the
cognitive complexity of the class Frame, CCFrame, is calculated as
shown below, according to the equation (7).

CCFrame = ACFrame + (BRCBR_1 + BRCBR_2) = 3+(2+1) = 6

Table 6 summarizes the results for the remainder of the classes
shown in Figure 1.

Table 6: Descriptive example of bicycle: Calculation of class complexity
Class Name BRC AC CC
Frame 3 3 6
Suspension 0 3 3
Fork 1 4 5

Depending on the inheritance structure, the total complexity of
the configuration model (TC) can be calculated by a combination
of the cognitive complexities of the constituent classes, as shown in
equation (8).

 (8)

Where,
CC𝑗𝑗𝑘𝑘: cognitive complexity of the k-th class at the j-th level of
inheritance.

Therefore, the total complexity of the configuration model

shown in Figure 1 is given by: TC = 6+3+5 = 14. Given the value
of the total cognitive complexity metric, TC, for a particular
configuration model, the authors propose a relation, as shown by
equation (9), to estimate the development time (XTime) and the
maintenance time for the model in man-hours.

𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇e = 𝑎𝑎 + 𝑏𝑏. 𝑇𝑇C (9)

Where,
𝑎𝑎: development time constant (in man-hours)
𝑏𝑏: development time constant (in man-hours) associated with a
configuration model having a cognitive complexity of 1.

Taking into consideration the development times and the

cognitive complexities of the two configuration models for which
the time registration is available and accurate, the values of the
time constants, a and b, are calculated, using linear regression.

However, as the value of TC is often not readily available
before a configuration model has been fully developed, an
estimated development time, 𝑋𝑋𝑋𝑋𝑇𝑇, can be calculated for a
particular configuration model if the number of constraints and the
number of attributes, as shown in equation (10), or the number of
classes, as shown in equation (11), are known.

 𝑋𝑋𝑋𝑋𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏. ({#𝑎𝑎ttribute. AC𝑎𝑎v + #BR. BRC𝑎𝑎v}) (10)

 𝑋𝑋𝑋𝑋𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏. (#class. CC𝑎𝑎vg) (11)

The following section presents the results obtained from the
application of the proposed metrics on two configuration models at
the case company.

5 Results from the Case Study
As explained earlier, the authors have only considered two PCSs,
for which reliable and accurate time registration data was available,
for their analysis. To calculate the cognitive complexity metric of
the corresponding configuration models, the following data was
extracted from the configuration platform used at the case
company:

• The UML class diagrams
• The attributes and their datatypes for each class
• The business rules associated with each class
• Statistics pertaining to the overall configuration model:

o Number of classes in the UML class diagram
o Total number of attributes in the UML class diagram
o Total number of constraints in the UML class diagram

Based on this data, the total complexity, TC, of the two PCSs
were calculated. The results, along with the input data are
summarised in Table 7.

Table 7: Complexity calculations and statistics for the two PCSs analysed

Model #Classes #Attributes #Rules Parametric
complexity

Cognitive
complexity

PCS_1 82 1462 940 2402 9731
PCS_2 27 334 262 596 1637

Table 5 shows considerable differences in both the parametric

and the total cognitive complexities (TC) of the analysed PCSs.
This result is aligned with the initial scoping of the research of
selecting PCSs representing both high complexity values and low
complexity values. Moreover, three additional metrics were also
defined for each model, as shown in Table 8. These metrics include
the average values of the attribute complexity (ACavg), business
rule complexity (BRCavg) and the class complexity (CCavg).

Table 8: Additional metrics representing the complexity of the
PCS

Model ACavg BRavg CCavg
PCS_1 2.24 6.87 118.67
PCS_2 1.71 4.08 60.63
Overall average for any PCS 1.97 5.48 89.65

The values for ACavg and BRavg for each of the models do not take
into consideration the class structure for the configuration models.
Based on these three metrics, the estimated average attribute
complexity, average business rule complexity and average class
complexity values for a configuration model developed at the case
company are 1.97, 5.48 and 89.65 respectively. However, the
results also show that there is a great variation of the complexity
metrics calculated for the two systems, thus, the average
complexity might not be provide us with the best possible estimates
for the complexity of configuration models at the case company.
Moving forward, more PCSs at the case company will have to be
analysed to obtain results that are more indicative of the average
PCS complexity at the company.

For the calculation of the time constants, a and b, pertaining to
the relation between the cognitive complexity of the two
configuration models and the development time for the
corresponding PCSs, as expressed in Equation (9), the development
times (in man-hours) are noted in Table 9.

Table 9: Development time in man-hours for the analysed PCS in the case

company
Model Development Time (in man-hours)
PCS_1 2219
PCS_2 380

Therefore, given the value of the total cognitive complexity of a
configuration model, TC, the estimated development time of a PCS
at the case company can be calculated as:

𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇e = 8.065 + 0.227𝑇𝑇C (12)

The ACavg, BRCavg and CCavg are obtained from the data for the
PCSs that have been analysed in this paper. Therefore, the final
form of the equations (10) and (11) to estimate the development
time of PCSs in man-hours at the case company, given the
expected number of attributes and business rules or the expected
number of classes, are presented in equations (13) and (14)
respectively:

𝑋𝑋𝑋𝑋𝑇𝑇 = 8.065 + 0.227({#attribute × (1.97) + #BR × (5.48)}) (13)
𝑋𝑋𝑋𝑋𝑇𝑇 = 8.065 + 0.227({#𝑐𝑐lass × (89.65)}) (14)

Therefore, the following parameters of the configuration model
are the pre-requisites for calculating an estimated development
time for the PCS:

• The estimated number of classes, or
• The estimated number of business rules and attributes.

Moreover, based on the hours used for development the required

hours for maintenance can be calculated. Based on interviews in
the company it is estimated that 30% of the total development
hours are required on a yearly base for the maintenance activities.

6 Discussions and Conclusions
This paper proposes a metric for evaluating the complexity of a
PCS, by taking into the consideration the UML class diagram of
the corresponding configuration model. The proposed cognitive
complexity metric takes into the account the effort required to
understand and modify the way in which the configuration problem
has been modelled. Furthermore, the authors also investigate the
relation between the effort in man-hours required for the
development of a new PCS and the proposed complexity metric.
The results obtained in the present article aim to contribute to the
field of PCS complexity and the impact of PCS complexity on the
effort estimation associated with the development and maintenance
of PCS projects.

The proposed metric for calculating the cognitive complexity of
a configuration model builds on research in the fields of the
cognitive complexity of object-oriented software systems [8], [9],
[12], [13], complexity of PCS [5]–[7] and the cognitive complexity
of UML diagrams [18]. The presence of business rules and a lack
of material on the source codes of commercial configuration
platforms render the direct application of existing cognitive
complexity metrics to configuration models unviable.

By having a more standardized way of analysing the complexity
of a configuration model should enable both more accurate
resource estimations and allow for a comparison of different
configuration models. The authors adopted a structured approach to
analyze the cognitive complexity of a configuration model and
relating it to the development and maintenance efforts. First, an
UML class diagram is analysed, which should give information
regarding total complexity of a configuration model (based on
number of classes, the number and type of attributes, number and
type of business rules). Second, the average values of the attribute
complexity (ACavg), business rule complexity (BRCavg) and the
class complexity (CCavg) are calculated. Third, linear regression is
used to analyse man-hours for already developed systems to predict
the future workload for new PCS.

The proposed method is validated in a case company where two
different PCS were selected. The two PCS represent both PCSs
with high and low parametric complexity. The proposed metric for
analysing the cognitive complexity of the PCS confirmed the
variation in the complexity. Further, by analysing the man-hours
used for developing the systems, a function of total complexity and
man-hours is used to predict the workload for a new PCS. The
testing of the proposed method confirmed its usability. Further,
testing is planned with in the case company where all the PCSs will
be analysed in more detail, in order to verify the accuracy of the
estimated development effort in man-hours when starting new PCS
projects.

There are a few limitations to the research presented in this
article. The proposed cognitive complexity metric primarily
addresses only those configuration models which can be presented
in form of an UML diagram. Further research will have to
conducted in order to investigate the viability of applying cognitive
complexity concepts to declaratively modeled products. Moreover,
in case of declarative BRs, the authors have used their discretion to
assign cognitive weights to such BRs. In certain cases, the
procedural equivalent of the declarative BR is assigned the
corresponding cognitive weight, whilst in others, the authors have
considered the declarative BR to be either a standard function of
the PCS or a user defined function.

This study focuses on the complexity of the configuration
model. This means that the complexity resulting from integrations
to other IT systems are not considered. Also, complexity for
generating user interfaces and output documents are not taken into
the account in the present study. Future work will, therefore, focus
on including these parameters to better capture the overall
complexity associated with a PCS and not only the complexity of
the configuration model.

7 REFERENCES
[1] C. Forza and F. Salvador, “Managing for variety in the

order acquisition and fulfilment process: The contribution
of product configuration systems,” Int. J.
Prod. Econ., vol. 76, no. 1, pp. 87–98, 2002.

[2] S. Mittal and F. Frayman, “Towards a generic model of
configuration tasks,” Proc. Elev. Int. Jt. Conf. Artif. Intell.,
vol. 2, pp. 1395–1401, 1989.

[3] A. Felfernig, G. E. Friedrich, and D. Jannach, “UML as
domain specific language for the construction of
knowledge-based configuration systems,” Int. J. Softw.
Eng. Knowl. Eng., vol. 10, no. 4, pp. 449–469, 2000.

[4] K. R. Ladeby and J. L. Pedersen, “Applying Product
Configuration Systems in Engineering Companies :
Motivations and Barriers for Configuration Projects,”
DTU, 2009.

[5] K. Kristjansdottir, S. Shafiee, L. Battistello, L. Hvam, and
C. Forza, “Complexity of Configurators Relative to
Integrations and Field of Application,” 19th Int. Config.
Work., 2017.

[6] M. Aldanondo and G. Moynard, “Deployment of
Configurator in Industry: Towards a Load Estimation,”
ECAI 2002 Work. Config., pp. 125–130, 2002.

[7] A. Felfernig, “Effort Estimation for Knowledge-based
Configuration Systems.,” SEKE, pp. 148–154, 2004.

[8] Y. Wang, “Cognitive Complexity of Software and its
Measurement,” Proc. 5th IEEE Int. Conf. Cogn.
Informatics, vol. 1, pp. 226–235, 2006.

[9] J. Shao and Y. Wang, “A new measure of software
complexity based on cognitive weights,” in Canadian
Conference on Electrical and Computer Engineering,
2003, vol. 2, pp. 1333–1338.

[10] C. A. R. Hoare et al., “Laws of programming,” Commun.
ACM, vol. 30, no. 8, pp. 672–686, Aug. 1987.

[11] Y. Wang, “The Real-Time Process Algebra (RTPA),”
Ann. Softw. Eng., vol. 14, no. 1–4, pp. 235–274, 2002.

[12] S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A.
Zunino, “A Suite of Cognitive Complexity Metrics,” in
International Conference on Computational Science and
Its Applications -2012, 2012, pp. 234–247.

[13] L. Arockiam and A. Aloysius, “Attribute Weighted
Class Complexity : A New Metric for Measuring
Cognitive Complexity of OO Systems,” World Acad.
Sci. Eng. Technol. Int. J. Comput. Electr. Autom.
Control Inf. Eng., vol. 5, no. 10, pp. 1151–1156, 2011.

[14] D. Mishra and A. Mishra, “Object-oriented inheritance
metrics in the context of cognitive complexity,” Fundam.
Informaticae, vol. 111, no. 1, pp. 91–117, 2011.

[15] R. Harrison, S. Counsell, and R. Nithi, “Experimental
assessment of the effect of inheritance on the
maintainability of object-oriented systems,” J. Syst.
Softw., vol. 52, no. 2–3, pp. 173–179, 2000.

[16] S. Misra, M. Koyuncu, M. Crasso, C. Mateos, and A.
Zunino, “A Suite of Cognitive Complexity Metrics,” Int.
Conf. Comput. Sci. Its Appl. - ICCSA 2012, vol. 7336, pp.
234–247, 2012.

[17] H. Li, “Dynamic analysis of Object-Oriented software
complexity,” 2012 2nd Int. Conf. Consum. Electron.
Commun. Networks, CECNet 2012 - Proc., pp. 1791–
1794, 2012.

[18] M. Esperanza Manso, J. A. Cruz-Lemus, M. Genero, and
M. Piattini, “Empirical Validation of Measures for UML
Class Diagrams: A Meta-Analysis Study,” LNCS, vol.
5421, pp. 303–313, 2009.

	1 Introduction
	2 Theoretical Background
	3 Methodology
	4 Proposed Cognitive Complexity Metric for Configuration Models
	5 Results from the Case Study
	6 Discussions and Conclusions
	7 REFERENCES

