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Abstract.1  The complexity of product configuration systems is an 
important indicator of both development and maintenance effort of 
the systems. Existing literature proposes a couple of effort 
estimation approaches for configurator projects. However, these 
approaches do not address the issues of comprehensibility and 
modifiability of a configuration model. Therefore, this article 
proposes a metric to measure the total cognitive complexity of the 
configuration model corresponding to a product configuration 
system, expressed in the form of an UML class diagram. This 
metric takes into account the number and the type of attributes, 
constraints and the relationships between classes in an UML class 
diagram. The proposed metric can be used to compare two 
configuration models, in terms of their cognitive complexity. 
Moreover, a relation between development time for a PCS project 
and the total cognitive complexity of the corresponding 
configuration model is established using linear regression.   To 
validate the proposed approach a case study is conducted where the 
cognitive complexity is calculated for two configuration models.  

1 Introduction 
Information technology tools, such as product configuration 
systems (PCSs), are widely used to handle the increased amount of 
information shared amongst customers, sales and production 
departments at companies, arising out of an increase in the demand 
of product customization [1]. PCSs are knowledge-based IT 
systems which fulfil a configuration task. A configuration task is a 
special type of design activity [2] facilitated by a number of 
components, their corresponding properties and ports, and 
constraints which restrict the number of feasible combinations 
associated with the components [3].  

PCSs contain detailed information about the companies’ 
offerings. The information included in the configuration models 
depend on the type of the configuration system and usually include 
different components, attributes and rules of how the different 
components can be combined. Generally, the PCSs are not 
standalone IT systems. These systems are linked to existing IT 
systems within the companies (e.g., ERP, CAD, PLM, PDM, and 
calculation systems) either through integrations and/or interfaces. 
Coupled with the inherent complexity of the product knowledge 
modelled into the system, the integrations to other IT systems will 
render these configuration systems to be highly complex.   

Practitioners in the industry are interested in metrics for 
comparing different PCS [5] and predicting the resource 
consumption required for developing, maintaining and extending 
the systems [6], [7]. The approach proposed in [6] defines a load 
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estimation function that takes into account the impact of the 
industry and the organization on the project and the size and 
complexity of the product under consideration. The activities 
associated with the PCS development project include modelling the 
product structure and programming this model into a configuration 
software. However, this approach does not explicitly take into the 
consideration the complexity of the configuration model, while 
estimating the load required. Another approach to estimating the 
costs associated with PCS projects is to calculate the functional 
size of the UML class diagram of the configuration knowledge 
base using the IFPUG Function Point Analysis (FPA) technique 
[7]. This approach, however, is subjective in nature with regards to 
the definition of internal and external logical files (ILFs and ELFs). 
Moreover, the function point approach does not clarify the 
definition of one unit of function point [8]. The parametric 
complexity approach proposed in [5] involves calculating a metric 
on the basis of the number of business rules and the number of 
attributes, across two categories: field of engineering (sales, 
engineering and/or both) and the integration to other IT systems. 
However, the parametric complexity approach fails to take into 
account the complexity associated with the manner in which the 
configuration problem has been modelled into a PCS. A method to 
analyse the complexity of PCS is, therefore, needed.    

This paper proposes a complexity metric that captures the 
different aspects associated with the PCS by focusing on the 
cognitive complexity of the configuration model. The metric can 
be used to effectively compare different PCS both developed on 
the same configuration software platforms or on different 
platforms. Also, the metric can be used to identify the impact of the 
complexity on the resource consumption for the development and 
maintenance activities associated with the PCS. Given that 
resources required for these activities are valuable and have limited 
availability, it is imperative that practitioners in the field have some 
metrics for predicting the extent of resource consumption required.   

The proposed complexity metrics build on the approaches 
proposed in Felfernig (2004) and Kristjansdottir et al. (2017) by 
ascertaining the cognitive complexity of the UML class diagram 
associated with a given configuration problem. The proposed 
metric takes into account the effort required to understand and 
modify the way in which the PCS has been modelled, in terms of 
generalizations and aggregation structures, and the number and the 
type of business rules and attributes present in the configuration 
model.   

The remainder of the paper is structured as follows. In Section 2 
the concept of cognitive complexity known of software systems is 
introduced. The research methodology employed to carry out the 
analysis is explained in Section 3. Section 4 provides an overview 
of the mapping of the cognitive complexity metric of software 
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systems to configuration models. Section 5 then presents the 
findings from applying the method in a case company. Finally, 
Section 6 discusses the results and provide guidance for further 
studies.  

2 Theoretical Background 
This section presents the theoretical background for the proposed 
complexity metric for configuration models.  It provides an 
overview of the existing literature on the topic of cognitive 
complexity of software systems.   

Cognitive complexity is a measure of the functional complexity 
associated with designing and understanding a software system, 
based on the basic control structures (BCSs) existing in the system 
[9]. BCSs are considered to the building blocks of any software 
system. They are a collection of fundamental flow control 
mechanisms which are necessary for constructing the logical 
architecture of a software system [8]. Initially, Hoare et al. [10] 
identified three types of primitive commands (SKIP, ABORT and 
Assignment) and five types of more complex commands 
(sequential composition, non-determinism, conditional, iteration 
and recursion) in programming languages. Later, two further BCSs 
(function call, interrupt) were identified in system modelling by 
Wang [11]. Considering the sequential BCS as being representative 
of a unit BCS, a different cognitive weight is assigned to each 
BCS. The cognitive weight of a BCS is considered to be 
proportional to the effort required by a user in understanding the 
functionality and the semantics of the BCS, relative to the 
sequential BCS.  Table 1 summarizes the BCSs and the 
corresponding cognitive weights:   

 
Table 1: Cognitive weights of basic control structures (Adapted from 

Wang, 2006 [9]  
Category of BCS  BCS Cognitive Weight 

Sequential   Sequence (SEQ)  1  

Branch   If-Then- 
Else (I-T-E)  

2  

Case  3  
Iteration   For-do  3  

Repeat-until  3  
While-do  3  

Embedded  Function Call (FC)  2  
Recursion (REC)  3  

Concurrency  Parallel (PAR)  4  

Interrupt (INT)  4  

 
Existing literature proposes several approaches for calculating 

the cognitive complexity of programs written in object-oriented 
programming languages, based on the cognitive weights of the 
BCSs. Object-oriented programs comprise a number of classes, 
each of which consist of a number of attributes and methods, and 
are linked to other classes through aggregation, generalization or 
association structures. The overall complexity of object-oriented 
programs is obtained by calculating the cognitive complexity of the 
constituent classes based on the relationships between the classes. 
The class complexity (CC) is calculated by taking into 
consideration the cognitive complexity of the individual methods, 

which in turn are made up of the blocks of BCSs, and the 
constituent attributes [12]. Therefore, the cognitive complexity of a 
method comprising q linear blocks of m layers of nesting BCSs 
with n linear BCSs in each layer, is calculated using the following 
equation (1):  

 
                                         (1) 

Where,   
MC: total cognitive weight of the method  
𝑤𝑤𝑐𝑐(𝑗𝑗, 𝑘𝑘, 𝑖𝑖): cognitive weights of individual BCSs  
 

Moreover, the attributes of a class are assigned cognitive 
weights according to a categorization of the cognitive phenomena 
associated with their datatypes [13]. The cognitive weights for the 
attribute categories are summarized in Table 2. The attribute 
complexity (AC) of a class is calculated by multiplying the number 
of attributes belonging to a particular datatype category and its 
corresponding cognitive weight.  

 
Table 2: Cognitive weights assigned to attributes (Adapted from  

Arockiam and Aloysius [13])  
Attribute 
Datatype  

Associated  Cognitive  
Phenomena  

Cognitive Weight  

Primary  Sub-concious cognitive 
function  

1  

Derived  Meta cognitive function  2  

User-defined  Higher cognitive function  3  

 
Therefore, for a class containing ‘m’ number of methods, with the 
i-th method having a complexity of MCi, and having an attribute 
complexity, AC, equation (2) shows the cognitive complexity of 
the class (CC).  

 
                                                                     (2) 

The reusability of software code in object-oriented 
programming languages is facilitated through the concept of 
inheritance. However, the use of several levels of inheritance 
often has an adverse impact on the maintainability and 
comprehensibility of software systems [14], [15]. Therefore, a 
number of cognitive complexity metrics have been proposed to 
penalise the use of inheritance structures in OOPs [14], [16].   

At the class level, the cognitive complexity of a class, CCi, 
takes into account the number and complexity of the inherited 
classes, as shown in the following equation  (3) [14][17]:  

                                              (3)  
Where,  

: cognitive complexity of the i-th class due to inheritance  
: cognitive complexity of an inherited class of class i  

𝑘𝑘: the number of inherited classes of class i  
𝑙𝑙: the number of constituent methods in class i  

: the cognitive complexity of the j-th method of class i  

Another approach to account for the presence of inheritance 
structures involves changing the way in which the total cognitive 
complexity of the program is calculated, depending on the level of 
inheritance of individual classes [16]. In this case, if the classes 
are on the same level of inheritance, their cognitive complexity 



values are added together. However, if the classes are children of 
parent classes, then their values are multiplied. This is shown in 
the following equation (4) :   

                                                                (4)  
Where,  
𝑇𝑇C: cognitive complexity of the program  
WCC𝑗𝑗𝑘𝑘: cognitive complexity of k-th class at level j of inheritance. 
  

The cognitive complexity approach has been applied to 
empirically calculate the complexity of UML class diagrams. The 
cognitive complexity of UML class diagrams has been shown to 
be correlated to the generalization and association structures, with 
an increase in the number of classes and attributes leading to an 
increase in the cognitive complexity and also the time required to 
understand and modify the class diagrams [18]. This implies that, 
given the UML class diagram of a configuration model and, 
consequently, the cognitive complexity of the configuration 
model, the required man-hours for developing and maintaining 
the PCS can be estimated. In turn, this will make it possible for 
better resource planning for PCS projects, allowing more accurate 
business cases to be developed, prior to the initiation of projects.   

3 Methodology 
The authors have adopted the case study research method to 
calculate the complexity of a configuration model and, 
subsequently, propose a relation, which expresses the development 
time in terms of the proposed complexity metric.   

The case company is a world leader in catalysts and surface 
science. It offers a variety of catalysts and a complete range of 
proprietary equipment, spare parts, and consumables. The company 
first launched a PCS in 2013 and has since then been building up 
the configuration area at the company. Currently the company uses 
five PCSs in the company, while two configurators are under 
development. The PCSs used by the company support the sales 
process of both catalysts and equipment at the company and where 
the first PCS supporting the engineering process, or the detail 
design of an equipment is being tested. The complexity of the 
PCSs used at the company has quite variations but the lack of 
method for analysing the complexity makes it difficult both to 
predict maintenance effort for the different PCS in utilization at the 
company and development effort required for new PCS. Thus, the 
company’s challenges were aligned with the research focus of the 
article.  

In this study, the authors have analysed the configuration 
models pertaining to two PCSs. For each PCS, the following 
dataset was extracted from the configuration platform and used in 
the analysis: 

  
• Model properties and statistics  

o Number of business rules  
o Number of attributes  
o Number of classes  

• Documentation of the configuration model  
o Class structure  
o  The attributes and their domains for each class  
o  The business rules for each class  

 

These parameters are utilized to calculate the cognitive complexity 
metric for each configuration model.  

Moreover, the information regarding the development time and 
maintenance time for both the PCSs were also collected, in order to 
establish a relation between the cognitive complexity metric and 
the development time and maintenance time. However, the time 
registrations for these PCSs are not accurately maintained by the 
company, thereby requiring an assessment of the reliability of the 
data. After an initial analysis of the data, coupled with discussions 
with the members of the configuration team at the case company, 
the authors decided to analyse the two PCSs for which the time 
registrations were accurate and reliable. The relation between the 
development time for the PCSs, the cognitive complexity metrics 
and the unknown time constants were framed in the form of an 
objective function. The objective functions were solved to obtain 
the values for the time constants, by means of linear regression. 

4 Proposed Cognitive  Complexity Metric for 
Configuration Models    

As addressed earlier, existing literature proposes a number of 
approaches for measuring the cognitive complexity of OOPs. 
However, the application of this concept to UML class diagrams of 
product configuration models presents an important deviation from 
those pertaining to OOPs. As PCSs are knowledge-based systems, 
the complexity of business rules (BRs) have a vital impact on the 
development and maintenance efforts of these systems [7]. In order 
to account for the impact of the BRs, the authors have assumed that 
each BR corresponds to a single method with a single block of 
layered BCS. Each constituent BCS of a BR has been assigned a 
cognitive weight, based on the classification proposed by Wang 
[8]. Table 3 summarises the cognitive weights for BCSs for each 
BR.  

 
Table 3: Cognitive weight of BCS for BR  

Category of BCS  BCS  Cognitive Weight  
Assignment  Assignment (ASS)  1  

Branch  If-Then-Else (I-TE) 
or implication 

2  

Iteration  Iteration  3  
Embedded  User Function Call 

(UFC)  
2  

Standard Function  
Call (SFC)  

1  

  
Thus, the cognitive complexity of a BR (BRC), consisting of m 

layers of nesting BCSs with nj linear BCSs in each layer, can be 
calculated using the following equation (5):  

                                                                (5)  
Where,  
𝑤𝑤𝑐𝑐(𝑗𝑗, 𝑖𝑖): cognitive weight of the i-th BCS in the j-th layer of a 
nesting BCS pertaining to a BR. 
nj: number of BCS in the j-th layer of a nesting BCS pertaining to  
a BR 

 
Another feature of UML class diagrams specific to 

configuration models is the cardinality of the classes representing 
the aggregation structure. This particular feature is accounted for 



by the presence of the iteration BCS. A nested BR containing an 
iteration BCS would only be invoked in cases wherein more than a 
single instance of a particular class is required to be created.  

As mentioned earlier, the cognitive complexity of a class also 
comprises the cognitive complexity of the attributes. Table 4 shows 
the possible attribute domains present in the configuration platform 
used at the case company categorised according to the datatype 
categories mentioned in Table 2.  
 

Table 4: Cognitive Weights of Attribute Datatypes  
 Datatype Category  Attribute Domain  Cognitive Weight  

Primary  Integer,  Float, 
Boolean  

1  

Derived  Named Domain  2  
User-defined  Function, Class  3  

  

Therefore, given a configuration model, the cognitive 
complexity of a constituent class (CCi), comprising ‘m’ methods, 
‘n’ attributes and ‘p’ business rules, is calculated by adding the 
cognitive complexities of the methods (MCj), attributes (AC) and 
the business rules (BRCk), as shown in equation (6):  
 

                                         (6) 

However, as the source codes of the configuration platforms 
(such as Tacton, Configit, SAP Configurator and so on) are 
generally confidential in nature and not available publicly, the 
authors decided to consider only the attribute complexity and the 
complexity of the business rules. Therefore, the final form of the 
cognitive complexity metric for a class used in the analysis is 
shown in equation (7).   

                                                         (7)  

As an example to illustrate the various calculations, an excerpt 
of an UML class diagram, depicting the configuration model 
pertaining to a bicycle, is presented in Figure 1. The model 
comprises three classes (class Frame, class Suspension and class 
Fork). The model comprises two aggregation relationships 
(wherein class Suspension and class Fork are “parts of” the class 
Frame) but no inheritance structures. The corresponding 
cardinalities, attributes and business rules are also shown in the 
figure.  

 
 
 
 
 
 
 

 

 

 

Figure 1: Descriptive example of bicycle  
 

 

In case of the class Frame in Figure 1, the calculation for the 
attribute complexity is shown below in Table 5. 

Table 5: Descriptive example of bicycle: Calculation of attribute 
complexity 

Attribute 
Name 

Domain Datatype 
category 

Cognitive 
Weight 

Attribute 
Complexity 
(AC) 

Size Integer Primary 1  
1+2 = 3 Material Named 

Domain 
Derived 2 

 
For calculating the BRC for the class Frame, the nature of the BRs 
are established and the component BCSs are assigned their 
cognitive weights based on the categorization of BCSs.  

BR_1 comprises of a single layer of nesting BCS (if statement) 
consisting of a single assignment BCS within it. Therefore, the 
BRCBR_1 is calculated using equation (5) as shown below: 

BRCBR_1 = (Cognitive weight of if statement) * (Cognitive weight 
of assignment statement)  
BRCBR_1 = 2*1 = 2 

BR_2, on the other hand, is categorized as a standard function in 
the PCS software which has been used to model the configuration 
problem. Therefore, the business rule complexity of BR_2, 
BRCBR_2, is assigned the cognitive weight of 1.  Therefore, the 
cognitive complexity of the class Frame, CCFrame, is calculated as 
shown below, according to the equation (7).  

CCFrame = ACFrame + (BRCBR_1 + BRCBR_2) = 3+(2+1) = 6 

Table 6 summarizes the results for the remainder of the classes 
shown in Figure 1.  

Table 6: Descriptive example of bicycle: Calculation of class complexity 
Class Name BRC AC CC 
Frame 3 3 6 
Suspension 0 3 3 
Fork 1 4 5 

Depending on the inheritance structure, the total complexity of 
the configuration model (TC) can be calculated by a combination 
of the cognitive complexities of the constituent classes, as shown in 
equation (8).   

 
                                                                     (8)  

Where,  
CC𝑗𝑗𝑘𝑘: cognitive complexity of the k-th class at the j-th level of 
inheritance.  

 
Therefore, the total complexity of the configuration model 

shown in Figure 1 is given by: TC = 6+3+5 = 14. Given the value 
of the total cognitive complexity metric, TC, for a particular 
configuration model, the authors propose a relation, as shown by 
equation (9), to estimate the development time (XTime) and the 
maintenance time for the model in man-hours.  

 
𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇e = 𝑎𝑎 + 𝑏𝑏. 𝑇𝑇C                                                                                (9) 



Where,  
𝑎𝑎:  development time constant (in man-hours)  
𝑏𝑏: development time constant (in man-hours) associated with a 
configuration model having a cognitive complexity of 1.  

 
Taking into consideration the development times and the 

cognitive complexities of the two configuration models for which 
the time registration is available and accurate, the values of the 
time constants, a and b, are calculated, using linear regression.  

However, as the value of TC is often not readily available 
before a configuration model has been fully developed, an 
estimated development time, 𝑋𝑋𝑋𝑋𝑇𝑇, can be calculated for a 
particular configuration model if the number of constraints and the 
number of attributes, as shown in equation (10), or the number of 
classes, as shown in equation (11), are known.  

 
 𝑋𝑋𝑋𝑋𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏. ({#𝑎𝑎ttribute. AC𝑎𝑎v + #BR. BRC𝑎𝑎v})                          (10)  

 𝑋𝑋𝑋𝑋𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏. (#class. CC𝑎𝑎vg)                                                             (11)  

The following section presents the results obtained from the 
application of the proposed metrics on two configuration models at 
the case company. 

5 Results from the Case Study  
As explained earlier, the authors have only considered two PCSs, 
for which reliable and accurate time registration data was available, 
for their analysis. To calculate the cognitive complexity metric of 
the corresponding configuration models, the following data was 
extracted from the configuration platform used at the case 
company:  

 
• The UML class diagrams  
• The attributes and their datatypes for each class  
• The business rules associated with each class  
• Statistics pertaining to the overall configuration model:  

o Number of classes in the UML class diagram  
o Total number of attributes in the UML class diagram  
o Total number of constraints in the UML class diagram  

Based on this data, the total complexity, TC, of the two PCSs 
were calculated. The results, along with the input data are 
summarised in Table 7.  

 
Table 7: Complexity calculations and statistics for the two PCSs analysed  

Model #Classes #Attributes #Rules Parametric 
complexity 

Cognitive 
complexity 

PCS_1  82  1462  940  2402  9731  
PCS_2  27  334  262  596  1637  

  
Table 5 shows considerable differences in both the parametric 

and the total cognitive complexities (TC) of the analysed PCSs. 
This result is aligned with the initial scoping of the research of 
selecting PCSs representing both high complexity values and low 
complexity values. Moreover, three additional metrics were also 
defined for each model, as shown in Table 8. These metrics include 
the average values of the attribute complexity (ACavg), business 
rule complexity (BRCavg) and the class complexity (CCavg).  

 
 

Table 8: Additional metrics representing the complexity of the  
PCS  

Model  ACavg  BRavg  CCavg  
PCS_1  2.24  6.87  118.67  
PCS_2  1.71  4.08  60.63  
Overall average for any PCS  1.97  5.48  89.65  

  
The values for ACavg and BRavg for each of the models do not take 
into consideration the class structure for the configuration models. 
Based on these three metrics, the estimated average attribute 
complexity, average business rule complexity and average class 
complexity values for a configuration model developed at the case 
company are 1.97, 5.48 and 89.65 respectively. However, the 
results also show that there is a great variation of the complexity 
metrics calculated for the two systems, thus, the average 
complexity might not be provide us with the best possible estimates 
for the complexity of configuration models at the case company. 
Moving forward, more PCSs at the case company will have to be 
analysed to obtain results that are more indicative of the average 
PCS complexity at the company.  

For the calculation of the time constants, a and b,  pertaining to 
the relation between the cognitive complexity of the two 
configuration models and the development time for the 
corresponding PCSs, as expressed in Equation (9), the development 
times (in man-hours) are noted in Table 9.   

 
Table 9: Development time in man-hours for the analysed PCS in the case 

company  
Model  Development Time (in man-hours)  
PCS_1  2219  
PCS_2  380  
  

Therefore, given the value of the total cognitive complexity of a 
configuration model, TC, the estimated development time of a PCS 
at the case company can be calculated as:  

𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇e = 8.065 + 0.227𝑇𝑇C                                                               (12)  

The ACavg, BRCavg and CCavg are obtained from the data for the 
PCSs that have been analysed in this paper. Therefore, the final 
form of the equations (10) and (11) to estimate the development 
time of PCSs in man-hours at the case company, given the 
expected number of attributes and business rules or the expected 
number of classes, are presented in equations (13) and (14) 
respectively:  

𝑋𝑋𝑋𝑋𝑇𝑇 = 8.065 + 0.227({#attribute × (1.97) + #BR × (5.48)})     (13)  
𝑋𝑋𝑋𝑋𝑇𝑇 = 8.065 + 0.227({#𝑐𝑐lass × (89.65)})                                    (14)  

Therefore, the following parameters of the configuration model 
are the pre-requisites for calculating an estimated development 
time for the PCS:  

 
• The estimated number of classes, or  
• The estimated number of business rules and attributes.  

 
Moreover, based on the hours used for development the required 

hours for maintenance can be calculated. Based on interviews in 
the company it is estimated that 30% of the total development 
hours are required on a yearly base for the maintenance activities.  



6 Discussions and Conclusions  
This paper proposes a metric for evaluating the complexity of a 
PCS, by taking into the consideration the UML class diagram of 
the corresponding configuration model. The proposed cognitive 
complexity metric takes into the account the effort required to 
understand and modify the way in which the configuration problem 
has been modelled. Furthermore, the authors also investigate the 
relation between the effort in man-hours required for the 
development of a new PCS and the proposed complexity metric. 
The results obtained in the present article aim to contribute to the 
field of PCS complexity and the impact of PCS complexity on the 
effort estimation associated with the development and maintenance 
of PCS projects.   

The proposed metric for calculating the cognitive complexity of 
a configuration model builds on research in the fields of the 
cognitive complexity of object-oriented software systems [8], [9], 
[12], [13], complexity of PCS [5]–[7] and the cognitive complexity 
of UML diagrams [18]. The presence of business rules and a lack 
of material on the source codes of commercial configuration 
platforms render the direct application of existing cognitive 
complexity metrics to configuration models unviable.   

By having a more standardized way of analysing the complexity 
of a configuration model should enable both more accurate 
resource estimations and allow for a comparison of different 
configuration models. The authors adopted a structured approach to 
analyze the cognitive complexity of a configuration model and 
relating it to the development and maintenance efforts. First, an 
UML class diagram is analysed, which should give information 
regarding total complexity of a configuration model (based on 
number of classes, the number and type of attributes, number and 
type of business rules). Second, the average values of the attribute 
complexity (ACavg), business rule complexity (BRCavg) and the 
class complexity (CCavg) are calculated. Third, linear regression is 
used to analyse man-hours for already developed systems to predict 
the future workload for new PCS.  

The proposed method is validated in a case company where two 
different PCS were selected. The two PCS represent both PCSs 
with high and low parametric complexity. The proposed metric for 
analysing the cognitive complexity of the PCS confirmed the 
variation in the complexity. Further, by analysing the man-hours 
used for developing the systems, a function of total complexity and 
man-hours is used to predict the workload for a new PCS. The 
testing of the proposed method confirmed its usability. Further, 
testing is planned with in the case company where all the PCSs will 
be analysed in more detail, in order to verify the accuracy of the 
estimated development effort in man-hours when starting new PCS 
projects. 

There are a few limitations to the research presented in this 
article. The proposed cognitive complexity metric primarily 
addresses only those configuration models which can be presented 
in form of an UML diagram. Further research will have to 
conducted in order to investigate the viability of applying cognitive 
complexity concepts to declaratively modeled products. Moreover, 
in case of declarative BRs, the authors have used their discretion to 
assign cognitive weights to such BRs. In certain cases, the 
procedural equivalent of the declarative BR is assigned the 
corresponding cognitive weight, whilst in others, the authors have 
considered the declarative BR to be either a standard function of 
the PCS or a user defined function. 

This study focuses on the complexity of the configuration 
model. This means that the complexity resulting from integrations 
to other IT systems are not considered. Also, complexity for 
generating user interfaces and output documents are not taken into 
the account in the present study. Future work will, therefore, focus 
on including these parameters to better capture the overall 
complexity associated with a PCS and not only the complexity of 
the configuration model. 
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