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ABSTRACT
Recommender systems aim at suggesting relevant items to users
to support them in various decision-making processes, on the ba-
sis of available information on items or users. In the latter, the
customer’s interests and tastes can be learnt and expressed using
historical browsing data, purchase histories, and even other non-
traditional data sources such as social networks. Despite its proven
success in the on-line retailing industry, in electronic commerce
and, even tourism, recommender systems have been less popular
in flight itinerary selection processes. This could be partially ex-
plained by the fact that customers’ interests are only expressed as a
flight search request. As a result, this problem has been historically
tackled using classical Discrete Choice Modelling techniques and,
more recently, through the use of data-driven approaches such as
Machine and Deep Learning techniques. At Amadeus, we are in-
terested in the use of choice models with recommender systems
for the problem of airline itinerary selection. This work presents
a benchmark on three family of methods to identify which is the
most suitable for the problem we tackle.
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1 INTRODUCTION
In the recent years, recommender systems (RecSys) have proven
invaluable for solving problems in the on-line retail industry and
e-commerce[15]. While tourism has not been the exception to this
success [3], with applications covering almost every area of the
travel and hospitality industry [14], RecSys have been less popu-
lar on the airline itinerary decision-making process. This can be
explained by two factors. On one hand, the available information
about users and items is not as rich as for most RecSys in tourism. In
the traveller’s flight itinerary choice problem, i.e. the task of select-
ing a flight given a proposed list of itinerary recommendations, the
user’s interests are only expressed as a flight search request, user
sessions are usually anonymous and there is no user history in the
travel provider’s databases. Therefore, classical RecSys algorithms
cannot be applied directly.

On the other hand, RecSys techniques suffer from a lack of theo-
retical understanding of the underlying behavioural process that
led to a particular choice [6] by seeing the decision-making process

as a black box [7]. Collaborative and content-based methods recom-
mend items based on similarities among users or items but, cannot
provide further insight. In the flight industry, it is key to under-
standing passenger behaviour and their flight itinerary preferences.
Players in the sector use this knowledge to adapt their offers to
market conditions and customer needs, thus having an impact on
airline’s revenue management and price optimisation systems [4].

To tackle the flight itinerary choice problem and overcome these
limitations, the airline industry has historically resorted to Discrete
Choice Modeling (CM). Due to its good performance, efficiency and
ease of interpretation, the Multinomial Logit model (MNL) [11], a
specific CM technique is the most popular approach for the flight
itinerary choice problem. In spite of its numerous advantages, CM
also presents some weaknesses. For instance, MNL only considers
linear combinations of the input features, limiting its predictive
capability and requiring expert knowledge to perform feature engi-
neering. Also, they lack the flexibility to handle collinear attributes
and correlations between options and it is difficult to model in-
dividual’s heterogeneities. These shortcomings might be overly
restrictive or affect performance [12]. As an example, industrial ap-
plications require to develop different models for distinct markets.
In the case of the flight itinerary choice prediction problem, this
involves estimating models at a city-pair level [5] and/or customer
demographic segments [19].

In an effort to cope with CM limitations, recently machine learn-
ing and deep learning techniques have been proposed. These algo-
rithms can more easily model non-linear relationships and handle
correlated features, and have more modelling power which allows
to predict choices on an individual level, thus improving the pre-
diction performance.

Inspired by the work from Chaptini [6], at Amadeus we are
working towards the use of CM with recommender systems for
the problem of airline itinerary selection. Combining the two ap-
proaches should leverage the strengths of both, leading to robust
and scalable, but more interpretable models. In this first work, we
seek to explore, evaluate and compare three different CM models
which can be used as the predictive back-bone of a choice-based
RecSys framework. In the remainder of this paper, first we present
the theoretical background of CM and demonstrate why CM can
be seen as a RecSys problem. Then, we present our experimen-
tal setup by describing the data, the evaluated algorithms and the
performance measures.
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2 BACKGROUND
In this section, first we provide a brief background on classical
discrete choice modelling theory and then show how it is equivalent
to the recommendation problem.

2.1 Discrete Choice Models.
CM defines four basic components: 1) the decision-maker, 2) the
alternatives, 3) the attributes, and 4) the decision rules [2]. For-
mally stated, a decision-maker i ∈ I chooses from a choice set Ai
composed of Ji alternatives, with with j ∈ {1, . . . , Ji } the index
of the jth alternative. For the sake of simplicity and without loss
of generality, we will refer to the number of alternatives simply
as J , although decision-makers might not be faced with the same
set and/or number of alternatives. The decision-maker i obtains an
utilityUi j from each j and chooses alternative ĵ if and only if:

Ui , ĵ ≥ Ui j ; ∀ j ∈ Ai . (1)

The utility function is unknown and not observable. However, as
it is possible to determine the attributes xi j perceived by decision-
maker i for each j, as well as Si the vector of characteristics of i ,
there exists a function V (·) which relates the observed features to
the decision-maker’s utility:

Vi j = V (Xi j ), (2)

where Vi j is referred to as the representative utility and Xi j =

h(xi j , Si ), a simplified representation of xi j and Si through the use
of any appropriate vector valued function h.Vi j is generally a linear
combination of the features. For example, if an airline is trying to
predict which itinerary a user will choose, a very simple model
could be:

Vi j = a ∗ pricei j + b ∗ tripDurationi j

with a, b parameters of the model to be estimated, and which are
commonly refered to as β .

Since there are aspects of the utility function that cannot be ob-
served,Vi j , Ui j . To reflect uncertainty, the utility can be modelled
as a random variable,

Ui j = Vi j + εi j , (3)

where εi j is a random variable that captures the unknown fac-
tors that affect Ui j . As Ui j is now a random variable, the decision
rule needs to be expressed as the probability that decision-maker i
chooses the kth alternative:

P(k |Ai ) = P(Uik ≥ Ui j ; ∀j ∈ Ai ). (4)

By replacing Ui j accordingly:

P(k |Ai ) = P(Vik −Vi j ≥ εi j − εik ; ∀j ∈ Ai ). (5)

Different assumptions about the random term εi j and the determin-
istic term Vi j produce specific models.

2.2 Choice-based Recommender Systems.
Given a set Ai of J available items presented to a user i , the rec-
ommender problem can be seen as an optimisation task that first
estimates the utility of each item j ∈ Ai , and then chooses the item

ĵ that maximizes an utility function U (i , j), representing the user’s
utility on any item j [1]:

ĵ = argmax
j ∈Ai

U (i , j). (6)

Conceptually this is the same optimisation problem as that one
formulated by choice theory [2], and described previously in this
section. Equation (6) is equivalent to choosing the alternative with
the highest utility for a decision-maker, in choice modelling theory.
More formally:

ĵ = argmax
j ∈Ai

U (i , j) ⇔ Ui ĵ ≥ Ui j ; ∀ j ∈ Ai , (7)

which implies that the recommendation problem can be seen as a
choice prediction problem. Therefore, the models and techniques
developed in CM can be applied to RecSys.

3 MATERIALS AND METHODS
3.1 Data
Experiments were conducted on real datasets of flight search logs
and bookings from MIDT, an Amadeus database containing book-
ings from over 93000 travel agencies.

Bookings are stored using Personal Name Records (PNR), which
are created at reservation time by airlines or other air travel providers,
and are then stored in the airline’s or Global Distribution System
(GDS) data centers. PNRs contain the travel itinerary of the passen-
ger, personal and payment information, and/or additional ancillary
services sold with the ticket. As these only contain information
about the purchased ticket (final choice), and not about the alterna-
tives considered before the purchase, we must also consider flight
search logs. These contain both itinerary requests (origin, desti-
nation and dates), and the different alternatives presented to the
passenger.

Both data sources are combined into a final dataset containing the
alternatives presented to each user and their final choice (Figure 1).
The matching process is in itself a challenging problem due to
the high volume of data (i.e., around 100 GB of daily search logs)
and to the difference in data sources and formats. Moreover, the
process cannot be perfectly accurate since there is not a direct link
between the two data sources and booking/search times differ. An
approximate matching is performed using data fields which are
shared between booking and logs (i.e. origin, destination, time and
booking agency).

The choice set presented to a user, which we denote a session,
contains up to 50 itineraries. The features used for each alternative
are summarized in Table 1. The considered dataset contains 33951
sessions split into training/tests sets.

3.2 Algorithms
Methods from three different families of algorithms, classical CM,
machine learning- and deep learning-based CM, are explored.

3.2.1 Classical CM. Two classical CM approaches are consid-
ered: The Multinomial Logit (MNL) model [11], perhaps the most
common CM model, and Latent class choice models (LCM) [8].
McFadden [11] demonstrated that if εi j is an i.i.d. Gumbel ran-
dom variable, the probability that a decision-maker i chooses the
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Table 1: Feature set classified according to owner (individual
or alternative) and data type (numerical, categorical, binary
or time).

Owner Data Type Features

Individual Categorical Origin, destination, office
Numerical Days to trip, Trip weekday
Binary Stays Saturday, Continental trip,

Domestic trip
Alternatives Categorical Airline of first flight

Numerical Price, Stay length, Trip duration,
Connections, Num. of airlines

DateTime Arrival time, Departure time

Booking Data: 
Amadeus MIDT

Flight Search Logs 
Query and Results 

Pre-processing/Matching: 
Find search session that

corresponds to each booking

Final Dataset: 
Query, shown alternatives

and final choice

Ticket Reservation:

Itinerary (Origin, Destination, Flights,
Dates)
Payment information
Booking time/place/agency

Search logs:

From city A to B
Searched from time/place/agency 
Results: shown alternatives

Figure 1: Dataset generation through MIDT bookings and
search log matching.

alternative k (Eq. 5), the logit choice probability, is given by:

P(k |Ai ) =
exp(Vik )∑
j ∈J exp(Vi j )

. (8)

LCMs have been proposed to capture unobserved heterogeneity.
Under LCM, the probability of choosing an alternative k can be
expressed as:

P(k |Xi j ) =

Q∑
q=1

P(k |Xi j ; βq ,Aq )P(q |Xi j ;θ ) (9)

where Q is the number of latent classes, βq are the choice model
parameters specific to class q, Aq is the choice set specific to class
q, θ is an unknown parameter vector, and Xi j the simplified vector
representation of attributes of alternatives and characteristics of
decision-maker i .

Finally, both MNL and LCM models are optimized using maxi-
mum likelihood estimation as they can not be solved in a closed
form.

3.2.2 ML. Lheritier et al. a have proposed machine-learning
based CM (ML) [10] technique which formulates the choice mod-
elling problem as a supervised learning one through the use of
Random Forests (RF), a learning algorithm based on an ensemble
of decision trees. The training data consists of the set of sample
pairs T = {(Xi j ,yi j )}

1, with yi j the binary indicator of whether
1In the context of RF, Xi j referred to as the feature vector of a sample

decision maker i chooses the j-th alternative. As RF assumes inde-
pendence of the samples, at training stage, every Xi j is assumed
i.i.d., even if they belong to the same decision-maker. At predic-
tion, each unseen alternative Xi j is propagated through the trained
forest to obtain the posterior probability of being chosen:

P(yi j |Xi j ) =
1
T

T∑
t=1

Plt (yi j (Xi j ) = 1) (10)

where T denotes the number of trees and Plt (·) denotes the pos-
terior probability function of a leaf node l in tree t . However, the
alternatives associated to an individual’s session cannot be treated
as independent. There is an inherent dependence among them: only
one alternative per session can be selected. To cope with this, the
predicted probabilities are considered scores used to rank the alter-
natives. More formally, the index ĵ of the selected alternative a ĵ by
decision-maker i is:

ĵ = argmax
1≤j≤ J

P(yi j |Xi j )

3.2.3 DL. The assessed Deep learning choice modeling (DL)
method [13] is based on an encoder-decoder network architecture
using a modified pointer-network mechanism [18]. As with ML,
the model is trained to predict the chosen alternative using a su-
pervised learning approach. However, DL does not break the i.i.d.
assumption among samples, as ML-based CM does. Given the se-
quential nature of pointer networks, sessions are represented as
sequences of itineraries, Z = {Xi1, ...,Xi J }, which are fed sequen-
tially to the model. The encoder network "encodes" the input into a
hidden (encoder) state e . The decoder network will use the encoded
information to output a vector u. Finally, a softmax function use
the decoder’s output to estimate the posterior probability of being
chosen for the kth element in the input sequence Z :

P(yk = 1|Z ) =
exp(uk )∑J
j=1 exp(uj )

(11)

with uk = dTW1ek , the pointer vector to the kth element of Z , ek
the kth encoder state,d = tanh(W2e J ) the decoder,W1,W2 learnable
parameters and yk the binary indicator of whether k was chosen
(yk = 1) or not. P(yk = 1|Z ) can be interpreted as an estimate of
P(k |Ai ).

3.3 Performance measurement
We used Top-N accuracy to asses and compare the models. Top-N
accuracy evaluates if the user’s choice is among the top-N predicted
alternatives. It is equivalent to the commonly used top-N error in
image classification [16], as it can be formulated in terms of the
latter as:

accuracy = 1 − error

4 RESULTS
Figure 2 presents the Top-N accuracy for MNL, ML and DLmethods.
Overall, DL presents the highest accuracies across all values of N.
These results are confirmed, in more detail, in Table 2 where Top-1,
5 and 15 accuracies are detailed. Top-15 accuracy has a particular
importance for ranking flight search recommendations since most
websites show approximately 15 results per page.
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Figure 2: Top-N accuracy using the full data set (solid
line) and a subset of the dataset consisting of a single ori-
gin/destination (O&D) pair (dashed line).

Table 2: Top-NwithN = 1, 5 and 15. The best result for eachN
is presented in bold. Trivial choices of cheapest and shortest
flight are included for reference.

Method Top-1. Top-5 Top-15

DL 25.3 66.37 93.1
ML 23.1 61.7 92.9
MNL 21.2 60.6 86.4

Cheapest 16.4 16.4 -
Shortest 15.4 15.4 -

To simulate data segmentation, a second experiment was per-
formed in a simplified subset containing a single origin-destination
(O&D) pair chosen at random. This resulted in 1617 decision-makers
(users) with an associated booking to the O&D. The Top-N accuracy
curve (Figure 2 dashed lines) shows how the difference in perfor-
mance between the methods is less significant w.r.t. that one using
the full data set. Despite MNL being the simplest method, results
show that, on simpler datasets, it is able to perform as well as more
complex methods.

This behaviour explains the motivation behind dataset pre-seg-
mentation often used in classical CM. This is further confirmed by
investigating the performance of LCM, as a function of the number
of latent classesQ . Figure 3 reports top-1 accuracy of LCM, ML and
DL, and demonstrates how it is possible to increase classic CM accu-
racy in complex data through a good estimation of Q . While MNL
reported accuracies lower than ML and DM, LCM can outperform
them when Q is estimated correctly. This improvements comes,
however, at some cost: LCM requires additional hand engineered
features to achieve the segmentation and a good choice of Q .

Although ML and MNL are not as accurate as DL, they have
the advantage of having less hyper-parameters to tune. Moreover,
they are more interpretable than DL. ML methods based on RF are
known for their capacity to provide information on feature impor-
tance (Figure 4). This type of information can help to understand
the rationale behind the decision-maker’s choices, which can be
important for some applications in the air travel industry.

5 FINAL REMARKS
RecSys research has so far predominantly focused on optimizing the
algorithms used for generating recommendations to increase preci-
sion [9]. Precision measures how well the suggested alternatives

Figure 3: Top-1 accuracy of LCM, , as a function of the num-
ber of latent classes Q , compared to ML- and DL-based ap-
proaches.

Figure 4: Top 8 feature importance for the ML method.

match a decision-maker’s profile based on previous data. While this
is an important criterion, its limited assessment of a recommender
quality has been criticized for not taking the decision-makers’ situ-
ational needs into account [9]. Due to their well-known readability,
Discrete Choice Modelling appears as a natural alternative to over-
come this current limitation of RecSys. However, despite CM being
a well-studied problem in various fields of research, literature on
its use with recommender systems is very scarce. Existing works
have adopted classical CM in combination RecSys [6, 17], while
suggesting CM as a promising paradigm in the field of RecSys.

However, classical choice models tend to suffer from scalability
issues as expert knowledge is usually required for model optimisa-
tion. ML- and DL-based [10, 13] choice models are non-parametric
approaches that overcome this limitation, easing the deployment of
choice-based RecSys at large scale. On the down side, model read-
ability can diminish. Although this might not be relevant for some
applications, understanding the reasons behind a decision-maker’s
choice is of high relevance in the air travel industry. ML-based
methods appear to be a suitable compromise into readability but,
they make strong assumptions on the independence of data that is
arguable. Overall, it is possible to say that there is no ideal method
and that the selection of one might depend on the specific rec-
ommendation application that they target. As a guideline, Table 3
summarises the strengths and pitfalls of the different methods here
evaluated when considering choice-based RecSys.

At Amadeus, we work towards the development of informative,
readable and interpretable RecSys that suit the needs of the air
travel industry. Our hypothesis is that the combination of discrete
choice modeling with RecSys can provide improvements to current
systems in the air travel industry by keeping readability while im-
proving performance. In that sense, an ML method like the random
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Table 3: Advantages and disadvantages of the different families of CM methods.

Method Advantages Disadvantages

CM
• Simple and interpretable
• Accurate on simple cases

• Feature engineering is required
• Limited in handling big data

ML
• Interpretable
• Accurate
• Suitable for big data
• Handles non-linear and latent relationships

• Assumes independence of samples
• Feature engineering might be required

DL
• No assumptions on data
• Highly accurate
• Suitable for big data
• Handles non-linear and latent relationships

• Non-interpretable
• Many hyper-parameters
• Computationally expensive

forests evaluated here represents a good compromise and a promis-
ing path to pursue in what we are looking for. On one hand, the
method provides information on the relevance of features. On the
other one it avoids the limitations of classical CM models. In that
sense, although DL approaches have higher accuracy, they are not
as advantageous given their limited interpretability.

This work represents an initial benchmark that evaluates three
families of CM methods in the context of flight itinerary selec-
tion/recommmendation. Our future work will focus in the develop-
ment of a unified framework that can leverage the strengths of the
explored CM methods.
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