
Applying meta-modellig to an accounting application
Edelweis Rohrer1, Paula Severi2, Regina Motz1

1Instituto de Computación, Facultad de Ingenierı́a, UdelaR, Uruguay

2Department of Computer Science, University of Leicester, England

Abstract. In the last decades, the multilevel problem has received increasing
attention in the conceptual modelling and semantic web communities. Recently,
we proposed a solution to this problem in the context of ontological modelling
which consists in extending the Web Ontology Language OWL with a new mul-
tilevel constructor that equates instances to classes. In this work we highlight
the advantages of exploiting the reasoning capabilities of OWL ontologies with
the proposed multilevel constructor by analizing requirements from a real-world
application on the accounting domain.

1. Introduction
Multilevel modelling is the conceptual modelling problem of having classes that could
be instances of other classes (called metaclasses) or form part of metaproperties (prop-
erties between metaclasses). This is a relevant problem for many areas such as model-
driven software development and ontology design [de Carvalho and Almeida 2018].
Several works promote the use of ontologies for improving the theory and prac-
tice of conceptual modelling. In general, we can group the ontology-based con-
ceptual modelling works in four major categories: (i) works that propose the
use of ontologies to develop modelling languages for design patterns and simula-
tors [Guizzardi 2012, Guizzardi and Wagner 2004], (ii) works that define methodolo-
gies to transform relational databases to ontologies [Abbasi and Kulathuramaiyer 2016,
Munir and Anjum 2017], (iii) those that apply some formal theory [Atkinson et al. 2018,
de Carvalho and Almeida 2018, Lenzerini et al. 2018] and (iv) those that extend the syn-
tax and the reasoners of the web ontology language OWL to automatically check mod-
elling consistency, e.g. [Motz et al. 2015, Lenzerini et al. 2018]. In this last direc-
tion, we have already proposed a solution to the multilevel modelling problem which
consists in extending OWL with a new constructor that equates instances to classes
[Motz et al. 2015].

In this work, we show the usefulness of our multilevel constructor through a real-
world application on the accounting domain. This is an interesting application because it
shows the necessity of modelling (at least) two levels of knowledge: one for accounting
domain experts (who are in charge of defining the system requirements) and another for
operators (who are in charge to apply the daily actions according to the defined require-
ments). In fact, on one hand, experts visualize the whole organization landscape and are
interested in establishing the business rules for each work procedure. For them, a pro-
cedure is naturally represented as an instance (an atomic object). On the other hand, a
procedure for an operator is better represented as a set of instances (a complex object),
since they execute the same procedure many times.

The main contributions of this work are twofold. First, a key point of our multi-
level modelling approach is that by extending the ontology language and the reasoner, it is

possible to automatically validate the consistency of a multilevel ontology as well as to au-
tomatically infer such level. Second, we unify the two different knowledge levels (experts
and operators) by expressing common patterns of business rules using meta-properties
(properties of classes). For this, we also introduce another constructor MetaRule2 that
allows the automatic addition of several constraints following a common pattern. The re-
sults of the present work can be applied to other scenarios, in particular to those in which
the flexible management of business rules is an important requirement.

Related Work. [Atkinson and Kühne 2015] formalizes the concept of multilevel
connections and coins the term clabject to emphasize that there are classes that are also
objects. Similarly, [de Carvalho and Almeida 2018] combines the UFO ontology with a
first-order logic, called MTL, to model multilevel connections. These proposals require
that each class or individual explicitly specify its level of abstraction, for instance, 0
for atomic objects, 1 for classes, 2 for meta-classes, and so on. On the contrary, by
infering the level our solution does not put any burden on the ontology designer who
may be rather concerned with the business to be modelled than with the ordinal number
of each abstraction level. Related work on description logics (the logical foundations of
OWL) extended with metamodelling capabilities has an extense literature, due to space
restrictions, we refer to [Motz et al. 2015] for a thorough comparison.

Organization. The remainder of this paper is organized as follows. Section 2 in-
troduces a real-world example and its main requirements. Section 3 describes two design
alternatives for the example using ontologies, and analyzes the degree of accomplishment
of the set of requirements. Finally, Section 4 presents some conclusions and future work.

2. A real-world practical example of an accounting information system

This section explains the main requirements behind the accounting module of an infor-
mation system called “ Integrated Rental Guarantee Management System” (SIGGA) at
the General Accounting Agency of the Ministry of Economy and Finance in Uruguay1

where the first author works. Uruguayan government acts as a guarantor for employees
who want to rent a property. The underlying business of SIGGA consists in home rental
contracts that are signed between landlords and renters who are employees. The applica-
tion helps manage renter payments, as salary discounts or direct cash payment, and the
corresponding payments to landlords. The accounting module is in charge of recording
the accounting entries for the business rules of SIGGA, following the ALE-based classic
double entry bookkeeping to represent incremental and decremental events of assets, lib-
ialities and equity as credits and debits. The ALE-based system has several requirements
such as accounting entries that record business transactions have at least one debit and
one credit detail. The application domain of SIGGA is modelled by a relational scheme
and implemented in a relational database. Figure 1 depicts a simplified version of the re-
lational tables of the application and their structural restrictions. From a conceptual point
of view, there are two levels of the business: a definitional level and an operational level
In the definitional level of the accounting module of SIGGA we identify different kinds
of accounting entries, called entry definitions, as depicted in table EntryDefs which are
specified according to the business rules by a set of valid type of details, called detail

1Sistema Integrado de Gestión de Garantı́a de Alquileres, Contadurı́a General de la Nación.
www.cgn.gub.uy

definitions, registered in table DetDefs over accounts (table Accounts). Whereas, in the
operational level, tables Entries and Dets register particular accounting entries and de-
tails respectively. For the sake of clarity we analize the accounting module of the SIGGA
application with only three types of entries: “Monthly calculation of rent”, “Renter pay-
ment” and “Home damage expenses”.

Figure 1. Relational Tables for SIGGA accounting example.

For instance, the calculation of the monthly rent is performed each month for the
renter Juan Perez. On 01/12/2017 the SIGGA application registered the entry 250 in table
Entries and the three first rows (details) of table Dets showing that Juan Perez must
pay $4,500 of rent and $1,500 of renter fee (debited to the “Renter Debt” and “Renter
fee” accounts), and that $6,000 must be acredited to the landlord account following the
foreign keys (FK) restrictions from table DetDefs. Since Juan Perez paid the rent by cash
on 14/12/2017, SIGGA registered the entry 252 and a set of records in table Dets with
entryDef = 10 and detailDef 1, 3 and 4 that correspond to accounts “Cash”, “Renter Debt”
and “Renter Fee”, according to FK resrictions from table DetDefs.

Nowadays, there are a set of basic requirements of the accounting module of
SIGGA that are essential for its proper operation. The relational schema described in
Figure 1 guarantees some of them, whereas others cannot be expressed by structural con-
straints. There is also a set of desirable requirements that would add value to the system

if they were conceptually modelled because they would contribute to a more explicit do-
main conceptualization and facilitate expert definition activities. Below we describe the
list of requirements.
Req.1. Each accounting entry has at least one debit detail and one credit detail. Given
the structure of tables of the SIGGA application, this requirement is satisfied by non-
structural restrictions, so it is satisfied only transactionally.
Req.2. Each detail is either a debit or a credit (but not both). This requirement uses FK
to ensure that the accounting detail has the corresponding attribute.
Req.3. Each detail has associated a single account. (Satisfied by the FK.)
Req.4. Each detail can be associated to a unique entry. (Satisfied by the FK.)
Req.5. Each detail definition can be associated to a unique entry definition. This re-
quirement ensures that accounting entry definitions are mutually independent. It is the
reason why the SIGGA application does not link entry definitions to accounts directly. Us-
ing the concept of detail definitions the model is more flexible when definitions change.
For instance, if the debit account changes for a given accounting entry definition, it is
possible to keep old detail definitions marked as not current and introduce new detail def-
initions (to keep the history of definitions). This requirement is satisfied by the FK.
Req.6. Accounting entries have details for accounts in accordance with the definitional
level. For instance, each time a renter pays a debt in cash the accounting entry must
have details for accounts “Cash”, “Renter Debt” or “Renter Fee” in accordance with the
“Renter payment” entry definition. It is directly satisfied by the FKs of the table Dets.
Req.7. Provide mechanisms to classify accounting entries by relevant criteria. Com-
mon classification criteria are to classify all entries of a given kind (as renter payments)
or with a given account (as “Cash”) at debit or credit. In the schema of Figure 1 these
classifications are not explicitly modeled, they are implemented by SQL views.
Req.8. Provide mechanisms to classify accounting entry definitions according to rel-
evant criteria. To illustrate this requirement, we consider money availability accounts,
as cash or bank. It is important to ensure that all deposits (debit details) and extractions
(credit details) to/from them are recorded, to visualize the correct availability. So, the idea
is to validate the completeness of definitions for a given account. A useful solution is to
classify all accounting entry definitions that have cash or bank at debit or credit, to verify
if all possible movements are defined. It is possible to define SQL views.
Req.9. Express relations between definitions to check their correctness. For instance, if
the renter “Juan Pérez” incurres in a debt for damages in the house, it must be registered
by the entry definition 30 (Figure 1) with a debit on the “Damage Expenses” account and
a credit for the “Landlords” accounts. But there is no row in the table DetDefs associ-
ating the entry definition 10 (Renter payment) to the account “Damage Expenses” so the
“renter payment” entry (to register that “Juan Pérez” payed the damage expenses) cannot
be registered. What happens is that the expert did not include the “Damage Expenses”
account at credit in the entry definition 10. So, we should validate that the “renter pay-
ment” entry definition to have credit details for all accounts that are debits in some entry
definition that generates a renter debt, in the particular case, for all asset accounts that are
not of avalability. This is a validation that involves set of tuples from tables, it can be
verified as a non-structural constraint (in the application code). It would be desirable that
the relational schema had the capability of expressing such restrictions.
Req.10. Minimize the impact of changing accounting entry definitions. Suppose that at

a certain time, experts decide that for the definition of the “Renter payment” entry instead
of the account “Renter Debt”, another account “Rental Debt” must be used. The change
must impact at definition level, because new renter payment entries must be done in ac-
cordance to the new definition. But at the same time, old “renter payment” entries must
continue being identified (and classified) as such, even though they do not follow the new
definition. Indeed it is possible to add an attribute with two allowed values (current/not
current) to the table DetDefs, to differentiate current detail definitions from not current
ones. Hence, accounting entries done according to old definitions can also be identified
as “Renter payment” entries.
Req.11. Differenciate definitional and operational views as two abstraction levels. The
previous requirement shows the benefits of having definitional and operational levels in
separate structures. Despite this, it is hidden in the application code the fact that tables
EntryDefs and Entries keep semantically equivalent information at different levels. Be-
sides a greater expressiveness, a model with the capability to represent that EntryDefs,
DetDefs and Accounts are in the definitional level whereas Entries and Dets are in the
operational level, avoids errors of design. For example, at the moment of reusing SIGGA
relational schema, it is useful to distinguish a FK from Entries to EntryDefs (that links
conceptually equivalent knowledge at different levels) from a FK from DetDefs to Ac-
counts (that links two conceptually different objects at the same level).

The basic requirements which are Req. 1 to Req. 6 come from the ALE-based
accounting model. However, only Req. 2 to Req. 6 can be verified by the scheme shown
in Figure 1. The schema also verifies Req. 10. Req. 1 and Req. 7 are verified by non-
structural restrictions (in the code). Req. 8, Req. 9 and Req. 11 are desirable constraints
for the implementation of the SIGGA application that could be verified by non-structural
restrictions but they are not satisfied at the moment.

3. Ontological modelling

As discussed in the previous section, there are some requirements in the SIGGA account-
ing module that need to be represented through classification criteria. These criteria varies
from the simplest case of Req. 2 where accounting details can be credits or debits to the
most complex classifications from Req. 6 or Req. 9, for example. Traditionally, ontolo-
gies are proved to be a good tool for representing taxonomies, and moreover to model
relations that hold between taxonomy classes. The SIGGA application needs not only
model clasification criteria among accounting details but also model relations between
classes of accounting details as described in Req. 9, 10 and 11. In this section, we
present an ontological model for the SIGGA accounting module and discuss the capabili-
ties for requirements satisfiability that this model has. First we propose a model in OWL2
language [Grau et al. 2008], and then we propose a model in OWL2 extended with meta-
modelling. Finally, we compare pros and cons of both approaches.

3.1. The SIGGA ontological model (OM)

In this section, we introduce the SIGGA ontological model (OM) which captures the
classes (concepts) and properties (roles) that experts need to define. This is depicted in
Figure 2 where ovals represent classes and arrows represents properties. Table 1 shows

Figure 2. Example of SIGGA OM design

some of the Tbox and Rbox axioms of OM. The class Account represents different classes
of accounts, i.e. Assets, Availability, etc. The class DC represents the two possibilities
of “credit” or “debit”. The class Entry represents the grouping of entries by the definition
type, i.e. the set of entries of type “Renter payment”, the set of entries of type “Monthly
calculation of rent”, etc. These are disjoint sets of entries. The properties detailD and
detailC have domain Entry and range Det. They are introduced to distinguish between
details that correspond to “debit” and “credit”, and have a superproperty detail, which is
the disjoint union of detailD and detailC, defined conveniently to express some restric-
tions common to both properties. For the sake of clarity, the class D/C is defined with
the instances debit and credit. The role hasDC connects details at debit or credit with
the corresponding instances of D/C. The property account connects entry details to ac-
counts. Note that axioms (6) to (8) show an example for the subclass RenterPayEnt of
Entry and the corresponding subclasses of Det connected by detailD and detailC. The
same axioms must be declared for all subclasses of Entry. Axioms (6) to (8) represent the
definitional level because they define what accounts must be at debit and credit for each
kind of accounting entry.

3.2. The SIGGA Ontological Meta Modelling (OMM)

The SIGGA ontological model (OM) depicted in the previous section does not represent
explicitly the relations that hold between definitional and operational level of the SIGGA
accounting module presented in Section 2. In order to capture these relations we extend
OM with another ontology (the definitional ontology) illustrated on the top of Figure 3,
that captures the definitional level. At this level we have a class EntryDef that represents
the set of accounting entry definitions, a class DetDef that represents how debit and credit
details must be registered for each entry definition, and also classes Account and D/C
(as in OM). The role detailDef has domain EntryDef and range DetDef, it is a superrole
of detailDefD and detailDefC that distinguish debit from credit detail definitions. At
the lower part of the figure it is depicted a subschema of OM which represents uniquely
entries and details at the operational level. It is the ontology in the OM design, without
the classes Account and D/C. Table 2 shows some of the Tbox, Rbox and Mbox axioms.

In the definitional ontology, each kind of accounting entry is represented as an
instance of EntryDef whereas in the operational ontology each kind of entry is repre-
sented as a class that is a subclass of Entry, and agrees with a single entry definition
in EntryDef. For instance, renter payments are represented at definitional level with the

Table 1. Example of SIGGA OM Tbox and RBox

Axiom Description

(1) Det v= 1detail−.Entry A detail corresponds to exactly only one accounting entry.

(2) Entry v ∃detailD.> u ∃detailC.> Entries are balanced double entry records.

detailD v detail
detailC v detail

(3) Dis(detailD, detailC) detail is the disjoint union of detailD and detailC
Entry v ∀detail.(∃detailD−.Entryt

∃detailC−.Entry) .

> v ∀detailD.(∃hasDC.{debit}u
(4) ∀hasDC.{debit}) Roles detailD and detailC are associated to debit and credit.
> v ∀detailC.(∃hasDC.{credit}u

∀hasDC.{credit})

(5) Det v= 1account.Account A detail has associated a single account.

RenterPayEnt v ∀detailD.
(6) (PayCashDett Subclasses of Entry are described by the subclasses of Det

PayBankDet) they have associated at debit and credit
RenterPayEnt v ∀detailC.PayDebtDet

PayCashDet v ∀detail−.RenterPayEnt
(7) PayBankDet v ∀detail−.RenterPayEnt Subclasses of Det correspond to only one subclass of Entry.

PayDebtDet v ∀detail−.RenterPayEnt

PayCashDet v ∃account.{cash} Subclasses of Det are described by the accounts they have
(8) PayBankDet v ∃account.{bank} associated at debit and credit.

PayDebtDet v ∃account.{renterDebt}

individual renterPay but at operational level with the class RenterPayEnt. Instances of
RenterPayEnt are all different, such as the “Juan Pérez payment for $5,000” and the “Pe-
dro Vidal payment for $8,000”, but all of them have debit and credit details which agree
with detail definitions associated (by roles detailDefD and detailDefC) to the individual
renterPay. The fact that the individual renterPay is semantically equivalent to the class
RenterPayEnt is represented in Figure 3 by a dotted line that connects them. This means
that the interpretation of the individual renterPay must be equal to the interpretation of the
class RenterPayEnt. For this, we introduce the axiom renterPay =m RenterPayEnt to
equate the individual renterPay with the class RenterPayEnt [Motz et al. 2015]. Similar
equality axioms are added for monthRent and EntryMonthRent, payCashDet and Pay-
CashDet, and so on. In that way, each ontology conceptualizes the same business objects
at a different knowledge level. From [Motz et al. 2015], we recall that an ontology O
with meta-modelling is a tuple (T ,R,A,M) where T , R and A are a Tbox, Rbox and
Abox respectively, and M is an Mbox, which is a set of meta-modelling axioms (such
as renterPay =m RenterPayEnt). We now extend the Mbox by adding MetaRule
and MetaRule2 axioms to M. We also recall that an interpretation I of and ontology
O = (T ,R,A,M) has a domain of interpretation ∆ that can contain sets, sets of sets,
and so on, since with meta-modelling an individual (equated to a class) can be interpreted
as a set. Moreover, in order to explicitly declare correspondences established between

Figure 3. Example of SIGGA OMM design

definitional level roles and operational level roles, in the following, we introduce the new
constructor MetaRule(R, S) for roles R and S. The intuition behind the new construc-
tor is that pairs (a, b) in R in the higher level are translated as TBox axioms with S in
the lower level. For convenience, we also introduce the constuctor MetaRule2. We say
that I |= MetaRule(R, S) if AI ⊆ (∀S.(tX))I where X = {B | (aI , bI) ∈ RI and
aI = AI and bI = BI} (note that t∅ = >). We say that I |= MetaRule2(R, S) iff
I |= MetaRule(R, S) and I |= MetaRule(R−, S−).
Note that OMM contains the axioms (9) expressed using MetaRule2 which is equivalent
to adding a whole set of axioms following a certain pattern such as (6) and (7) of OM.

From [Motz et al. 2015] we recall that the tableau algorithm for checking con-
sistency of an ontology with meta-modelling extends the tableau algorithm for an ontol-
ogy without meta-modelling by adding three expansion rules (to transfer equalities and
inequalities between individuals with meta-modelling to corresponding concepts) and a
condition to avoid the domain to be a non well-founded set. To deal with the MetaRule2
constructor, we have to add the new expansion rules to the algorithm, which exceeds the
scope of the present work.

3.3. Comparing the two ontological models

In this section, we analyze how OMM design accomplishes the set of requirements pre-
sented in Section 2 highlighting the pros and cons of this approach. We compare the OM
and the OMM designs presented in previous section.

Req. 1 is satisfied in OM and OMM by the axiom (2) in both tables 1 and 2.
Req. 2 is satisfied in OM and OMM by the axiom (3) in both tables 1 and 2. Req. 3 is
satisfied in OM by the axiom (5) of Table 1 whereas for OMM by the axioms (8) and (9)
of Table 2. Req. 4 is satisfied in OM and OMM by the axiom (1) in both tables 1 and
2. Req. 5 is satisfied for OM by axioms such as Eq. (7) in Table 1 that must be declared
for each subclass of Det. However, OMM solves it by the axiom (4) in Table 2. Req.
6 is satisfied for OM by axioms (6) and (7) in Table 1 but OM has several drawbacks:

i) there is no definitional level to verify the correspondence, and ii) the axioms must be
declared for each kind of accounting entry. This is a relevant aspect because the real
system has defined around 80 different kinds of accounting entries, and this amount is
still growing. For OMM it is not needed to express it for each entry definition. The
requirement is ensured by combining meta-modelling axioms (that equate instances of
EntryDef to subclasses of Entry and instances of DetDef to subclasses of Det) with the
MetaRule2 constructor (axioms (9) in Table 2). Whereas for OM entry definitions are
expressed in the TBox, for OMM they are registered in the ABox as “data”, so OMM is
more flexible for dynamic business rules.

Table 2. SIGGA OMM Tbox, Rbox and Mbox.

Axiom Description

(1) Det v= 1detail−.Entry A detail corresponds to exactly only one accounting entry.

(2) Entry v ∃detailD.> u ∃detailC.> Entries are balanced double entry records.

detailD v detail
detailC v detail

(3) Dis(detailD, detailC) detail is the disjoint union of detailD and detailC
Entry v ∀detail.(∃detailD−.Entryt

∃detailC−.Entry)

(4) DetDef v= 1detailDef−.EntryDef A detail definition corresponds to exactly only one accounting
entry definition.

detailDefD v detailDef
detailDefC v detailDef

(5) Dis(detailDefD, detailDefC) detailDef is the disjoint union of detailDefD and detailDefC
EntryDef v ∀detailDef.

(∃detailDefD−.EntryDeft
∃detailDefC−.EntryDef)

> v ∀detailDefD.(∃hasDC.{debit}u
(6) ∀hasDC.{debit}) Roles detailDefD and detailDefC are associated to debit
> v ∀detailDefC.(∃hasDC.{credit}u and credit.

∀hasDC.{credit})

(7) EntryDef v ∃detailDefD.>u Accounting entry definitions are balanced double entry records.
∃detailDefC.>

(8) DetDef v= 1account.Account A detail definition has associated a single account.

(9) MetaRule2(detailDefD, detailD) Mbox axioms introducing sets of Tbox axioms that follow
MetaRule2(detailDefC, detailC) certain pattern.

Regarding Req. 7, both OM and OMM have the capability of classifying entries by a kind
of accounting entry, since this is given by the subclasses of Entry. If we consider another
relevant criteria such as “all entries with the account Cash at debit”, for the first design
we just introduce the class ∃detailD.(∃account.{cash}). For OMM it is not so direct,
because we have accounts at definitional level. We could solve it if we could express
higher order queries: q(y) = ∃X ∃x ∃z.account(x, bank) ∧ x =m X ∧X(z)

Req. 8 is about classifying entry definitions according to a given criteria, for
instance “all entry definitions with the account Bank at debit”. For OM, we cannot classify

entry definitions since they are not represented as instances, they are classes. Hence, it
would be necessary to explore the TBox axioms of the form of (8) in Table 1 looking for
classes with the text “bank” in their definition, and then to obtain classes of the form of
(6) in Table 1. Besides being a mechanism a bit cumbersome, the classification is not
expressed in the model at all. However, for the OMM design the requirement is solved by
introducing the class ∃detailDefD.(∃account.{bank}).

To analize Req. 9 we consider the example presented in Section 2, in which a
given renter cannot pay his damage expenses because the debt account was not included
in the “renter payment” entry definition. Again, for OM, to validate that all asset accounts
that generate debts are in the ”renter payment” entry definition as credits, we would have
to explore all axioms of the form (8) in Table 1. The problem is that the requirement is
about validating definitions, not “data”. By contrast, with OMM we solve the requirement
just adding the following axiom:

Asset u ¬Availability u ∃account−.(∃detailDefD−.>) v
∃account.−.(∃detailDefC−.{renterPay})

Another benefit of validating definitions, is that for certain kind of requirements we can
check for a condition only once over an accounting entry definition instead of checking
the same condition over all concrete accounting entries of that definition. For instance, for
all entries that move availability accounts (cash, bank), it must hold that, if an availability
account is at debit, no non availability account can be at debit (and the same at credit).
This condition can be easily checked for the OM and OMM designs by introducing re-
spectively the following axioms:

Entry u ∃detailD.(∃account.Availability) v Entry u ∀detailD.(∃account.Availability)
EntryDef u ∃detailDefD.(∃account.Availability) v
EntryDef u ∀detailDefD.(∃account.Availability)

But for OM, all daily transactions such as those of renter payment (that moves cash or
bank) must be validated, and the same happens for other conditions. However, with OMM
it is enough to check these conditions at the moment of introducing each definition be-
cause the MetaRule2 ensures that concrete entries agree with corresponding definitions.
This requirement is relevant since it shows the role played by the definitional ontology
in the OMM design. The fact that there is an ontology that “describes definitions” turns
out natural defining relations and imposing restrictions between them. Thus, experts can
check for inconsistencies or inferences in their definitions before the application is run-
ning. In the first example, if some instance of Asset at debit in some entry definition (left
part of the axiom) is not associated to the ”renter payment” entry definition at credit (right
part of the axiom), then the reasoner will create the association.

We now discuss Req. 10. Consider the example of Section 2 and suppose an ex-
pert change the definition of the “Renter Payment” entry. Instead of the account “Renter
Debt”, a new account “Rental Debt” must be at credit, but old entries must be kept un-
changed and classified as “Renter Payment” entries. For the OM design, axioms (6) in
Table 1 should be modified as follows:

RenterPayEnt v ∀detailD.(PayCashDet t PayBankDet)
RenterPayEnt v ∀detailC.(PayDebtDet t PayRentDet)

Moreover, in (7) and (8) in Table 1 the axioms below should be added:

PayRentDet v ∀detail−.RenterPayEnt PayRentDet v ∃account.{rentalDebt}

The problem with this new “Renter Payment” entry definition is that it is not clear what
is the current definition. A solution to differenciate accounting entries that agree with the
current definition from those that do not, could be to define a new class State with two
instances current and nonCurrent, and associate instances of Det to one of these states.
But as all entries with the “Renter Debt” account associated are deprecated, we have a
redundance since we represent definitional aspects at operational level. Another solution
is to define a subclass CurrentRenterPayEnt of RenterPayEnt, but we have to define these
subclasses for all subclasses of Entry. For OMM we can associate current or nonCurrent
to instances of DetDef at definitional level. So, we can explicit what detail definitions are
current and what are not.

Finally, we analize Req. 11. Regarding the OM design, the expert’s view is rep-
resented by TBox axioms (6), (7) and (8) in Table 1 that describe different subclasses of
Entry, and the operator’s view by ABox axioms which assert to what kind of accounting
entry (a subclass of Entry) concrete entries belong. However, TBox axioms (6), (7) and
(8) in Table 1 indeed describe business “data” but not business rules (definitions). So,
in practice OM properly conceptualize relations and restrictions at the operational level
whereas provide a weak conceptualization at definitional level. By contrast, for the OMM
design there is a definitional ontology (upper part of Figure 3) that describes business
rules, allows to introduce relations between definitions and is conceptually uncoupled
from the ontology (lower part of Figure 3) that describes relations over business “data”
(operational level). Hence, the OMM design fully fulfills the requirement.

4. Conclusions and future work

In this work, we present how an ontological meta-modeling approach can be applied to
a real case on the accounting domain based on the ALE system. The ontoREA ontology
[Fischer-Pauzenberger and Schwaiger 2017] conceptualizes business transactions of the
ALE system. However, ontoREA models the ALE system from a unique point of view.
Our approach subsumes ontoREA, we use it at definitional level as vocabulary to model
the accounting concepts from the ALE system. In this work, we show practical reasons
that the ontological meta-modelling here presented provides a better expressivity level
than both the relational model and the ontology model without meta-modelling.

For the OMM approach, the model itself provide elements to fully represent the
set of requirements. Among them, the most relevant are the capabililty for checking the
correctness of expert definitions as well as dealing with the impact of changing them,
what is achieved since definitions are for experts “data” that they can manage and even
modify if changes in the business require it.

As a general conclusion, the ontological meta-modeling approach (OMM) for
modelling a business application provides benefits from the perspective of different user
profiles. From the designer/developer’s perspective, the approach results profitable both
in the design and in the maintenance of the application. In the application design, it pro-
vides an intuitive and flexible way for introducing business rules at different abstraction
levels. In the application maintenance, having business rules expressed as axioms helps
prevent mistakes, which can happen when changing code. From the expert user’s perspec-
tive, it is a useful mechanism to validate the correctness of their definitions since it allows
to relate definitions as well as declare restrictions over them. From the operator’s perspec-

tive, as the correctness of the definitions can be validated, a lot of problems are avoided
at “application operation time” during customer service. In the near future, we plan to
investigate algorithms for checking consistency of ontologies with the new constructor
MetaRule2 and for answering higher order queries. Moreover, we will be working on an
implementation of a reasoner supporting this new dialect and we also plan to enhance a
prototype of the accounting practical example implemented over a relational database, by
adding the implemented ontologies with meta-modelling as detailed in the present work.

References
[Abbasi and Kulathuramaiyer 2016] Abbasi, A. and Kulathuramaiyer, N. (2016). A system-

atic mapping study of database resources to ontology via reverse engineering. Asian
Journal Information Technology, 15.

[Atkinson and Kühne 2015] Atkinson, C. and Kühne, T. (2015). In defence of deep mod-
elling. Information & Software Technology, 64.

[Atkinson et al. 2018] Atkinson, C., Kühne, T., and de Lara, J. (2018). Editorial to the theme
issue on multi-level modeling. Software and System Modeling, 17.

[de Carvalho and Almeida 2018] de Carvalho, V. A. and Almeida, J. P. A. (2018). Toward a
well-founded theory for multi-level conceptual modeling. Soft. and System Modeling,
17.

[Fischer-Pauzenberger and Schwaiger 2017] Fischer-Pauzenberger, C. and Schwaiger, W.
S. A. (2017). The OntoREA Accounting Model: Ontology-based modeling of the
accounting domain. CSIMQ, 11.

[Grau et al. 2008] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., and
Sattler, U. (2008). OWL 2: The next step for OWL. J. Web Sem., 6.

[Guizzardi 2012] Guizzardi, G. (2012). Ontological foundations for conceptual modeling
with applications. In Advanced Information Systems Engineering. CAiSE 2012.

[Guizzardi and Wagner 2004] Guizzardi, G. and Wagner, G. (2004). A unified foundational
ontology and some applications of it in business modeling. In CAiSE’04 Workshops
in connection with The 16th Conference on Advanced Information Systems Engineer-
ing, Knowledge and Model Driven Information Systems Engineering for Networked
Organisations.

[Lenzerini et al. 2018] Lenzerini, M., Lepore, L., and Poggi, A. (2018). Metaquerying made
practical for OWL 2 QL ontologies. Information Systems.

[Motz et al. 2015] Motz, R., Rohrer, E., and Severi, P. (2015). The description logic SHIQ
with a flexible meta-modelling hierarchy. J. Web Sem., 35(4).

[Munir and Anjum 2017] Munir, K. and Anjum, M. S. (2017). The use of ontologies for
effective knowledge modelling and information retrieval. Applied Computing and In-
formatics.

	Introduction
	A real-world practical example of an accounting information system
	Ontological modelling
	The SIGGA ontological model (OM)
	The SIGGA Ontological Meta Modelling (OMM)
	Comparing the two ontological models

	Conclusions and future work

