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Abstract

To investigate the interdependencies existing among deontic positions (like powers and obligations)
and the ontology defined by an institution, we have proposed to model institutions in terms of status
functions imposed on agents and defined as aggregates of deontic positions. In this paper we present a
metamodel of institutional reality which introduces a set of concepts necessary to describe an institution
and their intended meaning. A main advantage of our approach resides in the fact that institutions modelled
in terms of such concepts can be verified by applying model checking techniques. In particular, in our
framework it is possible to state and verify a set of properties stemming from our metamodel to enhance
the development of sound institutions.

1 Introduction
Institutions and normative systems have been put forward as a means for regulating open interaction sys-
tems where agents’ internal states cannot be accessed or agents are implemented by different parties. In
such systems, norms play a fundamental role because they create positive expectations in the outcomes of
interactions and make more predictable the behavior of other agents which are assumed to be autonomous
[7, 15, 9, 10, 22, 26]. But while in [7] institutions define only norms, following [25] in [9] we have sug-
gested that institutions also describe the ontology of the interaction context. For instance, the institution
of the English Auction defines the very concept of winning an auction, which also implies that the winner
ought to follow a set of norms.

To investigate the interdependencies existing among deontic positions (like institutionalized powers [16]
and obligations) and the ontology defined by an institution, in [28] we have proposed to model institutions
in terms of status functions imposed on agents and defined as aggregates of deontic positions. Our main
tenet is that institutional facts are such only because they provide agents with possibilities of actions which
are attributed to them only thanks to the common agreement of a community of agents. In particular, we
characterize institutional events in terms of what status functions they impose or revoke, which reflect the
powers and obligations created or cancelled in the system.

Once we have formalized an institution, we have also to ensure that it is sound and allows agents to
reach the desired states of affairs. Furthermore, as soon as institutions become complex, without the aid
of an automated techniques it is prohibitive to foresee all possible evolutions and states in which a system
may evolve. For this reason in [28] we have defined FIEVeL (Functions for Institutionalized Environments
Verification Language), a high level language to model institutions in terms of status functions and which
is amenable to model checking [4], either by translating it into the input language of an existing tool (e.g.
Promela, the input language of SPIN [14] as in [28]) or by implementing a new model checker.

In this paper we focus our attention on the definition of a metamodel of institutions which defines a
set of legal and philosophical concepts that we perceive as essential to describe institutional reality. In our
framework, institutions are described with FIEVeL, a modelling language which provides a concrete syntax
to formalize institutions in terms of such concepts. For this reason we say that such set of concepts and their
relations define a metamodel [17], since they constitute a model of our modelling language. On the other
hand, the institutional metamodel represents the upper ontology of institutional reality, since it introduces
concepts that are extended to describe the ontology of institutions. For instance, any domain-dependent
status function extends the notion of status function, which is abstractly defined as an aggregate of deontic
position, by detailing what powers and obligations are associated to it.



The introduction of a metamodel allows us to define a library of domain-independent properties which
not necessarily affect the functionality of an institution, but reflect the intended meaning of institutional
concepts. For instance, if we empower agents participating to an auction to make bids but we always forbid
them to do so, we obtain that it may be the case that agents make offers, but they will always violate
the system of norms. Although such institution is functional (it allows agents to make bids), it is clearly
irrational.

The remainder of this paper is structured as follows. Section 2 presents our metamodel, Section 3
discusses few domain-independent properties which can be verified by the tool presented in Section 4. In
Section 5 we provide an example of verification activities that can be carried out in our framework by
verifying the institution of property as it has been modelled and analyzed in [5], and finally in Section 6 we
provide a comparison of our approach with related works.

2 The Institutional Metamodel
Many researches on institutions and normative systems [5, 9, 10, 22, 26] share several common or strongly
related notions such as the concepts of role, norms, and institutionalized powers [16]. In this section we
introduce our metamodel of institutions, that is, the set of concepts that we perceive as essential to specify
an institution, the relationships existing between them, and their intended meaning. For the sake of brevity,
we focus our attention on those aspects that are more relevant for the definition of what we call domain-
independent properties, which, as we will see in Section 3, reflect important aspects of the institutional
metamodel.

We express the semantics of the metamodel in terms of an order many-sorted first-order logic with
temporal operators (OMSFOL). An order many-sorted first-order temporal logic is defined on a tuple S =
〈Σ,≤Σ,V,C,F,P, ξ〉, which constitutes the signature of the logic, where Σ is a finite nonempty set of
sort symbols; ≤Σ is a partial order on Σ determining a hierarchy of sorts; V is a finite set of (individual)
variables, including a denumerable variables for every sort; C is a finite set of (individual) constants; F is
an finite set of function symbols; P is an finite set of predicate symbols; ξ is a function that assigns a sort
to every variable and every constant, and a signature (i.e. a sequence of sorts) to every function symbol
and every predicate symbol; signatures of predicate symbols may be empty sequences, while signatures of
function symbols have at least one component. Sets Σ, V, C, F, and P are mutually disjoint and we will
write σ1 ≤Σ σ2 to say that σ1 is a subsort of σ2.

Given sorts Σ, the set Tσ of terms of sorts σ is the smallest set such that:

• v ∈ Tσ if v ∈ V and ξ(v) ≤Σ σ

• c ∈ Tσ if c ∈ C and ξ(c) ≤Σ σ

• f(t1, ..., tn) ∈ Tσ if f ∈ F, ξ(ti) ≤Σ [ξ(f)]i for 1 ≤ i ≤ n and [ξ(f)]0 ≤Σ σ

where [ξ(q)]i refers to the i-th sort of the signature of a predicate or function symbol q.
The set T of terms is the union of the sets Tσ for all σ ∈ Σ and the set A of atomic formulae is the

smallest set such that:

• (t1 = t2) ∈ A if there exists sort σ such that ξ(t1) ≤Σ σ and ξ(t2) ≤Σ σ;

• P (t1, ..., tn) ∈ A if P ∈ P and ξ(ti) ≤Σ [ξ(P )]i for 1 ≤ i ≤ n

The set of formulae is defined according to the following grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | Xϕ | [ϕUϕ] | Eϕ

where α is an atomic formula. Expressions true, false, (ϕ ∨ ψ), (ψ → ϕ), (ϕ↔ ψ), ∃xϕ, ∃≤nxϕ, ∃≥nxϕ,
Fϕ,Gϕ,Aϕ, and t1 = t2 are introduced as abbreviations as usual.

The semantics of an order many-sorted first-order temporal logic is defined as usual [20] by providing a
set of states, a total transition relation among states, a set of domains (one for each sort), and an interpretation
function I which maps, for each state, constants to individuals, and function and predicate symbols to
functions and relations on domains.

Despite OMSFOL models and formulae can be translated into classical first-order logic with temporal
operators (FOL) or, under certain conditions, into temporal propositional logic like CTL∗ [4] (see Section
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Figure 1: The institutional metamodel.

4), we adopt OMSFOL for two main reasons: i) it represents an abbreviated form for long and complex FOL
or CTL∗ formulae and ii) OMSFOL guarantees syntactic type checking of formulae. Moreover, institutions
describe rules that typically are independent of the number of agents, objects, etc. involved in the interaction,
which can be naturally expressed by allowing quantification over sorts.

In the remainder of this section we will introduce the semantics of the institutional metamodel by ex-
plaining what sorts, functions, and predicates are induced by each institutional concept. For predicates and
functions we also provide their signature ξ. Figure 1 depicts some of the main sorts used in our approach
(e.g. status function, obligation, event) and their relations, which are typically represented by introducing
predicates or functions. For instance, relation actor is reflected in our logic by function actor, which refers
to the actor of the current action (see below). Finally, we report a set of axioms which characterize in-
stitutional reality by imposing a set of restrictions A on the admissible valuations of institutional models
[1]. In the sequel we will represent such restrictions in terms of OMSFOL formulae (corresponding to LTL
formulae), while in Section 3 we will introduce a set of properties that can be translated into CTL formulae.

Before starting the analysis of the concepts which constitute our metamodel, it is worth to mention few
basic sorts like integers, agents (σAID), and objects, which are introduced to describe types of domain-
dependent attributes associated to status functions and events. Designers can also define context dependent
basic sorts.

As shown in Figure 1, our metamodel is based on the notion of agent status function, that is, a status
imposed on an agent and recognized as existing by a set of agents. Typical examples of status functions are
not only the concept of auctioneer, participant, or winner of an auction, but also being the owner of a good,
being the husband or the wife of somebody. The concept of status function shares several features with the
concept of role as it has been discussed in the literature (refer to [2] for an overview). Despite that, we prefer
to use the term “status function” for three reasons: (i) the term role has been used with different meanings
and it has been characterized in terms of very different concepts such as mental states, tasks, duties, etc; (ii)
the term status function better represents the fact that we are concerned with status whose existence depends
on those agents that recognize them as existing and which are assigned to agents to create new institutional
powers or to regulate their use; (iii) the concept of status function is broader than the concept of role as used,
for example, in [2]. In fact, it seems to be difficult to describe in terms of a “preexisting organization” being
the owner of a good or being under age, while it is quite natural to regard them as status functions imposed
by a group of agents.

Status functions induce sort σSF , which represents the supertype of all status functions described by an
institution. σSF defines function subject which refers to the agent the status function has been assigned
to (ξ(subject) = 〈σAID, σSF 〉) and predicate assigned (ξ(assigned) = 〈σSF 〉) which evaluates to true
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Figure 2: Life cycle of an obligation.

when a status function is currently assigned. Status functions are imposed (or revoked) when an institutional
event happens (see below), otherwise they continue to be assigned (unassigned).

Status functions are possibly empty aggregates of deontic positions that can be expressed in terms of two
main concepts, institutionalized power [16] 1 and obligations. Obligations induce sort σo whose individuals
reify norms of institutions in such a way that it is possible to classify institutional states with respect to
agents’ compliance with norms, or adopting the terminology used in [19, 23, 26], it is possible to classify
states as red (violating at least a norm) or green states (all norms are respected). Obligations can be also
used to express prohibitions by specifying suitable violation expression, while we do not define a specific
construct to explicitly represent the fact that an agent is permitted to perform an action as in [5, 10, 22].
Instead, we consider that every action, if it is not prohibited, is also permitted.

Given sort σstate, which introduces constants unfired, activated, and inactive, obligation sort σo is
characterized by function state (ξ(state) = 〈σstate, σo〉) and by a set of predicate (start, fulfillment, and
violation of signature ξ(violation) = 〈σo〉) which are used to specify conditional obligations and when
a norm should be considered fulfilled or violated according to the state machine represented in Figure 2.
An obligation is created because a status function is imposed, changes its state when its conditions are
satisfied, and eventually reaches a final state (inactive) either because it is fulfilled (violated) or because it
is associated to a revoked status function. Figure 2 graphically describes a set of axioms which regulate the
temporal evolution of an obligation individual: for instance, the following axiom states that if an obligation
has been activated and in the following state violation or fulfillment are evaluated to true, then the next
state is inactive:

G∀o∀sf(state(o) = activated ∧X(assigned(sf) ∧ ofStatusFunction(o) = sf

∧(violation(o) ∨ fulfillment(o))) → X(state(o) = inactive)) (1)

To record whether an obligation has been violated, we introduce predicate violated of signature ξ(violated) =
〈σo〉. Predicate violated is evaluated to true in a given state if an obligation was activated and the
violation expression is evaluated to true:

G∀ob(state(ob) = activated ∧Xviolation(ob) → Xviolated(ob)) (2)

Given that at the moment our metamodel does not provide any support for the definition of recovery
policies or sanctions [19], we assume that once an obligation has been violated, predicate violated is always
evaluated to true. Formally:

G∀ob(violated(ob) → Xviolated(ob)) (3)

1In [9, 28] we used to name institutionalized power “authorization”, but to enhance a comparison with other works we adopt the
more widely used term “power” [16, 5, 22, 26].



The definition of axioms that regulate the temporal evolution of an obligation and when a norm is violated
allows us to automatically classify states as red or green with respect to every norm, while in [23] the
designer is required to manually specify which states are red or green.

According to Figure 1, obligations are associated to status functions and not directly to agents. In
general, an agent is responsible for the state of affairs described by a fulfillment or violation expression
because it has been assigned a specific status function. For this reason we introduce function liable(ob),
which is defined as follows:

liable(ob) ↔ subject(ofStatusFunction(ob))

where given an obligation, function ofStatusFunction (ξ(ofStatusFunction) = 〈σSF , σo〉) returns the
associated status function.

The metamodel defines two kinds of events, base-level events (σBE) and institutional events (σie), which
are characterized by an ontological difference: while the former exist because they reflect changes that are
produced in the physical world or that are relative to lower level institutions, like time events and exchange-
message events, the latter exist because they are recognized as existing by a community of agents and
cannot be directly produced by the environment or by an agent [25, 9]. Despite that, we define both types
of events as subsort of sort event (σev) which defines predicate happens (ξ(happens) = 〈σev〉) and which
is evaluated to true when event ev has caused the last transition. Analogously, sort σia represents common
features of base-level actions and of institutional actions, e.g. “actions are always performed by an actor”
(ξ(actor) = 〈AID, σact〉). For convenience we define predicate done as an abbreviation to say that “agent
x has performed action act”:

done(act, x) ↔ (happens(act) ∧ actor(act) = x)

It is important to observe that in the literature only agent actions have been considered relevant to describe
institutions [5, 9, 22, 26], and the attention has been focused on a single action type, namely the act of
exchanging a message [7, 9]. In contrast, we are also interested in modelling the institutional effects of
events that are not generated by agents, like for instance time events, which not only are important for the
management of obligations, but also may count as institutional events. For instance, in most cultures the
18th birthday imposes new status functions on a person.

We regard time aspects in two distinct ways: (i) as in classical temporal logic, to define qualitative
aspects (it is always the case that a revoked status function is associated only to inactive obligations), and
(ii) as in RTTL [21] to express quantitative aspects (e.g. an obligation will be violated in 2 time instants
since now). To define quantitative aspects, we consider the perspective of a single centralized component
which makes the institutional (normative) state evolve: therefore, we consider the existence of a unique
timer that generates time events such that two consecutive time events ti and ti+1 may be separated by a
sequence (possible empty) of other base-level events, which are assumed to occur at time ti. Hence the
institutional state may change due to the occurrence of other events even if the timer has not generated new
ticks of the clock. Although multiagent systems are distributed in nature, which makes problematic the
assumption of unique notion of time or the adoption of an architecture where a single centralized manager
control the evolution of the institutional state, to cope with the state explosion problem [4] we decide to
introduce such simplification. It is worth noticing that centralized managers of the institutional states have
been also proposed in several prototypes of institutions [6, 11] and normative systems [8].

Institutional events are defined by an institution and represent changes in the institutional environment.
Essentially, their occurrence means that new status functions have been imposed on agents or existing status
functions have been revoked. Sort σie defines two predicates, prec and eff which express the preconditions
and effects of an institutional event. More precisely, for every institutional event prec (ξ(prec) = 〈σie〉) de-
scribes a condition that must be satisfied before institutional event ie occurs, while eff describes a condition
satisfied after ie has occurred. But how agents recognize when an institutional event happens?

Following [25], we regard the occurrence of an institutional event by subordinating it the occurrence
of another event conventionally associated to it. We represent the existence of a convention2 among two
events by introducing predicate conv which associates the occurrence of an event to the occurrence of
an institutional event (ξ(conv) = 〈σev, σie〉). We are now in position to define under what conditions

2As studied in [16, 12] conventions are related to the counts-as relation, which tipically is defined relative to a certain institution.
The extension of our approach to the treatment of multiple institutions is an interesting topic of research that we intend to tackle in our
future works. For the purpose of this paper we limit our attention to a single institution, and therefore we omit the institution in which
such relation holds.



an institutional event ie which is not also an institutional action may happen. An institutional event ie
conventionally bounded to event ev happens when:

G∀ie∃ev(prec(ie) ∧ conv(ev, ie) ∧Xhappens(ev) → Xhappens(ie)) (4)

Instead, in the case of institutional actions a further condition must be satisfied, namely, the actor must
be empowered to perform the institutional action [16]. According to Figure 1 status functions are constituted
by a set of powers, which are represented through predicate empowered (ξ(empowered) = 〈σSF , σia〉)
which means that status function sf is empowered to perform institutional actions of type ia. An institutional
action happens when:

G∀ia∀aid∃act(prec(ia) ∧ ∃sf(subject(sf) = aid ∧ empowered(sf, ia) ∧ assigned(sf))

∧X(happens(act) ∧ actor(act) = aid ∧ conv(act, ia)) → X(happens(ia)) (5)

Assuming that institutions are asynchronous systems and according to axiom (5), which ensures that if
the agent that brings about action act is empowered to perform ia, then action ia is successfully performed,
we require that given two action symbols act1 and act2, if they are conventionally bounded and if they
happen, the actor must be the same. Formally:

G∀act1∀act2(conv(act1, act2) ∧ happens(act1) ∧ happens(act2) →

actor(act1) = actor(act2)) (6)

Our treatment of the conventional generation of events extends the treatment presented in [9], since we
do not take as our unique primitive to specify conventions the act of exchanging a message. Instead, any
event can be used to define a new convention. In particular, our metamodel allows institutional events to
be conventionally associated to other institutional events. For instance, the institutional act of transfer the
possession may be conventionally bounded to the act of transfer the property.

3 Domain-Independent Properties
Once an institution has been defined in terms of the concepts described by our metamodel and the corre-
sponding model has been generated by a model checker, there are two kinds of properties that a designer may
want to verify, domain-independent properties and domain-dependent properties [28]. Domain-dependent
properties stem from peculiar features of the specified model and regard the functionality of an institution:
for instance, we may want to ensure that an auctioneer cannot win an auction. Instead, domain-independent
properties are defined to guarantee the rationality of an institution with respect to the intended semantics of
the concepts provided by our metamodel. Notice that, in contrast with axioms discussed in Section2 which
characterize the semantics of institutional concepts and cannot be falsified, domain-independent properties
are verified by a model checker and may be unsatified by institutions. In this case we say that an institution
is irrational with respect to such properties. For instance, a rational institution should be characterized by
the fact that every institutional event must eventually happen in at least an execution:

∀ie EFhappens(ie) (1)

where ie is a variable of type σie. If this property does not hold, then it means that either the preconditions of
an institutional event are never met or that the designer has not defined the necessary powers or conventions
for its performance.

Analogously, given a convention which relates events of type x and y, it should be the case that there
exists a path where eventually both of them contemporary happen:

∀evx∀evy(conv(evx, evy) → EF(happens(evx) ∧ happens(evy))) (2)



If this property does not hold, it means that agents cannot exploit the convention binding events of type
x to events of type y, for instance because preconditions of such events are never contemporary satisfied or,
in the case of actions, because status functions empowered to execute them are never assigned to an agent.

Let us now move our attention to a set of properties that should characterize norms. Norms are introduced
in open multiagent systems to constrain possible agents’ behaviour, and therefore it must be the case that
each norm can be eventually activated:

∀obEF(state(ob) = activated) (3)

If we assume that agents are autonomous, it should be possible for an agent both to violate and fulfill
its obligations (and prohibitions), which means that norms regulate aspects of (social) reality which are
contingent. It would be irrational to define an obligation characterized by a violation expression that makes
it impossible to violate it:

∀obAF(state(ob) = activated→ Estate(ob) = activatedUviolated(ob)) (4)

Similarly, we can specify that all obligations may be eventually fulfilled. Moreover, it should be the case
that once a norm is activated, it ought to eventually reach a final state (inactive), which guarantees that the
whole life-cycle of a norm is limited and regulated only by the institution that defines it:

AG∀ob(state(ob) = activated→ A[state(ob) = activatedUstate(ob) = inactive]) (5)

Notice that any obligation which is not characterized by a deadline (not necessarily a time expression)
violates property (5). For instance, if an agent ought to maintain indefinitely a state, as a consequence the
whole institution would not satisfy property (5).

Obligations are defined to indicate whether a given behaviour is accepted by an institutions and typically
“involve sacrifice and renunciation” [13]. For this reason, under the hypothesis that internal mental states
are not accessible, it seems natural to assume that if an agent is obliged to a certain state of affairs it should
not be provided with the possibility of revoking its own obligations. Otherwise, it could avoid complying
with its duties without incurring in any sanction or blame. We formalize this fact as follows:

AG∀ob(state(ob) = activated→ ¬EX(state(ob) = inactive ∧ ¬violation(ob)

∧¬fulfillment(ob) ∧ ∃act done(act, liable(ob)))) (6)

The fact that an institution does not satisfy a domain-independent property does not necessarily mean that
its rules prevent any successful interaction. It may be the case that all domain-dependent properties are
satisfied while there are domain-independent properties that are violated. In any case, it is important that the
designer becomes aware of this fact, and consider how to modify the institution. For instance, if property
(1) does not hold, we can eliminate the institutional event or change powers and preconditions associated to
it, otherwise its definition would be useless and the institution would be irrational.

4 A Symbolic Model Checker for Verifying Institutions
Figure 1 represents not only the metamodel of the institutional reality, but also it constitutes the abstract
syntax of FIEVeL (Functions for Institutionalized Environments Verification Language) [28, 29], a language
that has been defined to model institutions in terms of the concepts introduced by our metamodel and to
verify them by applying model-checking techniques [4]. As exemplified in Figure 3 and according to the
institutional metamodel, an institution described in FIEVeL defines a set of status functions, characterized
by powers and obligations, a set of institutional events and conventions for their performance. The semantics
of FIEVeL constructs is given by describing how each expression affects the signature or the interpretation
function of an OMSFOL logic characterized also by symbols introduced by our metamodel (see [29] for
more details about FIEVeL).

The adoption of an order many-sorted first-order logic to describe the semantics of FIEVeL, its meta-
model, and properties of institutions, naturally rises the question about how to verify OMSFOL models
by applying model-checking techniques, which usually are applied to propositional models [4]. In the re-
mainder of this section we will define an encoding E of OMSFOL models into propositional models and a
translation τ of OMSFOL formulae into CTL∗ formulae which is exploited by our tool to verify institutions
described in FIEVeL.



A propositional model is defined as a tuple M̂ =
〈
F̂, ÂP , V̂

〉
where ÂP is a set of atomic propositions,

and V̂ is a valuation function which, given a state ŝ ∈ Ŝ and a proposition p ∈ ÂP , returns a value in
{0, 1}. Let be NDσ

the cardinality of domain Dσ associated to sort σ: the set of atomic proposition ÂP
is determined by introducing a set of propositions APfx1,..,xn ∈ AP of cardinality log2(N[ξ(f)]0) for every
function f and for every possible valuation, and a proposition px1,...,xn for every predicate P and for every
valuation. Moreover, for every domain we associate to each individual el a natural number nel such that
0 ≤ nel < NDσ

. The encodingE of an OMSFOL model into a propositional model M̂ is defined as follows:

• each constant symbol c is encoded as a sequence of truth values corresponding to the binary represen-
tation of the number associated to the individual referenced by constant c (E[c] = binary(I(c, s)));

• each function f is encoded as the set of propositions induced by the current valuation (E[f(x1, ..., xn)] =
APf(x1,...,xn));

• each predicate P is encoded as the proposition induced by the current valuation (E[P (x1, ..., xn)] =
px1,...,xn);

The valuation function V̂ is such that given an interpretation function I and a state s, propositions
APfx1,..,xn are evaluated as the encoding of the element referred by f(x1, ..., xn) and proposition px1,...,xn

evaluates as the truth value corresponding to predicate P in state s.
Assuming that the language is rich, that is, there exists a constant symbol for each individual of every

domain, and also assuming for simplicity that only variables and constants can appear as arguments of
functions and predicates, the translation of a OMSFOL formula ϕ with temporal operators is defined as
follows:

• τ [t1 = t2] =
∧i<N(ξ(t1))
i=0 ¬(E(t1)i ⊕ E(t2)i) where E(t)i refers to the i-th proposition (or equiva-

lently the i-th truth value) corresponding to the encoding of term t;

• τ [P (x1, ..., xn)] = E(P (x1, ..., xn))

• τ [∀xϕ] =
∧
c∈Cξ(x)

τ [ϕ[c/x]] where c ranges over constants of sort ξ(x) and ϕ[c/x] is the result of
replacing every free occurrence of x in ϕ with an occurrence of c;

• τ [¬ϕ] = ¬τ [ϕ]

• τ [ϕ ∧ ϕ] = τ [ϕ] ∧ τ [ϕ]

• τ [Xϕ] = Xτ [ϕ]

• τ [ϕUϕ] = τ [ϕ]Uτ [ϕ]

• τ [Eϕ] = Eτ [ϕ]

It can be demonstrated that:

Theorem 1 Given a model M, characterized by a OMSFOL signature and finite domains, and an OMSFOL
formula ϕ, M |= ϕ if and only if E[M] |= τ [ϕ].

To verify domain-dependent and domain-independent properties we have implemented a symbolic model
checker based on the CUDD library [27]. Our tool takes as its input an institution modelled with FIEVeL,
a list of individuals composing each basic domain, and a set of status functions which are assumed to
be imposed at the first state. Domain-dependent properties are specified in a separate file, while domain-
independent properties are selected by interacting with the tool. Starting from these inputs, the tool applies
translation τ and encoding E to construct the corresponding Kripke structure, whose states and transition
relation are symbolically represented as OBDDs [3]. To verify properties whose translation corresponds to
CTL formulae, that is, formulae where path quantifiers (A and E) are immediately followed by temporal
operators (X, F, andG), the tool applies symbolic algorithms as described in [4].



basic-types:
priceD subtype-of INT;;
...

base-events :
message refuse(buyer:AID,good:OID,value:priceD);

...
institution purchase {
...
status-function proposed(proposer:AID,good:OID,value:priceD) {
key proposer,good
powers
...
refuseRequest d <- TRUE;

...
deontic:
p1 obligation(TRUE,

done(transferPossession,subject)),activation>1);
...

}// proposed
...

institutional-events:
...
institutional-action refuseRequest(buyer:AID,g:OID,price:priceD)
pre exists p in proposed (((p.subject=actor and
and (p.proposer=buyer and p.value=price)));
eff revoke proposed (subject=actor,proposer=buyer,good=g, value=price);
...

conventions:
exch-Msg(refuse) p [TRUE] =c=> refuseRequest
[buyer =c=> buyer
good =c=> g
value =c=> price ];
...

}// institution

Figure 3: Fragments of the institution of property.

5 Modelling and Verifying the Institution of Property
In this section we report the results obtained during the verification process of the institution of property
as it has been defined in [5]. During the formalization of such institution (see Figure 3) we have slightly
modified certain features of the original specification to adapt them to our concepts. Despite these changes,
results obtained with our formalization can be extended to the institutions described in [5]. For the sake of
brevity we will focus on those aspects that our analysis has shown to be problematic and which we deem
highlight the importance of the definition of a metamodel of institutions.

In [5] the institution of property defines an institutional action, transfer ownership, which is “empowered
if the initiator of the transfer is the owner of the object being transferred”. Furthermore a set of institutional
actions are introduced, like requestGoods which allows a customer to request a good, sendPayment which
can be performed by a customer to send a payment, refuseRequest which allows the merchant to refuse
a request, and finally sendGoods which empowers the merchant to send a good. Notice that in [5] it is
not required that institutional actions happen because agents have performed basic actions conventionally
bounded to them, which obliged us to introduce a set of base-level events and conventions to enable agents
to perform institutional actions described above.

According to [5] “sending a request for goods creates an obligation on the merchant to have sent the
goods before the interaction ends” but “sending the refusal cancels the merchant’s obligation to send goods”.
Therefore, the merchant can cancel an obligation of itself which intuitively violates property (6) discussed
in the previous section.

Let us now consider how agents can execute action transfer good, which is defined in such a way that
it can be successfully performed at time t if and only if either the merchant sends the good at time t and
the customer has payed at time t1 < t, or the customer pays at time t and the merchant has sent the
good at time t1 < t. Given such description it seems natural to introduce two conventions: conv1 which
states that the performance of the institutional act sendGood counts as transfer property if the customer
has payed, and conv2 such that sendPayment counts as tranfer property if the merchant has sent the
good. Such conventions reflect the fact that in [5] the execution of sending a good (or similarly sending a



Figure 4: The report generated by our tool during the verification of domain-independent properties dis-
cussed in Section 3.

payment) implies the transfer of property. At this point it is important to notice that if transfer property,
sendGoods, and sendPayment are institutional actions, then they are successfully executed only if the
actor is empowered (see axiom (5) which is similar to an inference rule in [5]). The concept of power
adopted by [5] is similar to the one presented here, since it is defined as “the capability of an agent to bring
about a change” in the institutional state. But, the act of paying is performed by the customer, while the
transfer of property is empowered to the merchant, and they cannot be the same agent in a given transaction.
These considerations rise a problem of agency of the institutional actions: how can a payment of agent a
count as an action performed by agent b? It would be possible if agent b had delegated its power to agent
a, but the authors do not introduce delegation of powers in their formalization. Therefore, we should expect
that property (2) does not hold, since according to axiom (6) the convention among the payment and the
transfer of property can never produce the successful performance of both acts.

Figure 4 shows the verification results generated by our tool when it has been asked to verify properties
described in Section 3 and where we can observe that properties (2) and (6) are violated. The generation
of the transition system corresponding to the institution of property and the verification of all domain-
independent properties required 0.25 seconds on a laptop with installed Linux and equipped with a pentium
1.66 GHz and 1 GB of RAM.

When a domain-independent property is not satisfied by an institution, we can consider what specific
features of the metamodel it reflects to get some clue about how to modify an institution in order to satisfy
it. For instance, we know that all institutional events may eventually happen as ensured by property (1).
Therefore, as we have also noted in the previous informal analysis, a way to satisfy property (2) is to
change the institutional power of agents. In particular, here we propose to not classify the exchange of the
property as an action but as an institutional event. This solution immediately solves the agency problem and
eliminates the power attributed to the owner of a good.

To satisfy property (6), that is, agents cannot cancel their own obligations, we propose to model the act
of requesting a good in such a way that it does not create an obligation for the merchant to send the good,
but it creates an obligation to agree or reject the request of the customer. In both cases, an answer of the
merchant satisfies its obligation; in particular, a positive answer imposes on the involved agents a set of
status functions which represent the obligation to transfer the possession (or perform the payment) and the
powers to do so. Notice that such a formalization better represents the fact that a directive act (like a request)
does not create obligations to the performance of the requested act [24], while a commissive (like the agree
communicative act) commits the agent to the performance of the agreed action (see also [9]).

6 Discussion and Conclusions
In this paper we have presented a metamodel for verifying institutional reality based on the notion of status
function, which is regarded as a (possibly empty) aggregate of deontic positions (powers, obligation, etc.).
This approach provides for a unified view of institutional facts and deontic positions, which have been usu-
ally analyzed separately [5, 9, 22], and is motivated by the fact that institutional reality is such only because it
is constituted by deontic positions attributed to agents. We have introduced the semantics of our institutional
metamodel in terms of an order many-sorted first-order logic, which allows us to formalize both axioms
regulating the metamodel and a set of domain-independent properties which reflect the intended meaning
of concepts defined by our metamodel. Finally, we have tested our approach by verifying the institution
presented in [5] with respect to a set of domain-independent properties and shown that the verification of
such properties enhances the formalization of sound institutions.

In the literature there are several attempts to model and verify institutions and normative systems. In [9]



the authors rely on an intuitive semantics to model institutional reality in terms of entities, roles, and norms.
Instead, the approach presented in this paper provides a formal semantics of institutional concepts such that
we can apply model checking techniques to verify institutions.

In [22] normative systems are described by using the Event Calculus [18]. The absence of an institutional
metamodel, which for instance provides an axiom to state that every institutional action must be authorized
in order to be successfully executed, obliges the authors of [22] to specify this fact for every single action
and for every role. Therefore, the definition of a metamodel provides a significant advantage, especially
when many status functions (or roles, using the terminology of [22]) are authorized to perform the same
institutional action. Furthermore, the definition of an encoding of institutions described in FIEVeL into
propositional models allows us to verify our systems, while in [22] the authors must rely on “systematic
runs”.

In [15] the authors propose a framework to model check electronic institutions, a formalism proposed in
[7] and which describes institutions as finite automata. Starting from this point, in [15] the authors limit their
attention on the verification of properties of finite automata (e.g. “it is always possible to reach a final state”).
It is important to notice that in [15] arcs of electronic institutions (which in principle represent permitted
acts [7]) are interpreted as obligatory moves of agents, which may lead the model checker to answer that a
given property holds in an institution while it is not the case and vice versa.

We plan to extend our metamodel, and consequently our modelling language, to model different inter-
dependent institutions like in [30], which raises, among others, two interesting research problems: first,
how to model interdependencies among different contexts, and second, how to design an institution which
somehow depends on another institution.
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