
An Extensible Natural-Language Query Interface

to an Event-Based Semantic Web Triplestore

Richard A. Frost and Shane Peelar

School of Computer Science, University of Windsor,

401 Sunset Ave, Windsor, Ontario, N9B3P4, Canada

{richard,peelar}@uwindsor.ca

Abstract. An advantage of the semantic web is that information can

be easily added to existing data. Ideally, it should be possible to query

the original and new data, using an extensible natural-language query

interface. (NLQI). In order to facilitate the extension of an NLQI, it

helps if the query language is based on a compositional semantics, and

if the language processor is highly modular. Such an NLQI to an online

event-based triplestore has been constructed and is available through a

web interface. The NLQI is implemented as an executable specification of

a highly modular attribute grammar using parser combinators in a pure

functional programming language. The parser/interpreter can handle

ambiguous left-recursive grammars and fully dependent synthesized and

inherited attributes. This enables the integration of semantic rules with

syntactic rules, in the style of Montague Grammars, which facilitates the

addition of new constructs to the query language.

Keywords: Natural Language Processing, Natural Language Semantics, Seman-
tic Web, Montague Semantics, Event Semantics

1 Introduction

One of the major advantages of the semantic web is that data on a topic can be
added with little knowledge of the way in which existing data is stored. This is
particularly the case with reified semantic web triplestores, where people can
add many properties such as the time, location, and implement used, to a triple
such as “<hall> <discovered> <phobos>”. For example, consider an event-based
triplestore containing the following triples, amongst others, where we use bare
names for URIs:

<event1030> <type> <discovery> .

<event1030> <subject> <hall> .

<event1030> <object> <phobos> .

Additional data can be added as follows:
<event1030> <date> <1877> .

<event1030> <implement> <refractor_telescope_1> .

<event1030> <location> <us_naval_observatory> .

2 Richard A. Frost and Shane Peelar

Ideally, it should be possible to query these and other triples, using an
extensible natural-language query interface. (NLQI).

In order to facilitate the extension of an NLQI, it helps if the query language
is based on a compositional semantics such as Montague Semantics (MS) [8] or a
version of it, and if the language processor is highly modular. Such an NLQI to an
online event-based triplestore has been constructed and is available through a web
interface, which is discussed in section 2. The NLQI can accommodate common
and proper nouns, adjectives, conjunction and disjunction, nested quantifiers,
intransitive and transitive n- ary verbs, and chained complex prepositional
phrases (PPs). The NLQI is implemented as an executable specification of
a attribute grammar (EAG) using parser combinators in the pure functional
programming language Haskell. Our parser/interpreter can handle ambiguous
left-recursive grammars and fully dependent synthesized and inherited attributes.
We begin in section 2 with a demonstration of our NLQI. In section 3, we
discuss our modification to Montague Semantics and our compositional event
semantics. In section 4 we discuss quantifier scoping. In section 5, we describe
our implementation of the NLQI as an EAG. In section 6, we discuss how our
interface can be extended. In section 7, we discuss related work. We conclude in
section 8.

The motivation for this work is to rekindle an interest in Montague-like
compositional semantics for query processing. Compositional semantics have many
benefits which have been exploited in many computing applications, including
the facilitation of extensibility.

2 A Demonstration of our NLQI

We have built a small “Solarman” triplestore containing approximately 22,000
facts about the moons in our solar system, the planets they orbit, and the people
who discovered them, when, where and with which telescope. Our NLQI can
answer many questions with respect to the “Solarman” triplestore, but no other
questions yet. We have installed our NLQI to Solarman on a server and also
on a home wireless router to ensure that our approach requires only minimal
computing power (the answer time on the router is as fast as on the server.) The
triplestore is stored using the Virtuoso semantic web software which supports
a SPARQL endpoint. Our NLQI is accessible through the following web page,
which contains example queries, and lists of words and categories of words that
can be used in queries:

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

Event-based triples consist of three fields: an event identifier, a relationship
type, and a type or entity identifier. For example, the facts that Hall discovered
Phobos in 1877 using a refractor telescope at the US Naval Observatory can be
encoded with the triples above. The extra facts, in addition to the type, subject
and object of the event enable evaluation of queries containing PPs.

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

Title Suppressed Due to Excessive Length 3

The triples in our triplestore can be accessed by following the link to our
prototype NLQI. Our processor uses basic SPARQL retrieval commands to
retrieve sets of entities and events of a given type, and entities which are the
actors/properties of a given event. Our NLQI takes advantage of the optimized
retrieval operators in the SPARQL endpoint to our triplestore. The functions
defined by sets of events are computed in Haskell as needed during the evaluation
of the queries.

The following queries illustrate that quantifier scoping is leftmost outermost:

– every telescope was used to discover a moon: True
– a moon was discovered by every telescope: False
– a telescope was used by hall to discover two moons: True
– which moons were discovered with two telescopes:

halimede laomedeia sao themisto
– hall discovered a moon with two telescopes: False
– who discovered deimos with a telescope that was used to discover every moon

that orbits mars: hall; ℎ𝑎𝑙𝑙
– who discovered a moon with two telescopes:

nicholson science_team_18 science_team_2
– how was sao discovered: blanco_telescope canada-france-hawaii_telescope
– how many telescopes were used to discover sao: 2
– who discovered sao: science_team_18
– how did science_team_18 discover sao:

blanco_telescope canada-france-hawaii_telescope
– which planet is orbited by every moon that was discovered by two people:

saturn; none
– which person discovered a moon in 1877 with every telescope that was used

to discover phobos: hall; none

3 Our Modification to Montague Semantics

3.1 Modifying MS to a “set-based” MS

We use sets of entities rather than characteristic functions (unary-predicates) in
order to make the implementation of the semantics computationally tractable:

Original MS [8]:

‖every moon spins‖
=⇒ (‖every moon‖) ‖spins‖
=⇒ (𝜆𝑝 𝜆𝑞 ∀𝑥(𝑝 𝑥 ⇒ 𝑞 𝑥) moon_pred) spins_pred
=⇒ (𝜆𝑞 ∀𝑥 (moon_pred 𝑥 ⇒ 𝑞 𝑥)) spins_pred
=⇒ ∀𝑥 moon_pred 𝑥 ⇒ spins_pred 𝑥

=⇒ True

Requiring moon_pred to be applied to all entities in the universe of discourse.
In the set-based MS, the denotation of a noun, adjective or intransitive verb is

4 Richard A. Frost and Shane Peelar

a set of entities of type denoted by es. The denotation of the word “every” is
modified to:

‖every moon spins‖
=⇒ (‖every moon‖) ‖spins‖
=⇒ (𝜆𝑠 𝜆𝑡 𝑠 ⊆ 𝑡) moon_set spin_set
=⇒ (𝜆𝑡 moon_set ⊆ 𝑡) spin_set
=⇒ moon_set ⊆ spin_set
=⇒ True

Which is computationally tractable if the representations of sets of moons and
things that spin can be readily retrieved. Proper nouns denote functions of type
es → Bool.

‖phobos‖ = 𝜆𝑠 𝑒𝑝ℎ𝑜𝑏𝑜𝑠 ∈ 𝑠

Then:

‖phobos spins‖
=⇒ (𝜆𝑠 𝑒phobos ∈ 𝑠)
=⇒ 𝑒phobos ∈ spin_set
=⇒ True (if Phobos spins.)

All denotations are modified to use sets rather than characteristic functions.

3.2 Events

In order to accommodate 𝑛-ary verbs (𝑛 > 2) and PPs, we integrate event
semantics with MS using ideas from Davidson et al. [7], Rothstein [20] and Cham-
pollion [5]. Our basic idea is to modify the above to return sets of pairs (rather
than sets of entities) as intermediate results from evaluating the denotations of
phrases. Each pair contains an entity paired with a set of events. In some cases,
the set of events can be thought of as justifying why the entity is in the result.
For example the result of evaluating the phrase “discover phobos” contains the
pair (𝑒hall , {𝑒𝑣1030}).

3.3 An Explicit Denotation for Transitive Verbs

MS does not provide an explicit denotation for transitive verbs and deals with
them using a syntactic manipulation rule at the end of rewriting the expressions
containing them (see page 216 of [8]). The basic idea underlying our approach is
to regard each 𝑛-ary verb as defining 𝑛2 − 𝑛 functions between the entities in
the 𝑛 roles in the events associated with that verb.

Title Suppressed Due to Excessive Length 5

A Denotation of transitive verbs without events in the semantics In a
simple version of our semantics, 2-place transitive verbs denote functions from
a possibly empty list of at most one termphrase to a set of pairs of type (𝑒, es)
where 𝑒 is an entity and es is a set of entities. The function computes the answer
by using data that is retrieved from the datastore as needed. Consider the verb
“discover” which we use in our examples. In our triplestore, each discovery event
has 5 roles: subject (agent), object (theme), implement, year and location. The
triplestore defines 20 binary relations between these 5 roles: subject → object,
subject → implement, subject → year , subject → location, object → subject, etc.
For example, the facts that Hall discovered Phobos and Deimos and Kuiper
discovered Miranda and Nereid, are represented as follows:

discover_relsubject→object =
{(𝑒ℎ𝑎𝑙𝑙, 𝑒𝑝ℎ𝑜𝑏𝑜𝑠), (𝑒ℎ𝑎𝑙𝑙, 𝑒𝑑𝑒𝑖𝑚𝑜𝑠), (𝑒𝑘𝑢𝑖𝑝𝑒𝑟, 𝑒𝑚𝑖𝑟𝑎𝑛𝑑𝑎), (𝑒𝑘𝑢𝑖𝑝𝑒𝑟, 𝑒𝑛𝑒𝑟𝑒𝑖𝑑), etc . . .}

For every 𝑛-ary verb there are 𝑛2 − 𝑛 binary relations represented by the events
associated with that verb. Each binary relation can be converted to a function,
by “collecting”, into a set, all values in the codomain that are associated with
each value in the domain of the relation, and creating a pair consisting of the
value from the domain paired with that set. In 2016, Peelar called this induced
function the Function Defined by a Binary Relation (FDBR) [19]:

FDBR(rel) = {(𝑥, image𝑥) | (∃𝑒) (𝑥, 𝑒) ∈ rel & image𝑥 = {𝑦 | (𝑥, 𝑦) ∈ rel}}

For example, the function defined by the discover_relsubject→object relation above
is:

FDBR(discover_relsubject→object) =
{(𝑒ℎ𝑎𝑙𝑙, {𝑒𝑝ℎ𝑜𝑏𝑜𝑠, 𝑒𝑑𝑒𝑖𝑚𝑜𝑠}), (𝑒𝑘𝑢𝑖𝑝𝑒𝑟, {𝑒𝑚𝑖𝑟𝑎𝑛𝑑𝑎, 𝑒𝑛𝑒𝑟𝑒𝑖𝑑}), etc . . .}

In such functions, we shall refer to the first value in a pair as the “subject”
and the value in the second place as the “set of objects”. Consider the query
“who discovered phobos”: the function which is the denotation of “discovered”
computes FDBR(discover_relsubject→object) and then applies the function which
is the denotation of “phobos” to the set of objects in every pair (subj, objs)
which is a member of FDBR(discover_relsubject→object). For every pair which
returns a value of True, the subject of the pair is added to the result. The final
result of “discovered phobos” is a set of pairs, each consisting of every subject
which was mapped by FDBR(discover_relsubject→object) to a set of objects which
contains 𝑒𝑝ℎ𝑜𝑏𝑜𝑠. That is, every entity that discovered phobos paired with the
set of events which justify that entity being in the answer. The answer to this
example query includes 𝑒ℎ𝑎𝑙𝑙. Similarly, the query “who discovered a moon” is
processed analogously to the above, with the denotation of “a moon” being
applied to the set of objects in every pair in FDBR(discover_relsubject→object),
and if True, the associated subject is added to the result. Every entity that
discovered a moon is in the result.

6 Richard A. Frost and Shane Peelar

If no termphrase follows the transitive verb, all subjects of pairs that are in
FDBR(discover_relsubject→object) are returned as the answer. For example, the
answer to the query “who discovered” is the set of all entities who discovered
anything.

Denotation of transitive verbs with events In order to take advantage of
the extra knowledge represented by events, we modify the above so that the
denotation of a transitive verb is a function from a list of at most one termphrase
and a possibly empty list of PPs to a set of pairs of type (𝑒, evs) where 𝑒 is an
entity and evs is a set of events. The function first computes a discover relation
from subjects of discover events to those events:

discover_rel_evssubject = {(𝑒ℎ𝑎𝑙𝑙, 𝑒𝑣1), (𝑒ℎ𝑎𝑙𝑙, 𝑒𝑣2), (𝑒𝑘𝑢𝑖𝑝𝑒𝑟, 𝑒𝑣3), (𝑒𝑘𝑢𝑖𝑝𝑒𝑟, 𝑒𝑣4), etc . . .}

The FDBR of this binary relation is then computed:

FDBR(discover_rel_evssubject) = {(𝑒ℎ𝑎𝑙𝑙, {𝑒𝑣1, 𝑒𝑣2}), (𝑒𝑘𝑢𝑖𝑝𝑒𝑟, {𝑒𝑣3, 𝑒𝑣4}), etc . . .}

Consider the query “who discovered phobos”: the function which is the denotation
of “discovered” computes FDBR(discover_rel_evssubject) and then applies the
function which is the denotation of “phobos” to the set of objects of the events
in every pair (subj, evs) which is a member of
FDBR(discover_rel_evssubject). For every pair which returns True, the subject
and set of events is added to the resulting denotation. The final resulting de-
notation of “discovered phobos” is a set of pairs consisting of subjects which
were mapped by discover_rel_evssubject to a set of events whose objects contains
𝑒𝑝ℎ𝑜𝑏𝑜𝑠. The answer to this example query includes (𝑒ℎ𝑎𝑙𝑙, {𝑒𝑣1030}). Similarly,
the query “who discovered a moon” is processed analogously to the above, with
the denotation of “a moon” being applied to the set of objects from the set of
events in every pair in FDBR(discover_rel_evssubject), and if True, the pair is
added to the result. If no termphrase or PP follows the transitive verb, all pairs
in FDBR(discover_rel_evssubject) are returned as the answer . For example, the
answer to the query “who discovered” is the set of all entities who discovered
anything, paired with the set of events of type discovery in which they were the
subject.

Dealing with prepositional phrases We begin by noting that we treat
passive forms of verbs, such “discovered by hall” similarly to “discovered with
a telescope” [19]. Prepositional phrases such as “with a telescope” are treated
similarly to the method described in Section 3.3 except that the termphrase
following the preposition is applied to the set of entities that are extracted from
the set of events in the FDBR function, according to the role associated with
the preposition. The result is a “filtered” FDBR which is further filtered by
subsequent PPs. For example, consider the query:

“who discovered in 1948 and 1949 with a telescope” → kuiper
The calculation here involves computing FDBR(discover_rel_evssubject),

then filtering it with the denotation of “with a telescope”.

Title Suppressed Due to Excessive Length 7

Choosing the FDBR to compute The denotation of a verb, for exam-
ple “discover”, needs to know which FDBR to compute before PPs are ap-
plied. For example, the query “what was used to discover two moons” needs
FDBR(discover_rel_evsimplement), whereas “who discovered two moons” needs
FDBR(discover_rel_evssubject). In our approach, the choice is made depending
on the context in which the verb appears. The denotation of a transitive verb
contains the “active” and “passive” properties to be queried depending on the
verb voice, along with the event type that corresponds to the underlying relation.
The grammar determines whether a transitive verb is used in the active or passive
voice and selects the corresponding property in the denotation to form the domain
of the FDBR. In the above examples, when “used” is in the active voice, it selects
the “subject” property, but if it is in the passive voice, it selects the “implement”
property. In both cases, the “type” property of the events that the FDBR is built
from is “discover_ev”.

4 Quantifier Scope

We have integrated a Montague-like [8] compositional semantics with our own
version of event semantics. There has been much debate by linguists concerning
the viability of integrating compositional and event semantics, particularly with
respect to quantifier scope (see for example, Champollion [5] who argues that
analysis of quantifier scope does not pose any special problems in an event
semantic framework and presents an implementation of a quantificational event
semantics that combines with standard treatments of scope-taking expressions
in a well-behaved way. The following examples in subsection 4.1, which have
been tested with our interface, suggest that our approach returns appropriate
results for scope-ambiguous queries. In fact, the answer returned is exactly what
is expected if the queries are treated as having leftmost, outermost quantifier
scope. Below each query-answer pair, we briefly explain how our system computes
the answer.

4.1 Example Queries Illustrating Quantifier Scoping

a. every moon that orbits mars and was discovered with a telescope was discovered

by a person – True

The evaluation begins by retrieving all of the “moon” entities and then in-
tersecting this set with the set returned by evaluating ‖𝑜𝑟𝑏𝑖𝑡𝑠 𝑚𝑎𝑟𝑠‖, which
is obtained by use of the function f_orbitsubject→object from subjects to the
set of objects which they orbit. The function that is the denotation of “mars”
is then applied by the function denoted by “orbit” to all sets of objects that
are in the range of the function f_orbitsubject→object. This returns the set of
subjects that orbit Mars. Then, This set is intersected with the set of all
moons that were discovered with a telescope (which is computed using the
function f_discoverobject→implements).The set resulting from this intersection is
then passed as the first argument to the denotation of “every”. The second

8 Richard A. Frost and Shane Peelar

argument to ‖every‖ is the set obtained by evaluating the phrase “discovered
by a person” which is computed by use of the function f_discoverobject→subject
from objects discovered to subjects who discovered them. The function that is
the denotation of “a person” is applied by the function denoted by “discover” to
all sets of subjects that are in the range of the function f_discoverobject→subject
This returns the set of objects that were discovered by a person. ‖𝑒𝑣𝑒𝑟𝑦‖ applies
the subset operator to the two arguments and returns True if and only if the set
of objects ‖𝑚𝑜𝑜𝑛 𝑡ℎ𝑎𝑡 𝑜𝑟𝑏𝑖𝑡𝑠 𝑚𝑎𝑟𝑠 𝑎𝑛𝑑 𝑤𝑎𝑠 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎 𝑡𝑒𝑙𝑒𝑠𝑐𝑜𝑝𝑒‖ is a
subset of ‖𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛‖. In our triplestore, this is the case.

b. every moon that orbits mars and was discovered by a person was discovered with a

telescope – True

Similar explanation to that for query a.

c. every moon that orbits Neptune was discovered by a person or a team – True

Scoping does not require the person or the team to be the same for all discoveries of
the moons that orbit Neptune. ‖𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛 𝑜𝑟 𝑎 𝑡𝑒𝑎𝑚‖ returns every-
thing that was discovered by any person or any team. This set is tested by ‖𝑒𝑣𝑒𝑟𝑦‖
to see if it includes all of the entities returned by ‖𝑚𝑜𝑜𝑛 𝑡ℎ𝑎𝑡 𝑜𝑟𝑏𝑖𝑡𝑠 𝑁𝑒𝑝𝑡𝑢𝑛𝑒‖.

d. a telescope or voyager_2 was used to discover every moon that orbits Neptune –

False

No single telescope nor Voyager 2 was used to discover every moon that orbits
Neptune

e. every moon that orbits neptune was discovered with a telescope or voyager_2 –

True

Voyager 2 or at least one, not necessarily the same, telescope was used to discover
each of the moons that orbit Neptune.

f. every moon that was discovered with a telescope was discovered by hall – False

Some moons were discovered with a telescope but not discovered by Hall.

g. every moon that was discovered by hall was discovered with a telescope – True

Hall used a telescope in all of his discoveries of moons.
Our approach appears to be consistent with the “Scope Domain Principle”

described by Landman [14]. That is, all quantificational noun phrases must take
scope over the event argument. For example, in our semantics, the answer to the
query “hall discovered every moon” is computed by checking to see if, for every
moon 𝑚, there exists an event of type discovery, with subject Hall and object 𝑚.
Our approach does not compute the answer to “cumulative” readings of queries
such as “which moons were discovered by two telescopes(used simultaneously)”.

Title Suppressed Due to Excessive Length 9

4.2 Example Queries Illustrating the Scoping of Chained

Prepositional Phrases

The following examples illustrate how queries with chained PPs are answered.
It should be noted that Halimede, Laomedeia, Sao and Themisto are the only
moons that were discovered using two telescopes separately (see queries a to e)
and that Nicholson used two telescopes to discover a total of 4 moons, but did
not discover any one moon with two telescopes (see queries g to i).

a. which moons were discovered with two telescopes:
halimede laomedeia sao themisto

b. who used two telescopes to discover a moon:
nicholson science_team_18 science_team_2

c. who discovered sao: science_team_18
d. who discovered themisto: science_team_2
e. which moon was discovered by science_team_18 with two telescopes:

halimede laomedeia sao
f. what was used to discover sao:

blanco_telescope canada-france-hawaii_telescope
g. what did nicholson discover with two telescopes:

sinope lysithea carme ananke
h. which moon was discovered by nicholson with two telescopes: none
i. which moon was discovered by nicholson with one telescope:

ananke carme lysithea sinope
j. how was sinope discovered: refractor_telescope_2
k. how was carme discovered: hooker_telescope
l. how was ananke discovered: hooker_telescope

m. how was lysithea discovered: hooker_telescope
n. what did nicholson discover with one telescope: nothing
o. what did nicholson discover with a telescope:

sinope lysithea carme ananke

Since Nicholson used multiple telescopes to discover multiple objects, n) returns
nothing. On the other hand o) relaxes this restriction, yielding the expected
result (see Section 8).

5 Implementation

We built our query processor as an executable attribute grammar using the
X-SAIGA Haskell parser- combinator library package. The collect function which
converts a binary relation to an FDBR is one of the most compute intensive
parts of our implementation of the semantics. However, in Haskell, once a value
is computed, it can be made available for future use. We have developed an
algorithm to compute FDBR(rel) in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time, where 𝑛 is the number of
pairs in rel. Alternatively, the FDBR functions can be computed and stored in a
cache when the NLQI is offline. Our implementation is amenable to running on

10 Richard A. Frost and Shane Peelar

low power devices, enabling it for use with the Internet of Things. A version of
our query processor exists that can run on a common consumer network router as
a proof of concept for this application. The use of Haskell for the implementation
of our NLQI has many advantages, including:

1. Haskell’s “lazy” evaluation strategy of Haskell only computes values when
they are required, enabling parser combinator libraries to be built that
can handle highly ambiguous left-recursive grammars in polynomial time.
The accommodation of left recursive grammars simplifies the integration of
semantic and syntactic rules in the EAGs, enabling the query processor to
be highly modular and extensible.

2. The higher-order functional capability of Haskell allows the direct definition
of higher-order functions that are the denotations of some English words and
phrases. For example: termand 𝑠 𝑡 = (𝜆𝑣) 𝑠 𝑣 & 𝑡 𝑣

3. The ability to partially apply functions of 𝑛 arguments to 1 to 𝑛 arguments
allows the definition and manipulation of denotation of phrases such as “every
moon”, and “discover phobos”.

4. The availability of the hsparql [26] Haskell package enables a simple interface
between our semantic processor and SPARQL endpoints to our triplestores.

6 Extensibility

A contribution of this paper is to raise awareness of the importance of extensibility
of NLQIs to the semantic web. We use the term “extensibility” in the sense that it
is used in Software Engineering, meaning the extent to which the implementation
takes future growth into consideration, and a measure of the ability to extend
the NLQI and the level of effort required to implement the extension.

6.1 Design for extensibility

A number of design decisions facilitate future extension of our NLQI:

1. Our query processor is implemented as a highly-modular executable specifi-
cation of an attribute grammar (AG). AGs were introduced by Knuth [13]
and are widely used to define both the syntax and semantics of programming
languages. Each syntax rule has one or more attribute rules associated with
it. The attribute rules define how the value of synthesized and inherited
attributes of the non-terminal defined by the associated syntax rule are
computed from attribute values of the terminals and non-terminals that
appear on the right-hand side of the syntax rule. There is a close similarity
between AGs and Montague Grammars (MGs), although they were devel-
oped independently by a Computer Scientist and a linguist respectively.
An executable attribute grammar (EAG) is an AG whose defined language
processor is implemented in a programming language such that the program
code for the language processor closely resembles the textbook notation for
the AG defining the language to be processed. EAGs are ideally suited for
implementation of language interpreters for MGs.

Title Suppressed Due to Excessive Length 11

2. Our semantics is based on the highly modular and compositional semantics.
The similarity of MGs and AGs suggested to us that it should be comparatively
easy to implement a Montague-style natural-language query processor as an
executable attribute grammar.

3. The dictionary in the Haskell code to facilitate the addition of new words
and categories of words to the query language. Our NLQI Haskell code can
be accessed at:

http://speechweb2.cs.uwindsor.ca/solarman4/src/

The code contains a dictionary consisting of entries such as the following:

(“person”, Cnoun, [NOUNCLA_VAL $ get_members “person”])

Which defines the word “person” to be a common noun (cnoun) whose
meaning is a list of attributes, comprising one attribute of type NOUN-
CLA_VAL whose value is a list of entities extracted from the triplestore by
the get_members function which returns all entities that are subjects of
events of type member and whose object is a “person”. Our parser combina-
tors include a combinator that creates interpreters for different categories of
terminals. For example:

cnoun = memoize_terminals_from_dictionary Cnoun

The combinator memoize_terminals_from_dictionary scans the dictionary
and creates the interpreter cnoun (for the terminal category of common nouns)
by “orelsing” all of the basic interpreters that it constructs for words in the
first field of every triple in the dictionary that has the “constructor” Cnoun

in the second field. The list of attributes in the third field is integrated into
each basic interpreter constructed. The resulting interpreter for the syntactic
category is memoized so that its results can be reused in any subsequent
pass over the query string by the same interpreter. The query language can
be easily extended with new words and new categories of words by simply
adding new entries to the dictionary. Note that only bare names need to be
used in the dictionary, as the first part of the URI is added by the combinator
that makes the basic interpreter for that word.

4. Our EAG implementation is such that individual parsers can be applied to
phrases of English rather than whole queries. This allows us to define new
words in terms of existing phrases for which we have defined an interpreter.
For example:

discoverer = meaning_of nouncla “person who discovered something”

5. Construction of the interpreter as an EAG accommodates ambiguous and
left-recursive grammars greatly facilitates the extension of the query language
to include new constructs. When grammars are converted to non-left-recursive
form (which is often the case when modular top-down parsers are used) can
complicate the specification of semantic rules. For example, the specification
of the syntax and associated semantic rules for converting a bit string to its
decimal value is much easier if the grammar chosen is left recursive.

http://speechweb2.cs.uwindsor.ca/solarman4/src/

12 Richard A. Frost and Shane Peelar

6.2 Examples of extending the NLQI

We have given examples, in sub-section 6.1 of how we can add single words such
as “person” and “discoverer” to the query language by simply adding an entry to
the in-program dictionary. The query Language can also be easily extended with
new language constructs by adding new syntax rules to the EAG together with
their associated attribute rules. For example, suppose that we want to be able to
ask questions such as “tell me all that you know about hall discovering a moon
that orbits mars” The phrase “hall discovering a moon that orbits mars” could
be processed using the interpreter for questions which would return the set of two
events where Hall discovered Phobos and Deimos. The meaning of the phrase
“tell me all that you know about” could be designed so that, for each event, a
string could be generated: “hall discovered phobos with refractor_telescope_1
in 1987 at the us_naval_observatory” and also any other data that had been
added about 𝑒𝑣1030 Another type of question could be “who discovered which
moons”. The meaning of the word “which” could be changed temporarily to that
of “a” and the question “who discovered a moon” answered. The resulting FDBR
could be returned from the latter question and then used to generate pairs of
people and the list of moons they discovered as answer to the original query.

Adding superlatives and graded quantifiers The second contribution of
this paper is to recognize that each FDBR contains more information than
we have taken advantage of so far. For example, in computing the answer to
the query “who discovered every moon”. We consider each pair (subj, objs) in
FDBR(discover_relsubject→object) independently and apply the meaning of “every
moon” to the set objs in order to determine if the subj should be in the answer.
However, for a question such as “who discovered the most moons that orbit mars”
the whole of the FDBR needs to be processed so that the result contains the sub-
ject with the most events representing that subject discovering a moon that orbits
mars. This requires the addition of “the most” to the set of quantifiers and the
appropriate modification to the denotation of transitive verbs to take advantage of
the information available in the appropriate FDBR. A similar modification could
be made to accommodate queries containing the words “earliest” “most recently”,
using FDBR(discover_relobject→year) etc., and queries such as “which telescope
was used to discover most moons” using FDBR(discover_rel implement→object) ,
etc.

7 Related Work

Orakel [6] is a portable NLQI which uses a Montague-like grammar and a lambda-
calculus semantics to analyze queries. Our approach is similar to Orakel in this
respect. However, in Orakel, queries are translated to an expression of first-
order logic enriched with predicates for query and numerical operators. These
expressions are translated to SPARQL or F-Logic. Orakel supports negation,
limited quantification, and simple prepositional phrases. Portability is achieved

Title Suppressed Due to Excessive Length 13

by having the lexicon customized by people with limited linguistic expertise. It
is claimed that Orakel can accommodate 𝑛-ary relations with 𝑛 ≥ 2. However,
no examples are given of such queries being translated to SPARQL.

YAGO2 [11] is a semantic knowledge base containing reified triples extracted
from Wikipedia, WordNet and GeoNames, representing nearly 0.5 billion facts.
Reification is achieved by tagging each triple with an identifier. However, this
is hidden from the user who views the knowledge base as a set of “SPOTL”
quintuples, where T is for time and L for location. The SPOTLX query language
is used to access YAGO2. Although SPOTLX is a formal language, it is signif-
icantly easier to use than is SPARQL for queries involving time and location
(which in SPARQL would require many joins for reified triplestores). SPOTLX
does not accommodate quantification or negation, but can handle queries with
prepositional aspects involving time and location. However, no mention is made
of chained complex PPs.

Alexandria [25] is an event-based triplestore, with 160 million triples (repre-
senting 13 million n-ary relationships), derived from FreeBase. Alexandria uses a
neo-Davidsonian [17] event-based semantics. In Alexandria, queries are parsed to
a syntactic dependency graph, mapped to a semantic description, and translated
to SPARQL queries containing named graphs. Queries with simple PPs are
accommodated. However, no mention is made of negation, nested quantification,
or chained complex PPs.

The systems referred to above have made substantial progress in handling
ambiguity and matching NL query words to URIs. However, they appear to
have hit a roadblock with respect to natural-language coverage. Most can handle
simple PPs such as in “who was born in 1918” but none can handle chained
complex PPs, containing quantifiers, such as “in us_naval_observatory in 1877
or 1860”. There appear to be three reasons for this: 1) those NLQIs that were
designed for non-reified triplestores, such as DBpedia, do not appear to be
easily extended to reified triplestores that are necessary for complex PPs. 2)
those NLQIs that were designed for non-reified or reified triplestores, and which
translate the NL queries to SPARQL, suffer from the fact that SPARQL was
originally designed for non-reified triplestores. Although SPARQL was extended
to handle “named graphs” [3] which support a limited form of reification but
appear to be suitable only for provenance data. SPARQL was also extended
to accommodate triple identifiers. 3) The YAGO2 system is the only system
that has an NLQI for a reified triplestore that does not translate to SPARQL.
However, YAGO2 can only accommodate PPs related to time and location and
does not support quantification.

Blackburn and Bos [2] implemented lambda calculus with respect to natural
language, in Prolog, and [22] have extensively discussed such implementation
in Haskell. Implementation of the lambda calculus for open-domain question
answering has been investigated by [1]. The SQUALL query language [9, 10]
is a controlled natural language (CNL) for querying and updating triplestores
represented as RDF graphs. SQUALL can return answers directly from remote
triplestores, as we do, using simple SPARQL-endpoint triple retrieval commands.

14 Richard A. Frost and Shane Peelar

It can also be translated to SPARQL queries which can be processed by SPARQL
endpoints for faster computation of answers. SQUALL syntax and semantics are
defined as a Montague Grammar facilitating the translation to SPARQL.SQUALL
can handle quantification, aggregation, some forms of negation, and chained
complex prepositional phrases. It is also written in a functional language. However,
some queries in SQUALL require the use of variables and low-level relational
algebraic operators (see for example, the queries on page 118 of [10]).

8 Concluding Comments

We have presented a compositional event semantics for computing the answers
to English questions, and have shown how it can be used to query a remote
event-based triplestore. We are currently working on three enhancements: 1)
scaling up the NLQI to work with triplestores containing millions of events, and
2) increasing the coverage of English to accommodate negation, fusion events
where roles can be assigned more than one value, and 3) modifying our approach
of PPs to more consistently handle chained PPs.

Extensible NLQIs are necessary if the potential of the semantic web is realized
and new data is added to existing triplestores by people who may not have been
involved in the creation of those triplestores. We hope that other researchers
who are familiar with Haskell will download and experiment with the software
that we have developed; all of which is available through the links that we have
provided. Our event-based triplestore is also available for remote access at from
the URL links that we have given.

Our semantics could be easily extended accommodate very simple negation
as in the query “no moon orbits two planets”. However, the query “which person
orbits no moons?” would not return the correct answer. The reason is that list
returned by evaluating the denotation corresponding to “orbits no moons” would
only contain entities that orbits something but not a moon. It would not contain
entities that orbit nothing. This problem is related to how the “closed world
assumption” is implemented. To solve tis problem, we will begin by investigating
the methods used in the experimental NLQIs Orakel [6], PANTO [24], Pythia
[21], and TBSL [12]. We shall also consider theoretical computational linguistic
approaches for dealing with negation and quantification in event-based semantics,
e.g. [4].

In this paper, we have not addressed the problems that result from the user’s
lack of knowledge of the URIs used in the triplestores. Significant progress has
been made by others, e.g. [23], in tackling this problem.

Also, we have not considered how our semantics can be automatically tailored
for a particular triplestore. We shall begin by considering how Aqualog [16],
PowerAqua [15] and Orakel [6] achieve portability with respect to the different
ontologies used in different triplestores.

It should be noted that our current treatment of PPs is linguistically naive and
suffers from problems with entailment (deriving logical consequences), as discussed
by Partee [18], when certain kinds of prepositional or adverbial phrases are

Title Suppressed Due to Excessive Length 15

chained together. However, our proposed approach will accommodate many types
of queries correctly, and the problem with entailment, which is also problematic
for all existing triplestore NLQIs, will also be investigated in future work.

Acknowledgments

This research was funded by a grant from NSERC of Canada.

References

1. Ahn, K., Bos, J., Kor, D., Nissim, M., Webber, B.L., Curran, J.R.: Question

answering with qed at trec 2005. In: TREC (2005)

2. Blackburn, P., Bos, J.: Representation and inference for natural language. A first

course in computational semantics. CSLI (2005)

3. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.

In: proc. of the 14th int. conf. on World Wide Web. pp. 613–622. ACM (2005)

4. Champollion, L.: Quantification in event semantics. In: Talk given at the 6th int.

symp. of cogn., Logic and commun. (2010)

5. Champollion, L.: The interaction of compositional semantics and event semantics.

Linguistics and Philosophy 38(1), 31–66 (2015)

6. Cimiano, P., Haase, P., Heizmann, J.: Porting natural language interfaces between

domains: an experimental user study with the orakel system. In: Proc. 12th Intnl.

Conf. on intell. User Interfaces. pp. 180–189. ACM (2007)

7. Davidson, D., Harman, G.: Semantics of natural language, vol. 40. Springer Science

& Business Media (2012)

8. Dowty, D., Wall, R., Peters, S.: Introduction to Montague Semantics. D. Reidel

Publishing Company, Dordrecht, Boston, Lancaster, Tokyo (1981)

9. Ferre, S.: Squall: A controlled natural language for querying and updating rdf

graphs. In: proc. of CNL 2012. pp. 11–25. LNCS 7427 (2012)

10. Ferré, S.: Squall: a controlled natural language as expressive as sparql 1.1. In: Inter-

national Conference on Application of Natural Language to Information Systems.

pp. 114–125. Springer (2013)

11. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: A spatially and

temporally enhanced knowledge base from wikipedia. Artificial intell. 194, 28–61

(2013)

12. Höffner, K., Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D.,

Cimiano, P.: User interface for a template based question answering system. In:

Knowledge Engineering and the Semantic Web, pp. 258–264. Springer (2013)

13. Knuth, D.E.: Semantics of context-free languages. Mathematical systems theory

2(2), 127–145 (1968)

14. Landman, F.: Plurality. Handbook of Contemporary Semantics. Ph.D. thesis, ed. S.

Lappin, 425- 457. Blackwell: Oxford (1996)

15. Lopez, V., Fernández, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in

querying and exploring the semantic web. Semantic Web 3(3), 249–265 (2012)

16. Lopez, V., Uren, V., Motta, E., Pasin, M.: Aqualog: An ontology-driven question

answering system for organizational semantic intranets. Web semant.: sci., serv.

and Agents on the World Wide Web 5(2), 72–105 (2007)

17. Parsons, T.: Events in the Semantics of English, vol. 5. Cambridge, Ma: MIT Press

(1990)

16 Richard A. Frost and Shane Peelar

18. Partee, B.H.: Formal semantics. In: Lectures at a workshop in Moscow. http://people.

umass. edu/partee/RGGU_2005/RGGU05_formal_semantics. htm (2005)

19. Peelar, S.: Accommodating prepositional phrases in a highly modular natural

language query interface to semantic web triplestores using a novel event-based

denotational semantics for English and a set of functional parser combinators.

Master’s thesis, University of Windsor (Canada) (2016)

20. Rothstein, S.: Structuring events: A study in the semantics of aspect, vol. 5. John

Wiley & Sons (2008)

21. Unger, C., Cimiano, P.: Pythia: Compositional meaning construction for ontology-

based question answering on the semantic web. In: NLDB 2011, LNCS 6716. pp.

153–160 (2011)

22. Van Eijck, J., Unger, C.: Computational semantics with functional programming.

Cambridge University Press (2010)

23. Walter, S., Unger, C., Cimiano, P., Bär, D.: Evaluation of a layered approach

to question answering over linked data. In: The Semantic Web–ISWC 2012. pp.

362–374. Springer (2012)

24. Wang, C., Xiong, M., Zhou, Q., Yu, Y.: Panto: A portable natural language interface

to ontologies. In: The Semantic Web: Research and appl., pp. 473–487. Springer

(2007)

25. Wendt, M., Gerlach, M., Düwiger, H.: Linguistic modeling of linked open data for

question answering. proc. of interact. with Linked Data (ILD 2012)[37] pp. 75–86

(2012)

26. Wheeler, J.: The hsparql package. In: The Haskell Hackage Repository.

http://hackage.haskell.org/package/hsparql-0.1.2 (2009)

All links were last followed on April 3 2018.

	An Extensible Natural-Language Query Interface to an Event-Based Semantic Web Triplestore

