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Abstract. Understanding large, structured documents like scholarly ar-
ticles, requests for proposals or business reports is a complex and difficult
task. It involves discovering a document’s overall purpose and subject(s),
understanding the function and meaning of its sections and subsections,
and extracting low level entities and facts about them. In this research,
we present a deep learning based document ontology to capture the gen-
eral purpose semantic structure and domain specific semantic concepts
from a large number of academic articles and business documents. The
ontology is able to describe different functional parts of a document,
which can be used to enhance semantic indexing for a better understand-
ing by human beings and machines. We evaluate our models through
extensive experiments on datasets of scholarly articles from arxiv and
Request for Proposal documents.

Keywords: Document Ontology · Deep Learning · Semantic Annota-
tion.

1 Introduction

Understanding the semantic structure of large multi-themed documents is a chal-
lenging task because these documents are composed of a variety of functional
sections discussing diverse topics. Some documents may have a table of contents,
whereas others may not. Even if a table of contents is present, mapping it across
the document is not a straightforward process. Section and subsection headers
may or may not be present in the table of contents and if they are present, they
are often inconsistent across documents even within the same vertical domain.

Identifying a semantic organization of sections, subsections and sub-subsections
of documents across all vertical domains is not the same. For example, a busi-
ness document has a completely different structure from a user manual. Schol-
arly research articles from different disciplines, such as computer science and
social science, may have different structures. For example, social science articles
usually have methodology sections whereas computer science articles often have
approach sections. Semantically these two section types share the same purpose
and function, even though their details may be quite different.

Our objective is to develop and use a document ontology to describe dif-
ferent functional parts of academic and business documents. For example, the
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introduction section of a research paper describes the problem statement, scope
and context by explaining the significance of the research challenge. The results
section presents and illustrates research findings with the help of experiments,
graphs and tables. Finally, the conclusion section typically restates the paper’s
contribution and the most important ideas that support the main argument of
the paper.

Creating such an ontology involves significant human understanding and
analysis of a large number of documents from any vertical domain. It also re-
quires a common understanding of the structure of information presented in
those documents. The common concepts across all documents should be clearly
visible to the ontology developers. The developers should also understand the
hierarchy of the sections, subsection and sub-subsections of a document. Hence
the process to get each relationship among different concepts of a document is
time consuming. Moreover, some concepts may be overlooked while analyzing
the documents.

We have developed a deep learning based system to automatically deter-
mine ontology concepts and properties from a large number of documents of
the same vertical domain. Our approaches are powerful, yet simple, to capture
the most important semantic concepts from academic articles and request for
proposal (RFP) documents. In the course of out this work, we experimented
with and evaluated several state of the art technologies, including Variational
Autoencoders (VAE) [14], Convolutional Autoencoders (CAE) [13, 27] and LDA
[4].

The ontology can be used for annotating different sections of a document,
which helps to understand its semantic structure. It can also be useful for com-
prehending and modeling types and subtypes of documents. The results can
enable the reuse of domain knowledge along with text analysis, content based
question answering and semantic document indexing.

2 Related Work

Over the last few years, several ontologies have been developed to describe a
document’s semantic structure and annotate it with a semantic label. Some of
them were designed for academic articles and others deal with other type of
documents.

Ciccarese et al. developed an Ontology of Rhetorical Blocks (ORB) [5] to
capture the coarse-grained rhetorical structure of a scientific article. ORB can
be used to add semantics to a new article and to annotate an existing article.
It divides a scientific article into three components: header, body and tail. The
header captures meta-information about the article, such as it’s title, authors,
affiliations, publishing venue, and abstract. The body adopts the IMRAD struc-
ture from [24] and contains introduction, methods, results, and discussion. The
tail provides additional meta-information about the paper, such as acknowledg-
ments and references.

Peroni et al. introduced the Semantic Publishing and Referencing (SPAR)
Ontologies [18] to create comprehensive machine-readable RDF meta-data for
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the entire set of characteristics of a document from semantic publishing. It is used
to describe different components of books and journal articles, such as citations
and bibliographic records. It has eight ontologies to cover all of the components
for the creation of RDF meta-data (DoCO, FaBiO, CiTO, PRO, PSO, C4O,
BiRO and PWO). DoCO, the document components ontology [23, 6], provides
a general-purpose structured vocabulary of document elements to describe both
structural and rhetorical document components in RDF. This ontology can be
used to annotate and retrieve document components of an academic article based
on its structure and content. Examples of DoCO classes are chapter, list, preface,
table and figure. DoCO also inherits another two ontologies: Discourse Elements
Ontology (Deo) [7] and Document Structural Patterns Ontology [3].

Shotton et al. developed the Deo ontology to study different corpora of sci-
entific literature on different topics and publishers. It presents structured vocab-
ulary for rhetorical elements within an academic document. The major classes
of Deo are introduction, background, motivation, model, related work, methods,
results, conclusion, and acknowledgements. This ontology is very intriguing and
relevant to our semantic annotation.

Monti et al. developed a system to reconstruct an electronic medical docu-
ment with semantic annotation [17]. They divided the process into three steps.
In the first, they classified documents in one of the categories specified in the
Consolidated CDA (C-CDA) standard [8], using PDFBox [28] to extract text
from CDA standard medical documents. Later, they split the document into
paragraphs using the typographical features available in the PDF file. Finally,
they identified key concepts from the document and mapped them to the most
appropriate medical ontology. However, the paper lacks technical detail and an
analysis of the results.

A Contextual Long short-term memory (CLSTM) [12] was used by Ghosh et
al. for sentence topic prediction [10]. Lopyrev et al. trained an encoder-decoder
RNN with LSTM for generating news headlines using the texts of news articles
from the Gigaword dataset [15]. Srivastava et al. introduced a type of Deep
Boltzmann Machine (DBM) for extracting distributed semantic representations
from a large unstructured collection of documents [25]. They used the Over-
Replicated Softmax model for document retrieval and classification.

Tuarob et al. described an algorithm to automatically build a semantic hier-
archical structure of sections for a scholarly paper [26]. They defined a section as
the pair of the section header and its textual content. They employed a rule-based
approach to recognize sections from scholarly articles and applied a simple set of
heuristics that built a hierarchy of sections from the extracted section headers.

Most of the ontologies mentioned above are developed either manually or do
not provide any technical details. Our ontology is an enhancement of Deo[7],
developed using deep learning and embedding vector clustering to choose classes
and the properties based on more than 1 million academic articles and a few
hundred thousand business documents. Our approach is able to capture semantic
meaning of different functional parts of a document by semantic annotation and
semantic concept extraction, as described in our earlier research [19].
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Fig. 1: Overall work flow of our system

3 Data Type and Document Category

In this research, we focus on extracting information from PDF documents. The
motivation for focusing on PDF documents is the popularity and portability
of PDF over different types of devices and operating systems. But automatic
post-processing of a PDF document is not an easy task, since the objective
of PDF rendering tools is not to support post-processing, but rather better
visualization of the content. The rendering tools allow numerous equally valid
ways of producing the same visual result and therefore no structure can reliably
be derived from how the text operators are used. For experimental purposes, we
choose PDF documents from academic articles and business documents, such
as arxiv and RFP domains. We use a dataset which contains 1, 121, 363 arxiv
articles during or before 2016 released by Rahman et al.[20].

4 System Architecture and Technical Approach

This section describes the overall work flow of our system and the approach used
for each of its parts.

4.1 System Architecture

The pipeline of our system is shown in Fig. 1. The top-level, subsection and sub-
subsection headers are retrieved from all the arxiv articles released by Rahman
et al. [20]. After preprocessing, the headers are passed into Autoencoder. The
embedding vector is dumped from the Autoencoder, which is passed through a
t-SNE [16] dimensionality reduction. A k-mean [11] clustering algorithm is then
applied on the reduced embedding vector. After preprocessing, a count based
approach is also applied to retrieve all of the unique headers based on count.
We also use our previous system [19] to get semantic sections, which are passed
through LDA topic models to get domain specific semantic terms or concepts
for each of the individual sections.

4.2 Technical Approach

In order to design a document ontology, we created a list of classes and properties
by following the count-based and cluster-based approaches. In the count-based
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Table 1: Classes for Ontology
Document Type Classes/Concepts

Academic Article
Introduction, Conclusion, Discussion, References, Acknowledgments, Results, Abstract,
Appendix, Related Work, Experiments, Methodology, Proof of Theorem, Evaluation,
Future Work, Datasets, Contribution, Background, Implementation, Approach, Preliminary

RFP
Introduction, Requirement, General Information, Conclusion, Statement of Work,
Contract Administration, Appendix, Background, Deliverable, Contract Clauses

Fig. 2: Variational Autoencoder for Ontology Class Selection

approach, we first took all section headers, including top-level, subsection and
sub-subsection which are basically headers from the table of contents of all arxiv
articles. Then we removed numbers and dots from the beginning of each header,
and generated the frequency for each header and sorted them. Based on a fre-
quency threshold, we considered the section headers, which might be a class or
concept for our ontology.

For the cluster-based approach, we generated all section headers from the
table of contents of all arxiv articles and developed a Variational Autoencoder
and Convolutional Autoencoder to represent each of the section headers in a
sentence level embedding, which is termed “header embedding” in our system.
We applied Autoencoder to learn the header embedding in an unsupervised fash-
ion, in order to produce good quality clusters. We then dumped the embedding
vector from the bottleneck layer. Since this vector has high dimensionality and
clustering high-dimensional data often does not work well, we applied the t-SNE
dimensionality reduction technique to reduce the dimensions of the embedding
vector to just two dimensions. After dimensionality reduction, we used k-means
clustering on the embedding vector to cluster the header embedding into se-
mantically meaningful groups. We analyzed all clusters and all section headers
from the count-based approach and came up with the classes or general purpose
semantic concepts to design our document ontology.

We also applied a similar approach for section headers from RFP documents.
To understand the sections of an RFP, we read [1] and discussed with experts
from RedShred [2]. Table 1 shows classes from arxiv articles and RFPs, which
were used to design a simple document ontology. The detailed descriptions are
given below.

Variational Autoencoder A variational autoencoder is a type of autoen-
coder that learns latent variable models [9] for the input data. Instead of learning
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Fig. 3: Convolutional Autoencoder for Ontology Class Selection

an arbitrary function, the autoencoder learns the parameters of a probability dis-
tribution of the input data. The encoder turns the input data into two parameters
in a latent space, which are noted as z̄ and z log σ. Then, randomly, a similar
data point, z is selected from the latent normal distribution using Equation 1.

z = z̄ + ez log σ ∗ ε (1)

A final decoder maps these latent space points back to the original input data.
The architecture of our VAE is given in Fig. 2.

Convolutional Autoencoder A convolutional autoencoder is an autoen-
coder that employs a convolutional network to learn the parameters in an unsu-
pervised way. Since our input is text, we use a Conv1D layer for both convolu-
tional and deconvolutional parts of the network. The input text is converted into
a one-hot encoding, which is passed into the embedding layer. Before encoding,
we have Conv1D and MaxPooling1D layers with a ReLu activation function.
The decoder starts with the deconvolution followed by an UpSampling1D layer.
At the end, the decoder reproduces the original text. The architecture of the
CAE is given in Fig. 3.

Document Ontology After getting the classes from an analysis of the count-
and cluster-based approaches, we designed an ontology for our input documents.
The classes represent general purpose semantic concepts in our ontology. We
also analyzed cluster visualization to get properties and relations among classes.
Detailed results are included in Section 5. Fig. 4 shows our simple document
ontology.

The document ontology includes classes that describe concepts induced from
both arxiv academic articles and RFP documents. The top level “Document”
class has two subclasses: “Academic Article” and “RFP”. The Document class
has “Category” that describes the type of document, such as Computer Sci-
ence, Mathematics, Social Science, Networking, Biomedical and Software arti-
cles/RFPs. Both Academic articles and RFPs have contents, which are sections.
These sections are the classes of different semantic concepts in a document. Both
Academic articles and RFPs share some concepts, such as “Introduction”, “Con-
clusion” and “Background”. They also have their own concepts. For example,
“Approach” and “Results” are available in Academic Articles whereas RFP has
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Fig. 4: The upper level of our document ontology, with rectangles representing
classes and ovals properties. Additional classes are mentioned in Table 1.

“ContractClauses” and “Deliverable” concepts/classes. Due to space constraint,
the classes are shown in Table 1.

Each of the classes/concepts has two properties “SemanticTerms” and “Con-
tent” which are represented by the relationships “hasSemanticTerms” and “has-
Content”. The data type for these two properties is String. The “hasSeman-
ticTerms” property captures semantic topics applying Latent Dirichlet Alloca-
tion (LDA) to each section. Some concepts may have part, which is represented
by a relationship “hasPart”. For example, a concept “Results” has another sub-
concept “Experiments”. Some of the concepts may be similar to another con-
cepts, which is shown by a relationship “isSimilarTo”. For example “Approach”
and “Methodology” are two similar concepts.

Semantic Concepts using LDA We used Latent Dirichlet Allocation (LDA)
[4] to find domain-specific semantic concepts from a section. LDA is a generative
topic model that is used to understand the hidden structure of a collection of
documents. In an LDA model, each document has a mixture of various topics
with a probability distribution. Again, each topic is a distribution of words. Us-
ing Gensim [22, 21], we trained an LDA topic model on a set of semantically
divided sections. The model is used to predict the topics for any text section. A
few terms that have the highest probability values of the predicted topics, are
used as domain specific semantic concepts, or terms, for a given section. These
semantic concepts are also used as property values in the document ontology.

5 Experiments and Results

In this section, we discuss the experimental setup followed by the detailed pro-
cedures. We also describe the results and the findings of each experiment and
illustrate the results using comparative analysis.

5.1 Dataset

Using the dataset released by Rahman and Finin [20], we retrieved section head-
ers from table of contents of all arxiv articles and applied some heuristics to
remove unwanted text from the headers (e.g., numbers and dots) and down-
cased the text. The total number of unique section headers in our collection was
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(a) VAE for arXiv: Input Length 15 (b) VAE for arXiv: Input Length 20

(c) CAE for arXiv: Input Length 15 (d) VAE for RFP
Fig. 5: t-SNE Visualization of Embedding Matrix Clusters

3, 364, 668 for all categories of arxiv articles. We used these section headers to
get classes or concepts for ontology design as explained in Section 4. We also
retrieved section headers from only Computer Science articles. After applying a
similar approach, we found 666, 877 unique section headers from Computer Sci-
ence articles. The experiments and results for all categories, as well as Computer
Science, are described below.

5.2 Experiments on the arxiv Dataset

As described in Section 4, we trained a VAE model to learn the header embedding
for ontology design. We clustered the header embedding matrix into semantically
meaningful groups and identified different classes for ontology. The VAE was
trained with different configurations and hyperparameters to achieve the best
results. We experimented with different input lengths, such as 10, 15 and 20
word length section headers. All section headers were converted into a multi-
level one-hot vector.

We used 100 embedding dimensions, 100 hidden layers and 1.0 ε to learn
latent variables. The one-hot vector was the input to the network, which was
followed by an embedding layer with ReLu activation function. Then we had
a dense layer to capture input features in a latent space. The model parame-
ters were trained using two loss functions, which were a reconstruction loss to
force the decoded output to match with the initial inputs, and a KL divergence
between the learned latent and prior distributions. The decoder was used with
a sigmoid activation function and the model was compiled with an RMSprop
optimizer and KL divergence loss function.

We also trained a CAE model as described earlier and experimented with dif-
ferent hyperparameters. The model was trained with a sigmoid activation func-
tion, binary crossentropy loss function, and adam optimizer. We also dumped
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(a) For VAE (b) For CAE
Fig. 6: Validation loss

and clustered the embedding matrix to get semantically meaningful header
groups.

Results and Evaluation Both the VAE and CAE models were trained in an
unsupervised way to capture the semantic meaning of each section header. The
outputs of the bottleneck layer were dumped and clustered after t-SNE dimen-
sionality reduction. Figure 5a shows the visualization of k-means clustering with
k = 50 and inputlength = 15 for VAE embedding after t-SNE dimensionality
reduction. Similar visualization with inputlength = 20 is shown in Fig. 5b. After
analyzing both the visualizations, we observed that VAE models learned very
well and were able to capture similar section headers together. We noticed that
semantically similar section headers were plotted nearby. We also realized that
semantically similar section headers were constructed gradually from one concept
to another. For example, we detected a pattern in the graph where a sequence
of concepts from “methods” gradually moved to “data construction”, “results”,
“discussion”, “remarks” and “conclusion”. From this analysis, we could infer
that VAE learned concepts over section headers in a semantic pattern. From the
analysis and visualization of VAE, we found that the VAE models were capable
of learning a manifold in the section header embeddings. This manifold can be
used for computing semantically similar concepts in our ontology.

Fig. 5c shows the clustering visualization of the embedding matrix generated
by the CAE. After analyzing the cluster visualization, we observed that CAE
models were not as good as VAE models. We also noticed that CAE models were
not capable of learning a manifold in our dataset.

We achieved the best validation loss of 0.0947 for the VAE model and 0.1574
for the CAE model. Fig. 6a and 6b show the validation losses over number of
epochs for the VAE and CAE models, respectively. After analyzing these losses,
we observed that VAE loss was steady after 600 epochs but that the CAE loss was
oscillating after 20 epochs. This suggests that the VAE model performs better
than the CAE model for our dataset. Since we achieved a better performance
for VAE architecture on our dataset, we also trained VAE models for section
headers from Computer Science articles, achieving performance metrics similar
to those for all arxiv articles.

5.3 Experiment on RFP Dataset

We leveraged our existing collaboration with RedShred [2] to get a wide range
of RFPs for our experiments. We trained VAE models for section headers from
RFP documents. Due to a fewer number of section headers collected from RFP
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Table 2: Comparative analysis of LDA models for semantic concepts
arXiv Category Word based LDA Bigram based LDA Phrase based LDA

Mathematics - Algebraic Topology,
Mathematics - Combinatorics

algebra, lie, maps,
element and metric

half plane, complex plane,
real axis, rational functions
and unit disk

recent, paper is, theoretical,
framework, and developed

Nuclear Theory
phase, spin, magnetic,
particle and momentum

form factor, matrix elements,
heavy ion, transverse
momentum and u’energy loss

scattering, quark, momentum,
neutron move and gcd

Computer Science - Computer Vision
and Pattern Recognition

network, performance,
error, channel and average

neural networks, machine
learning, loss function,
training data and deep learning

learning, deep, layers, image
and machine learning

Mathematical Physics
quantum, entropy,
asymptotic, boundary and
classical

dx dx, initial data, unique
solution, positive constant
and uniformly bounded

stochastic, the process of,
convergence rate, diffusion
rate and walk

Astrophysics - Solar and
Stellar Astrophysics

stars, emission,
gas, stellar and velocity

active region, flux rope,
magnetic reconnection,
model set and solar cycle

magnetic ray, the magnetic,
plasma, shock and rays

documents, we obtained different patterns, where most of the section headers
were scattered all over the embedding space. Fig. 5d shows the embedding vi-
sualization for RFP documents. It is interesting to notice that the VAE models
for the RFP dataset are also capable of learning manifold, which can be used
for calculating similar concepts.

6 Domain Specific Semantic Concepts using LDA

As described in Section 4, we trained an LDA model using the divided sections
generated from arxiv articles by the system developed in our earlier work [19].
The total number of training and test sections for the LDA were 128, 505 and
11, 633, respectively. We applied different experimental approaches using word,
phrase and bigram dictionaries. The word-based dictionary contains only uni-
gram terms whereas the bigram dictionary has only bigram terms. The phrase-
based dictionary contains combination of unigram, bigram and trigram terms.
All three dictionaries were developed from the training dataset by ignoring terms
that appeared in less than 20 sections or in more than 10% of the sections of the
whole training dataset. The final dictionary size, after filtering, was 100, 000. Dif-
ferent LDA models were trained based on various number of topics and passes.
We ran the trained model to identify a topic for any section, which was used
to retrieve top terms with the highest probability. The terms with the highest
probability were used as a domain specific semantic concepts for a section.

For the evaluation, we loaded the trained LDA models and generated do-
main specific semantic concepts from 100 arxiv abstracts, where we knew the
categories of the articles. We analyzed their categories and semantic terms. We
noticed a very interesting correlation between the arxiv category and the seman-
tic terms from LDA topic models, finding that most of the top semantic terms
were strongly co-related to their original arxiv categories. A comparative anal-
ysis is shown in Table 2. After analysis of the results, we noticed that a bigram
LDA model was more meaningful than either of the other two models.

7 Conclusion

Semantic annotation can be described as a technique of enhancing a document
with automatic annotations that provide a human-understandable way to rep-
resent a document’s meaning. It also describes the document in such a way that
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the document is understandable to a machine. Using our developed ontology, we
built a system to annotate a PDF document with human understandable seman-
tic concepts from the ontology. The system, along with the research components
and ontology, will be available soon1. In this research, we have presented Varia-
tional and Convolutional Autoencoders which capture general purpose semantic
structure and different LDA models for domain specific semantic concept extrac-
tion from low level representation of large documents. Our approaches are able
to detect semantic concepts and properties from a large number of academic and
business documents in an unsupervised way.
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