
On Mining Distances in Large-Scale
Dynamic Graphs

Serafino Cicerone, Mattia D’Emidio, Daniele Frigioni

Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Via Vetoio, I–67100, L’Aquila, Italy.

{serafino.cicerone, mattia.demidio, daniele.frigioni}@univaq.it

Abstract. Applications relying on processing large-scale graphs have
experienced an exponential diffusion in the recent past. In this domain,
mining shortest-path relationships is one of the most basic primitives.
Classic approaches fail at being practical when graphs are very large in
size, hence in the last few years there has been an increasing demand for
more and more efficient methods to implement this fundamental feature.
Currently, computing a 2-hop cover labeling is considered the best ap-
proach in this sense. Its main limit is not being suited for in dynamic
scenarios, i.e. when the graph can undergo changes over time. Few solu-
tions have been proposed for dynamic 2-hop cover labelings. We overview
these solutions and survey some recent developments and open problems.

1 Introduction

Mining shortest-path relationships is considered a fundamental operation on
graph data, as it is a building block of some of the most important applications in
modern networked systems, e.g. social networks analysis [10], route planning [9],
intelligent transport systems [3]. Of particular relevance is the problem of mining
distances (weights of shortest paths) since this information can be exploited for
a variety of prominent purposes, e.g. community detection or web analytics.

Baseline methods for answering to distance queries are Breadth First Search
(BFS) for unweighted graphs, and Dijkstra’s algorithm for weighted ones. These
methods yield unsustainable query times in the large-scale graphs arising from
the mentioned applications. For this reason, many smarter approaches have been
proposed (e.g., [7,9]), adopting the common strategy of preprocessing the graph
to speed-up the query phase. Among them, the 2-hop cover labeling is based on
the idea of representing the shortest paths of a graph as the concatenation at an
intermediate so-called hub node of the two shortest paths emanating from the
corresponding endpoints. The label at each node contains the length of a shortest
path towards each hub and, to retrieve the distance between two nodes, it suffices
to join their labels and find a common hub minimizing the sum of the two
distances. The difficult point here is to find a small set of hubs covering a shortest
path for each pair of nodes in the graph, since in this way the corresponding
labeling is compact. Indeed, finding a minimum-size set of hubs is NP-hard [4].

2 S. Cicerone, M. D’Emidio, D. Frigioni

Nevertheless, the 2-hop cover labeling is considered the best scheme in prac-
tice, since: i) it is general (it can be applied to all kinds of graphs [8,9]); ii) even
in billion-nodes networks, it combines extremely low query times with afford-
able space overhead and reasonable preprocessing effort [1]; iii) several practical
heuristic/approximation algorithms for computing it are known [4,9]. A further
level of complexity is that real-world networks are dynamic and every time the
network is subject to an update (e.g., an edge removal), the preprocessed data
must be updated to keep queries correct. Preprocessing the graph from scratch
after an update is not a reasonable strategy, as it requires large amounts of
computational time [8]. In the recent past, researchers have worked to adapt
known solutions to function in dynamic scenarios [2,7,8], i.e. to devise dynamic
algorithms able to update the preprocessed data to reflect graph changes.

In particular, in [2] an incremental algorithm for 2-hop cover labelings under
edge additions and edge weight decreases only is introduced. Despite having the
same worst-case complexity of the best from scratch counterpart, the algorithm
is experimentally shown to behave very well in practice. In [8] a decremental
algorithm for 2-hop cover labelings under edge removals and edge weight increases
only is given. In terms of worst-case complexity, the algorithm is worse than
the best from scratch algorithm, however major experimental evidences of the
practical efficiency of the method are provided. In addition, the authors combine
and analyze their algorithm and the algorithm of [2], thus obtaining the first fully
dynamic solution, able to update 2-hop cover labelings under any kind of update.

Notwithstanding said research efforts, practical fully dynamic algorithms for
maintaining 2-hop cover labelings on general, large-scale graphs, are still missing.
In this paper, we overview existing dynamic solutions and highlight the issues
they exhibit that need to be tackled to make them more general and efficient.
Alongside, we briefly describe some ideas to attack these open problems.

2 Background

Given an undirected unweighted1 graph G = (V,E), we denote by d(u, v) the
distance between nodes u and v, i.e. the number of edges in a shortest path
between u and v in G. If u and v are not connected, then d(u, v) =∞. For each
node v of G, the label L(v) of v is a set of pairs (entries) (u, δuv), where u is
a node in V and δuv = d(u, v). The set {L(v)}v∈V is referred to as a labeling
of G. Label entries can be used to answer to a query on the distance between
two nodes s and t as follows: Query(s, t, L) = minv∈V {δsv + δvt | v ∈ L(s)∧ v ∈
L(t)} if L(s) ∩ L(t) 6= ∅, while Query(s, t, L) = ∞ otherwise. A labeling L(G)
is a 2-hop cover of G if, for each pair s, t ∈ V , L(s) ∩ L(t) contains at least
a node u in a shortest path between s and t, called hub node of pair (s, t).
In this case: i) the hub is said to cover pair (s, t); ii) the pair is said to be
covered by L; iii) the labeling is said to satisfy the cover property for G; iv)
Query(s, t, L) = d(s, t) [4]. A labeling L of G is minimal if and only if, for

1 All methods discussed in the paper can be extended to directed and weighted graphs.

On Mining Distances in Large-Scale Dynamic Graphs 3

each v ∈ V and for each (u, δuv) ∈ L(v), there exist two nodes s, t such that
Query(s, t, L′) 6= d(s, t), where L′ is obtained by removing (u, δuv) from L(v).

Computing a labeling of minimum size is NP–Hard. However, several heuris-
tics exist for computing practical (minimal) approximations [4], among them
those in [1,9] achieve considerably better scalability than others. The common
strategy adopted by these methods is as follows. First, an ordering {v1, v2, . . . , vn}
of the nodes (according to some centrality measure) is computed. Then, starting
from an empty labeling L0, for each vk ∈ {v1, v2, . . . , vn} a BFS rooted at vk

is performed and, whenever a node u is reached with distance δ, the algorithm
checks whether Query(vk, u, Lk−1) ≤ δ. If this condition holds, then Lk−1 con-
tains a hub for (vk, u) and for all pairs (vk, x) such that there exists a shortest
path between vk and x passing through node u. Therefore, the BFS rooted at vk

is pruned at u. Otherwise, the algorithm sets Lk(u) = Lk−1(u)∪{(vk, d(vk, u))}
and continues. It can be proven that Ln is a 2-hop cover labeling [1].

3 Dynamic Algorithms

In this section we summarize the incremental algorithm of [2], denoted as IncPLL,
and the decremental algorithm of [8], denoted as DecPLL.
Incremental. IncPLL is able to update a 2-hop cover labeling L of a graph
of G to consider a new edge {a, b} that was previously absent. If G′ is the new
graph, i.e. G plus {a, b}, IncPLL computes a 2-hop cover labeling L′ of G′ by
updating L. The algorithm is based on two insights: (i) if the distance between
two nodes vk and u changes, then all new shortest paths between vk and u must
include {a, b}; (ii) if the shortest path P between vk and u 6= a, b changes, then
the distance between vk and w changes, where w is the penultimate node in P .
Based on the above insights, and assuming w.l.o.g. that d(vk, a) ≤ d(vk, b), the
idea is that it suffices to resume the BFS from b originally rooted at vk and to
stop at unchanged nodes, for every vk ∈ V . In other words, instead of inserting
(vk, 0) to the initial queue of the BFS, the algorithm inserts pair (b, d(vk, a)+1).
The search adopts a pruning mechanism similar to that described in Section 2.

It is known that it suffices to resume searches originally rooted at vk for
all vk ∈ L(a) ∪ L(b) to obtain a 2-hop cover labeling L′ of G′ from L, using
IncPLL [2]. When computing L′, to save time, outdated label entries of L, i.e.
entries that do not to correspond to shortest paths in G′, are not removed.
However, it can be easily seen that the cover property of L′ for G holds even if
this lazy approach is employed [2], as queries always search for the minimum.
Decremental.When handling a decremental update operation (say the removal
of an edge), outdated label entries must be removed from L to obtain a 2-hop
cover labeling L′ of G′, as otherwise the cover property would be broken. In
particular, it is easy to see how a query on L, even after a single update operation,
might return an arbitrary underestimation of the true value of distance in G′.

For this reason, DecPLL works in three phases. In the first phase, it performs
a first BFS–like search of the graph, by exploiting both L and G′, in order to
detect so-called affected nodes, i.e. nodes that contain at least one outdated label

4 S. Cicerone, M. D’Emidio, D. Frigioni

entry. In the second phase, the algorithm scans such nodes and removes outdated
label entries. The result is that pairs of affected nodes might or might be not cov-
ered by L, depending on the structure of G′. Therefore, a third phase to restore
the cover property is performed. In particular, a set of BFS–like searches, rooted
at affected nodes, is executed with the aim of computing new label entries to be
added to L in order to obtain a labeling L′ that covers G′. Such visits essentially
discover shortest paths connecting pairs of affected nodes and accordingly add
entries to the corresponding labels. This phase also includes a pruning mecha-
nism based on the ordering of nodes which however is more relaxed than that
of IncPLL since shortest paths, connecting affected nodes in G′, can traverse
non-affected nodes (see [8] for more details). IncPLL and DecPLL has been
properly combined in [8] to obtain a fully dynamic algorithm, able to deal with
both incremental and decremental updates, named FulPLL.

4 Open Problems

In this section, we highlight some open problems toward the efficient dynamic
maintainance of 2-hop cover labelings. By combining both the theoretical and
experimental analyses provided in [2,8], three main issues can be identified.
Computing minimal labelings in the incremental case. IncPLL adopts
the lazy approach of not removing outdated label entries, while at the same time
preserving the 2-hop cover property. The latter is clearly a desirable behavior
from the computational viewpoint, since the algorithm essentially focuses only
on finding new shortest paths induced by the incremental operation and on
accordingly adding new labels. However, under this strategy, the minimality
of the labeling can be violated after a single update. As a result, the size of
the labels can grow arbitrarily, thus affecting negatively both space occupancy
and query time. This effect grows with the number of update operations, thus
making necessary to periodically execute a from scratch algorithm. Preliminary
experiments show such growth to be significant even after few updates, especially
in large-scale graphs. Hence, a more refined approach is required. A first direction
in this sense could be that of adapting the notion of affected nodes, used by
DecPLL, to IncPLL, to remove outdated label entries. This would be beneficial
also for FulPLL, whose performance are influenced by this behavior.
More efficient decremental algorithms. Computationally speaking, the main
issue currently affecting DecPLL resides in the third phase, where the cover
property is restored. Preliminary experiments show that, on most of the inputs,
more than 90% of the running time of DecPLL is spent on this stage, which is
expected, given the analysis of [8]. In fact, such a phase performs BFS–like visits
on the new graph with the aim of “reconnecting” pairs of affected nodes from
the cover property viewpoint. Shortest paths in the new graph between such
nodes can clearly traverse non affected nodes, therefore the pruning mechanism
based on the nodes’ ordering is more relaxed, w.r.t. that of both the from scratch
methods and IncPLL, and hence much less effective. This is even more evident
when dealing with weighted graphs, where the visits incorporate a priority queue.

On Mining Distances in Large-Scale Dynamic Graphs 5

Hence, further investigation should be dedicated to devising an algorithm with a
better pruning strategy. In this sense, an idea is that of exploiting the closeness
of affected nodes to hubs that are not affected by the change.
Batch solutions. Another direction that deserves surely further investigation
is that of batch algorithms. In particular, it would be interesting to extend
DecPLL or IncPLL to make them able to efficiently handle batches of up-
dates, i.e. sets of updates occurring on the network simultaneously. This is a
quite frequent graph update operation in practice (see e.g. [5,6]). A first way to
explore in this sense could be that of studying how batch updates impact on the
structure of the labeling when occurring simultaneously, and comparing this ef-
fect with operations taken individually. Preliminary experiments show that such
interference is noticeable, especially when dealing with sparse graphs. In partic-
ular, in the case of decremental operations, sets of affected nodes corresponding
to graph changes that are topologically close exhibit a high similarity.

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large
networks by pruned landmark labeling. In: Proceedings International Conference
on Management of Data (SIGMOD13). pp. 349–360. ACM (2013)

2. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance
queries on large evolving networks by pruned landmark labeling. In: Proceedings
23rd Int. World Wide Web Conference, (WWW14). pp. 237–248. ACM (2014)

3. Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K.,
Paraskevopoulos, A., Zaroliagis, C.: Engineering graph-based models for dynamic
timetable information systems. J. of Discrete Algorithms 46–47, 40–58 (2017)

4. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing 32(5), 1338–1355 (2003)

5. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Dynamically
maintaining shortest path trees under batches of updates. In: 20th Int. Collo-
quium on Structural Information and Communication Complexity (SIROCCO13).
Lecture Notes in Computer Science, vol. 8179, pp. 286–297. Springer (2013)

6. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Experimen-
tal evaluation of dynamic shortest path tree algorithms on homogeneous batches.
In: 13th International Symposium on Experimental Algorithms (SEA14). Lecture
Notes in Computer Science, vol. 8504, pp. 283–294. Springer (2014)

7. D’Angelo, G., D’Emidio, M., Frigioni, D.: Fully dynamic update of arc-flags. Net-
works 63(3), 243–259 (2014)

8. D’Angelo, G., D’Emidio, M., Frigioni, D.: Distance queries in large-scale fully dy-
namic complex networks. In: 27th Int. Workshop on Combinatorial Algorithms
(IWOCA16). Lecture Notes in Comp. Sc., vol. 9843, pp. 109–121. Springer (2016)

9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on
massive networks. In: Proceedings 22th European Symp. on Algorithms (ESA14).
Lecture Notes in Computer Science, vol. 8737, pp. 321–333. Springer (2014)

10. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., Reis, D.C., Ribeiro-
Neto, B.A.: Efficient search ranking in social networks. In: Proc. 16th Conf. on
Information and Knowledge Management, (CIKM07). pp. 563–572. ACM (2007)

	On Mining Distances in Large-Scale Dynamic Graphs
	Serafino Cicerone, Mattia D'Emidio, Daniele Frigioni
	Introduction
	Background
	Dynamic Algorithms
	Open Problems

