
Exploiting Deep Neural Networks for
Tweet-based Emoji Prediction

Andrei Catalin Coman1, Giacomo Zara1, Yaroslav Nechaev2, Gianni
Barlacchi2, and Alessandro Moschitti1

1 University of Trento, Trento, Italy
{andreicatalin.coman, giacomo.zara}@studenti.unitn.it,

moschitti@disi.unitn.it
2 Fondazione Bruno Kessler, Trento, Italy

{nechaev, barlacchi}@fbk.eu

Abstract. For many years now, emojis have been used in social net-
works and chat services in order to enrich written text with auxiliary
graphical content, achieving a higher degree of empathy. In particular,
given the wide use of this medium, emojis are now available in such a
number and variety that every basic concept and mood is covered by at
least one. For this reason, the connection between the emoji and its se-
mantical meaning grows stronger. In this paper, we will be describing the
work performed in order to develop a Machine Learning based tool that,
given a tweet, predicts the most likely emoji associated with the text. The
task resembles the one presented by Barbieri et al., [23], and is placed
within the context of the International Workshop on Semantic Evaluation
(SemEval) 2018. We designed a baseline with standard Support Vector
Machines and another baseline based on fastText, which was provided
as part of the Workshop. In addition, we implemented several models
based on Neural Networks such as Bidirectional Long Short-Term Mem-
ory Recurrent Neural Networks and Convolutional Neural Networks. We
found that the latter is the most effective since it outperformed all our
models and ranks in the 6th position out of 47 total participants. Our
work aims to illustrate the potential of simpler models, which, thanks to
the fine-tuning of hyper-parameters, could achieve accuracy comparable
to the more complex models of the challenge.

Keywords: emoji · Twitter · Text Classification · Machine Learning ·
SVM · fastText · Bi-LSTM · CNN

1 Introduction

We develop a Machine Learning model, which, given the text of a tweet, predicts
the most likely associated emoji among the most common 20 shown in Table 1.
In order to do this, we have first implemented a baseline approach based on
Support Vector Machine (SVM), and used a fastText3 classifier as an alter-
native baseline. After the implementation of the baselines, we proceeded to the

3 fastText: https://github.com/facebookresearch/fastText

116

https://github.com/facebookresearch/fastText

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 1: The 20 most common emojis used as labels

development of Neural Networks based classifiers. In particular, we have cho-
sen to test two different models: a Bidirectional Long Short-Term Memory
(Bi-LSTM) Recurrent Neural Network (RNN), and a Convolutional Neural
Network (CNN). The objective was to verify whether we would manage to
outperform the results obtained by the baselines, and which of the two models
would work better. For the whole task, we used the data provided within the
International Workshop on Semantic Evaluation 20184[1].

Given the wide use of emojis that we are witnessing nowadays, not just on
Twitter5 but on many other Social Media and Instant Messaging services [12],
one of the purposes of our paper consists in studying the relation between the
text written by the user and the emojis related to it, through the implementation
of a predicting tool that attempts to mimic the reasoning according to which a
certain emoji is evoked by the written message. This turns out to be quite a
complex problem since it is highly dependent on the understanding that human
beings have of emojis, which is hardly ever the same. This ambiguity is what most
strongly limits the effectiveness of a prediction task performed on this domain.
In fact, the results obtained by the top-ranked participants as well as ours, which
are reported in Section 6 together with a discussion, show how difficult such a
task can be. Our work, however, aims to be an alternative to the more complex
models used by the other participants, with the objective of demonstrating that
even simpler models are able to easily overcome the baselines and compete with
the more performing ones, thanks to the fine-tuning of hyper-parameters.

2 Related work

Obviously, a significant amount of work has been performed in the scope of
the SemEval competition, by the participants of its past editions. In particu-
lar, it is worth to mention the work of Çöltekin and Rama [8], who won the
competition by means of an SVM classifier. In their feature extraction proce-
dure, they took into account both the character-level and word-level in order to
extract the bag-of-n-grams features. Follows the work done by Baziotis et Al.
[4], who used a Bidirectional LSTM (Bi-LSTM) with attention, and pre-trained
word2vec vectors, obtaining the highest recall. The third place is occupied by the
user hgsgnlp who has not provided any publication of his work and we send to
[1] for the original reference. In the next position we find Liu [19], who instead,

4 SemEval: http://alt.qcri.org/semeval2018/
5 Twitter: http://twitter.com/

117

http://alt.qcri.org/semeval2018/
http://twitter.com/

proposed a Gradient Boosting Regression Tree approach combined with a Bi-
LSTM on character and word n-grams. Fifth position is occupied by Lu et. Al
[20] who adopted a Bi-LSTM with attention and used different embeddings such
as word, char, Part of Speech (POS) and Named Entity Recognition (NER) em-
beddings together with Twitter specific features like punctuation, all-caps and
bag-of-hashtags. After them follows the work of Beaulieu and Owusu [5] who
combined SVM with bag-of-words approach, obtaining a very high precision.
The comparison between the above mentioned top 6 teams and our work can be
seen in Table 4. Please refer to [1] for the full table of results of all participants.

Among the other participants it is worth mentioning Coster et Al. [10] who
built an SVM classifier on characters and word n-grams, obtaining the second
best results in the Spanish task. Basile and Lino [3] applied an SVM over a
variety of features (such as tf-idf, used in this paper too, POS tags and bigrams),
obtaining a competitive system. Finally, Jin and Pedersen [15] applied a soft
voting ensemble approach combining different Machine Learning algorithms such
as Multinomial Naive Bayes, Logistic Regression and Random Forests.

Beside sequence-to-sequence models, another fast and performing approach
to solve NLP is given by the use of CNNs. These models demonstrated to achieve
state-of-the-art performances in many NLP tasks like sentence classification [17]
and answer reranking [25]. For instance, Zhao and Zeng [29] obtained better
results in emoji prediction with Twitter data by applying CNNs. A related task
has also been performed by Felbo et Al [11], who extended supervised learning
to a set of labels represented by emojis themselves, in the scope of sentiment
analysis. Similarly, Wolny [28] has extended binary sentiment analysis to multi-
class by means of emojis. Barbieri et Al. [2] performed a study on emojis, with
particular respect to their usage through time.

3 Problem statement and baseline

As previously anticipated, the task faced in this project consisted of developing
a Machine Learning based prediction framework which, given the text of a tweet,
is able to predict the most likely associated emoji among the most common 20.
In order to train our models, we have been using the dataset provided for the
SemEval competition. This dataset has been obtained by selecting only tweets
that contain exactly one emoji, removing such emoji from the text and using
it as label.

The training set consists of 475.624 labeled tweets, for a total of about
330.000 unique tokens. This is the dataset that we have been using to train both
the baseline and the Neural Network models. The test set, instead, consists of
50.000 labeled tweets, for a total of about 70.000 unique tokens, resembling
the distribution of the ones in the training set.

3.1 Support Vector Machine baseline

As mentioned in the introduction, one of the baselines has been implemented
as an SVM-based classifier. The whole preprocessing procedure has been car-

118

ried out by means of the functionalities provided by Apache Spark6, an analytic
engine for data processing based on distributed computation. For the classifica-
tion phase, we relied on LIBLINEAR7, a library for large-scale linear classification.

In order to be fed to the classifier, our data have firstly been processed. In
particular, the text has been set to lowercase, and then tokenized using the
NLTK8 module for Python9. Once having done this, each tweet had to be turned
into a vector, in order for it to be classified. For this purpose, we have decided to
apply tf-idf (Term-Frequency Inverse-Document-Frequency) analysis. The result
of the tf-idf vectorization is a m × n matrix M , where m is the number of
tweets, and n is the number of distinct words in the whole dataset. The cell
M [i, j] contains the tf-idf value of the j-th term with respect to the i-th tweet.
Such value is formally defined as follows:

tfij =
nij
|di|

(1)

idfj = log
|D|

|{d : j ∈ d}|
(2)

tfidfij = tfij × idfj (3)

where nij is the number of occurrences of term j in document i, |di| is the
size, in terms of words, of document i, |D| is the size, in terms of documents, of
the whole dataset, and |{d : j ∈ d}| is the number of documents in the dataset
which contain j. This is based on the idea that a word is most likely to be
meaningful for a tweet if it appears as often as possible in the tweet, and as few
times as possible in other tweets.

The vectorization has been performed applying different ways to extract n-
grams from the text, in terms of type and strategy. In particular, we have been
iterating over different parameters in terms of n-ngram size, n-gram type, pres-
ence/absence of punctuation and minimum document frequency. The n-gram
size simply indicates how many single words are to be included in each feature,
while the n-gram type indicates whether the n-gram consists of a sequence of
consecutive words or if it involves skips.

3.2 fastText baseline

FastText is an open-source library that allows users to learn unsupervised text
representations [6] and perform supervised text classifications [16].

In terms of word representations, this library follows a very similar ap-
proach to the one proposed in [21]. Unlike word2vec, where each word is seen as
a single unit to which one must associate a vector, fastText considers a single
word as a character-level n-gram composition, where each n-gram has its own

6 Apache Spark: https://spark.apache.org/
7 LIBLINEAR: https://www.csie.ntu.edu.tw/~cjlin/liblinear/
8 NLTK: https://www.nltk.org/
9 Python: https://www.python.org/

119

https://spark.apache.org/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.nltk.org/
https://www.python.org/

representation, which must be learned. This allows, for example, rare words to
still have n-grams shared with other words. The same concept is applicable to
out-of-vocabulary words, i.e., words that are present in the test set but are miss-
ing in the train set. The representation of a missing word as a concatenation
of the vectors of the n-grams of which it is composed can solve this problem
considering that presumably the representation of each n-gram has already been
learned at an earlier stage. Concerning the classification part, a softmax func-
tion is used to compute the probability distribution over the predefined classes.
For a set of T tweets, this leads to minimizing the negative log-likelihood over
the classes(emojis):

− 1

T

T∑
t=1

et log(softmax(BAxt)) (4)

where the first weight matrix A is a look-up table over the words, B is the
weight matrix learned during the training phase, et represents the class(emoji)
of the corresponding tweet, and xt is the normalized bag of features of the t-th
tweet. The latter vector can be seen as the average of the n-grams embeddings
that form the corresponding tweet.

4 Deep learning models

In this Section we present the Neural Network models we used to perform our
emoji predictions. The first model is an architecture based on RNNs [14], where
the recurrent cell consists of a Bi-LSTM [13,24]. As second model we decided
to implement a CNN [18], since over the years it has proved to be effective in
the Natural Language Processing area [9]. Some other concepts are also exposed
including the last layer used for predictions, the loss function applied for the
train, the regularization techniques employed to contain overfitting and finally
the strategy adopted to stop the train.

4.1 Bidirectional Long Short-Term Memory Recurrent Neural
Networks

Over the years, RNNs have proven to be very effective in tasks that involve
data in the form of sequences. With the advent of LSTMs, they have become
even more powerful, as they have enabled us to tackle the problem of long-term
dependencies. They are capable of remembering information for long periods of
time. To do this, they maintain a state that is updated each time new information
is being examined. Information update can be seen as the transition from one
state, or rather from one cell state to another. The addition or removal of
information to the cell state is regulated by structures called gates, where each
has a specific task. These structures can be described more formally by means
of the following formulae10:

10 Understanding LSTM Networks: http://colah.github.io/posts/2015-08-
Understanding-LSTMs

120

ft = σ(Wf · [ht−1, xt] + bf) (5)

which denotes the forget gate layer. Here we decide which information we
are going to remove from the previous cell state. In order to take this decision we
look at the output ht−1 of the previous cell and the current input xt, which in
our case consists of a token. The output of the sigmoid function σ is a vector of
numbers between 0 and 1 for each element in the cell state Ct−1. This number
indicates the importance of that piece of information. A value close to zero
indicates an insignificant element, while a number close to one tells us that we
definitely want to preserve it. In the above formula Wf indicates the weight
matrix and bf the bias value. These parameters are learned by the network
during the training phase.

it = σ(Wi · [ht−1, xt] + bi) (6)

this gate is called the input gate layer, which decides which values we are
going to update in the cell state.

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

after deciding which values to update, we need to generate new candidate
values to add to the state.

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

here we update the old cell state Ct−1, thus producing the new cell state Ct.

ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot ∗ tanh(Ct) (10)

the last step is to create the actual output of the cell. Through ot we decide
which values of the state cell will be output. Then the cell state values are
pushed between -1 and 1 through tanh function and by means of the element-
wise multiplication ∗ we output only those values we decided with ot.

The memory capability of the LSTM-based RNNs acquires a very significant
importance when it comes to written text, which is our case of study, since the
ability to correctly interpreting one word is strongly based on the knowledge of
the context, i.e. the rest of the sentence. A further extension of this feature is
represented by the choice of making the LSTM layer bidirectional. The idea is
pretty simple: the recurrent layer is duplicated, resulting in two layers put ”side
by side”. The sequential input is then provided both in its original form and in a
reversed one. This is based on the idea that, in addition to the knowledge of the
past, also the knowledge of the future can be exploited for correctly interpreting
the information that is currently dealt with.

121

4.2 Convolutional Neural Networks

As with the previous model, CNNs have been used to solve various types of prob-
lems. One of the first applications of this neural-architecture was in the visual
domain, where they were employed for image and video recognition. However,
their versatility has led them to be used in Recommendation Systems [27] and
even in Natural Language Processing tasks [7]. In contrast to classic Multilayer
Perceptron Neural Networks, CNNs have distinguished themselves through three
essential characteristics, namely:

– number of parameters to train: in classic neural network architectures,
i.e. those with a lot of dense hidden layers and units, the number of parame-
ters to be trained grows really fast. With CNNs instead, the amount of train
parameters is given by the size and quantity of convolution filters, which in
some cases are drastically less

– parameters sharing: a feature detector that’s useful in one part of the
sentence is probably useful in another part of the sentence

– sparsity of connections: in each convolution layer, each output value is
depends only on a small number of inputs

Those type of networks are based on the idea that the tweet text input, which
is put in form of a matrix of word embeddings, can be analyzed by means of a
sliding window of a fixed size, which runs step by step through the matrix,
overlapping on different word embeddings, thus on different words of the original
text. For each step, a new single feature is computed by a linear combination
of the elements covered by the window and the weights of the corresponding
filter. Usually, after the convolution, a pooling layer is applied, which in our
case consists of a Max Pooling, whose objective is to preserve only the most
important features by taking the maximum from a well-defined set of features
contained in the previous layer. The objective of the network is to learn the
weights of the various filters that have been used.

4.3 Softmax, Loss Function and Regularization

An additional fully connected softmax layer is added to the output layer of each
of the two models presented in the previous Subsections. It is responsible for
computing the probability distribution over the classes(emojis):

p(y = j|x) =
ex

T θj∑N
n=1 e

xT θn
(11)

where j is the target label and θn is the weight vector of the n-th class. The
vector x instead, represents the abstract representation of the input tweet text
before the last softmax layer. Both models have been trained to minimize the
cross-entropy cost function shown in the following Equation:

Cost = − log

M∏
i=1

p(yi|si) = −
M∑
i=1

[yi log si + (1− yi) log(1− si)] (12)

122

where s is the output of the softmax layer and θ contains all the parameters
optimized by the network.

To avoid having a high variance, that is, a model that would learn a decision
function so complex that it could overfit the training, we decided to increase
the cost function with L2-norm regularization terms for the parameters of the
network. The new cost function is updated as follows:

Cost = − log

M∏
i=1

p(yi|si) + λ||θ||22 = −
M∑
i=1

[yi log si + (1− yi) log(1− si)] + λ||θ||22

(13)
where θ contains all the parameters optimized by the network.

As a further method of regularization we decided to use the Dropout technique,
which prevents feature co-adaptation by setting to zero (dropping out) a portion
of hidden units during the forward propagation phase [26]. In order to be able to
decide where to stop training the models, we have adopted an Early Stopping
strategy. This technique can be seen as an additional method of regularization
that prevents overfitting. We extracted a validation set from the training set
and monitored its improvements in terms of F1-score. We then set a patience
value of 2, which means that if there is no improvement for three epochs in a
row, the training ends.

5 Experiments

We performed an extensive set of experiments, intended to tune our models
and identify the combination of hyper-parameters and word embeddings which
would lead to the best results.

5.1 Word embeddings

The first important aspect to take into account when applying a Neural Network
model to textual data is is the logic according to which words are embedded for
the system. For our set of experiments, we have decided to apply three different
strategies:

– randomly initialized word embeddings: the embeddings for the word
are initialized randomly, and subsequently learned by the network together
with the weights

– GloVe11 embeddings: the embeddings are those provided by the GloVe
algorithm[22], and they are maintained over the whole process

– trainable GloVe embeddings: the embeddings are those provided by the
GloVe algorithm, but they can then be modified by the learning process of
the network

11 GloVe: https://nlp.stanford.edu/projects/glove/

123

https://nlp.stanford.edu/projects/glove/

5.2 Neural Networks setup

In this subsection, we will describe the combination of Neural Network param-
eters which eventually worked best, after an iterative experimental process per-
formed with respect to the aspects described in Section 4. The models are fit on
the data, including as parameter the weights of the classes, computed according
to their occurrences in the dataset. The training is performed over a maximum
of 50 epochs, with batches of size 2048.

Layer Parameters Value

Input dimension 301784

Output dimension 200

Weights embedding matrix

Embedding Maximum sequence length 40

Trainable True

Embeddings regularizer l2 regularizer (0.000001)

Dropout Percentage 40%

Filters 512

Kernel size 5

1D convolution Activation relu

Padding same

Kernel regularizer l2 regularizer (0.00001)

1D max pooling Pool size 5

Flatten / /

Dropout Percentage 40%

Dense Number of classes 20

Activation softmax

Table 2: CNN model

Layer Parameters Value

Input dimension 301784

Output dimension 200

Weights embedding matrix

Embedding Maximum sequence length 40

Trainable True

Embeddings regularizer l2 regularizer (0.000001)

Dropout Percentage 40%

Bi-LSTM Output space dimensionality 64

Dense Number of classes 20

Activation softmax

Table 3: Bi-LSTM model

As for the CNN scheme, we came up with a model that has a 1D convolution
layer at its core, and it is structured as shown in Table 2. The RNN has a Bi-
LSTM layer as its core, and it is structured as shown in Table 3. Both models
are then compiled using cross entropy as loss function, accuracy as metric
and Adam as optimizer, with the following parameters:

124

– learning rate: 0.001
– β1: 0.9
– β2: 0.999
– learning rate decay over each update: 0.001

Experiment Accuracy Precision Recall F1

SVM Baseline 0.4264 0.3235 0.2936 0.2996

CNN (no GloVe) 0.4396 0.3533 0.2982 0.2913

CNN (fixed GloVe) 0.4123 0.2959 0.2818 0.2660

CNN (trainable GloVe) 0.4549 0.3553 0.3264 0.3248

LSTM (no GloVe) 0.4391 0.3156 0.2970 0.2881

LSTM (fixed GloVe) 0.4143 0.3146 0.2709 0.2630

LSTM (trainable GloVe) 0.4357 0.3562 0.3105 0.3124

#1 Tübingen-Oslo [8] 0.4709 0.3655 0.3622 0.3599

#2 NTUA-SLP [4] 0.4474 0.3453 0.3800 0.3536

#3 hgsgnlp [1] 0.4555 0.3500 0.3357 0.3402

#4 EmoNLP [19] 0.4746 0.3943 0.3370 0.3367

#5 ECNU [20] 0.4630 0.3517 0.3311 0.3335

#6 UMDuluth-CS8761 [5] 0.4573 0.3980 0.3137 0.3183

#7 SemEval Baseline [1] 0.4256 0.3034 0.3300 0.3098

Table 4: Table of results

6 Results and discussion

In this section, we will be describing and discussing the results we have obtained
by applying the models described in the previous sections. For each subtask we
have performed a complete set of experiments, tuning the different parameters
involved in the algorithm. Here we will report the final results for the baselines
and each embedding strategy adopted for the Neural Network approach. We also
include in the table the scores achieved by the top 5 participants of the SemEval
competition, for a more interesting comparison. The results are show in Table 4.
As we can see, the fastText implementation outperformed the SVM one, pro-
viding a solid baseline to start our work from. The Deep Learning approach
has generally outperformed both the baselines, indicating the trainable GloVe
embeddings as the best choice. Between the two Neural Network strategies, the
CNN model turned out to work better than the Bi-LSTM one. As for the com-
parison with the SemEval ranking, as we can see, our algorithm would earn the
6th position.

7 Conclusions

The task described in this paper consisted in studying the relation between writ-
ten text and emojis, with particular respect to the scope of the social network
Twitter. This was done by implementing and evaluating a Machine Learning
based tool capable of predicting, given the text of a tweet, its most likely re-
lated emoji, according to the task proposed for the SemEval 2018 competition.

125

In order to achieve this target, we first implemented a SVM-based baseline,
comparing it with the fastText algorithm. Subsequently, we have implemented
two different Neural Network architectures, based respectively on CNNs and
Bi-LSTM RNNs. Our baseline was outperformed by the fastText based one,
and together they provided a fair starting point. The Neural Networks themselves
outperformed the baseline, indicating the CNN scheme and the GloVe word em-
beddings as the best choice. The results obtained turned out to be positively
competitive with respect to the ranking of the competition, since they would
place our work in the 6th position, with 47 total participants. This shows us
that simple deep neural networks can also reach quite good results by improving
them through fine-tuning of hyper-parameters, regularization, and optimization
of the models themselves. In terms of future work, it would be interesting to im-
prove the results by more thoroughly tuning the hyper-parameters of the Neural
Networks or by exploring new models, and to participate to the next edition of
the SemEval competition.

References

1. Francesco Barbieri, Jose Camacho-Collados, Francesco Ronzano, Luis Es-
pinosa Anke, Miguel Ballesteros, Valerio Basile, Viviana Patti, and Horacio Sag-
gion. Semeval 2018 task 2: Multilingual emoji prediction. In Proceedings of The
12th International Workshop on Semantic Evaluation, pages 24–33. Association
for Computational Linguistics, 2018.

2. Francesco Barbieri, Lúıs Marujo, Pradeep Karuturi, William Brendel, and Horacio
Saggion. Exploring emoji usage and prediction through a temporal variation lens.
CoRR, abs/1805.00731, 2018.

3. Angelo Basile and Kenny W. Lino. Tajjeb at semeval-2018 task 2: Traditional
approaches just do the job with emoji prediction. pages 470–476, 01 2018.

4. Christos Baziotis, Athanasiou Nikolaos, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, and Alexandros Potamianos. Ntua-slp at
semeval-2018 task 2: Predicting emojis using rnns with context-aware attention.
In SemEval@NAACL-HLT, 2018.

5. Jonathan Beaulieu and Dennis Asamoah Owusu. Umduluth-cs8761 at semeval-
2018 task 2: Emojis: Too many choices? In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 400–404. Association for Computational
Linguistics, 2018.

6. Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

7. Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th International Conference on Machine Learning, ICML ’08, pages 160–167,
New York, NY, USA, 2008. ACM.

8. Çağrı Çöltekin and Taraka Rama. Tübingen-oslo at semeval-2018 task 2: Svms per-
form better than rnns in emoji prediction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 34–38. Association for Computational
Linguistics, 2018.

9. Alexis Conneau, Holger Schwenk, Loc Barrault, and Yann Lecun. Very deep con-
volutional networks for text classification. pages 1107–1116, 01 2017.

126

10. Jol Coster, Reinder Gerard Dalen, and Nathalie Adrinne Jacqueline Stierman.
Hatching chick at semeval-2018 task 2: Multilingual emoji prediction. pages 445–
448, 01 2018.

11. Bjarke Felbo, Alan Mislove, Anders Sgaard, Iyad Rahwan, and Sune Lehmann. Us-
ing millions of emoji occurrences to learn any-domain representations for detecting
sentiment, emotion and sarcasm. 08 2017.

12. Tim Highfield and Tama Leaver. Instagrammatics and digital methods: studying
visual social media, from selfies and gifs to memes and emoji. Communication
Research and Practice, 2(1):47–62, 2016.

13. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

14. J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
United States of America, 79(8):2554–2558, April 1982.

15. Shuning Jin and Ted Pedersen. Duluth urop at semeval-2018 task 2: Multilingual
emoji prediction with ensemble learning and oversampling. In Proceedings of The
12th International Workshop on Semantic Evaluation, pages 482–485. Association
for Computational Linguistics, 2018.

16. Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

17. Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

18. Yann LeCun and Yoshua Bengio. The handbook of brain theory and neural net-
works. chapter Convolutional Networks for Images, Speech, and Time Series, pages
255–258. MIT Press, Cambridge, MA, USA, 1998.

19. Man Liu. Emonlp at semeval-2018 task 2: English emoji prediction with gradient
boosting regression tree method and bidirectional lstm. pages 390–394, 01 2018.

20. Xingwu Lu, Xin Mao, Man Lan, and Yuanbin Wu. Ecnu at semeval-2018 task 2:
Leverage traditional nlp features and neural networks methods to address twitter
emoji prediction task. In Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 433–437. Association for Computational Linguistics,
2018.

21. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

22. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, 2014.

23. Horacio Saggion, Miguel Ballesteros, and Francesco Barbieri. Are emojis pre-
dictable? In EACL, 2017.

24. M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. Trans.
Sig. Proc., 45(11):2673–2681, November 1997.

25. Aliaksei Severyn, Massimo Nicosia, Gianni Barlacchi, and Alessandro Moschitti.
Distributional neural networks for automatic resolution of crossword puzzles. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 199–204, 2015.

26. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

127

27. Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-
based music recommendation. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 2643–2651. Curran Associates, Inc., 2013.

28. Wieslaw Wolny. Emotion analysis of twitter data that use emoticons and emoji
ideograms. In ISD, 2016.

29. Luda Zhao and Connie Zeng. Using neural networks to predict emoji usage from
twitter data.

128

	Exploiting Deep Neural Networks for Tweet-based Emoji Prediction

