
On executable models that are integrated with program code
Marco Konersmann

paluno, University of Duisburg-Essen
Essen, Germany

marco.konersmann@paluno.uni-due.de

ABSTRACT
Software development is usually supported by designmodels. These
models and the program code represent overlapping information
redundantly. When the implementation is changed, the models
are often not changed along with the code, which introduces in-
consistencies between these artifacts. Such inconsistencies imply
a risk of misunderstandings and errors during the development,
maintenance, and evolution. In this paper we present a method
for creating executable models, that are integrated with the pro-
gram code. The integration allows for an interplay between the
model and the program code at run-time, and leaves no room for
inconsistencies between the artifacts.

KEYWORDS
executable models, knowledge-carrying code, model integration,
model extraction, consistency

1 INTRODUCTION
During development, models are often used to specify design as-
pects of software. Such design models can be close to the imple-
mentation, such as class diagrams, which have equivalent elements
in the code. Other design models are more abstract, such as compo-
nent models or behaviour models like state machines. A specified
design is realized by implementation artefacts, e.g. the program
code, configuration data, and execution platforms [11, pp. 337].

Design models and implementation concern the same subject,
while focusing on different aspects. Design models focus on an ab-
stract view for design, communication, and analysis (cf. [11, Chapter
2]). The implementation focuses on the details of an executable
system, with dependencies to the execution platform. Both can be
seen as different views on the design with overlapping information
which they represent redundantly. But both views also have their
own, original information. The implementation, e.g., contains de-
tailed behaviour descriptions and platform dependent code. The
model, e.g,. contains performance information for analysis reasons.
At the end the views cannot be separated completely, and both
views are appropriate for their task.

When the implementation is changed, the models are often not
changed along with the code, which introduces inconsistencies
between these artefacts. Such inconsistencies imply a risk of misun-
derstandings and errors during the development, maintenance, and
evolution. We therefore propose an approach where the model and
program code are tightly integrated. I.e., the model information is
represented as specific program code structures, which can be dy-
namically interpreted, a model representation can be extracted. The
design models may have operational semantics. E.g., components
can be started and stopped at run-time and state machines can be in
different states and execute transitions. In this paper we present a

Figure 1: The structure and behaviour meta models of the
running example

method for creating executable models, that are integrated with the
program code. The integration allows for an interplay between the
model and the program code at run-time, and avoids inconsistencies
between the artefacts.

In the following section, we first describe an simple application
which will serve as running example. In Section 3 we describe our
approach for integrating models with program code as foundation.
Section 4 describes how we use templates for translating model
information into code structures and back. These templates are the
basis for generating execution runtimes in Section 5. A discussion
follows in Section 7. Related work is described in Section 6. Finally,
we conclude the paper in Section 8.

2 EXAMPLE APPLICATION
The approach that we present in this paper is usable for all meta
models in a subset of Ecore [10]. To illustrate it we now describe
a simple software system with interconnected components and a
state machine as the basis for a running example. Figure 1 shows
a simple meta model for the architectural structure on the upper
side, and a simple meta model for a state machine in the bottom.
The structural part describes components with business operations.
When a component has a reference to another component, it may
invoke its operations. The state machine meta model comprises a
class for a state machine, which contains a list of states and has an
initial state. A state has a list of transitions that target a next state.
All classes in the meta model have an attribute name.

The example system (see Figure 2) is an excerpt of a store system,
based on the CoCoME case study [5]. It consists of two components:
CashDesk and BarcodeScanner. The bar code scanner has an oper-
ation scanItem to scan an item. The cash desk can be used to add
items to a virtual shopping cart for billing. It therefor references
the bar code scanner. The cash desk provides the operations ad-
dItemToCart and checkout. The cash desk’s behaviour is designed
as a state machine. The initial state is Ready, which describes that
the cash desk is ready for a new sale. When an item is scanned, it
is in the stateWithinSale. It remains in this state until a checkout is
performed. Then it returns to the Ready state.

EXE 2018, October 14, 2018, Copenhagen, Denmark Marco Konersmann

Figure 2: The model of the example application: Two inter-
connected components with operations and a state machine
for the cash desk component

3 FOUNDATIONS: INTEGRATING MODELS
WITH CODE

The Model Integration Concept (MIC)[7, Chapter 5] integrates ar-
chitecture model information with program code. It is the founda-
tion for our generation of model execution runtimes. In the MIC,
modelling languages must conform to a subset of Ecore as meta
meta model, which includes classes, attributes, containment and
non-containment references. Program code must be written in a
general purpose programming language, which allows for intro-
spection for execution runtimes. Translations in the MIC define an
equivalence relation between model elements and program code
structures. There are two types of translations: Meta model/code
translations define equivalence relationships between meta model
elements and program code structures. Model/code notations define
equivalence relationships between model elements and program
code structures. The MIC uses template-based code generation, and
static code analysis for extracting models from the code.

Figure 3 and 4 show example translations. Figure 3 shows a meta
model/code translation for the class Component with the attribute
name of the type String. The meta model elements are shown on the
left side. The right side shows Java program code, that represents
this meta model element. The meta model class is represented with
the declaration of an annotation with the name Component. The
attribute name is not declared in the meta model/code translation.
This attribute is subject to the model/code translation in Figure 4.
The declaration of the annotation has ameta annotation Retention,
declared RUNTIME, which means that the declared annotation will
be part of the compiled byte code and is processable in the running
system.

Modeling Language Meta Model Program Code in Java

M
e
ta

 M
o
d
e
l
Le

v
e
l

@Retention(RetentionPolicy.RUNTIME)
public @interface Component {

}

Figure 3: An example of a meta model/code translation

Modeling Language Model Program Code in Java

M
o
d
e
l
Le

v
e
l

@Component
public class BarcodeScanner {

} Entry Point

Figure 4: An example of a model/code translation

Figure 4 shows a model/code translation for a model that instan-
tiates the given meta model. The left side shows an instance of that
meta model, a single object of the Component class, with the name
BarcodeScanner. The right side shows their Java program code
representation. The program code declares a type BarcodeScanner.
The annotation Component is attached to the type. The type’s body
is a so-called entry point. I.e., arbitrary code can be added here
without breaking the model/code relationship. E.g. attributes and
operations can be added.

Such (meta) model/code translations in the MIC are the basis for
generating three types of artefacts: (1) Bidirectional transformation
between model elements and program code build a model repre-
sentation based on a given program code, so that developers can
extract an integrated model from program code. They also have to
propagate model changes to the code, i.e. create, delete, and change
program code based on model changes. It has to be ensured that
these translations are unambiguous. (2)Meta model/code translation
libraries are program code structures, that represent meta model
elements. In the example, theis is the annotation declaration. This
program code can be generated once. The results can be used as
libraries, as long as the meta model does not change. (3) Execution
runtimes can be generated for model elements. These runtimes
manage the operational semantics of integrated models. In this
paper we describe how execution runtimes in the MIC work, and
how they are generated.

Two types of operational semantics exist for model elements in
the context of the MIC: (a) Language semantics can be implemented
in the runtime. Here each instance of a model element has equal
semantics. E.g., when a transition of a state machine is triggered,
the state machine switches to another state. These semantics ap-
ply to each transition. (b) Model semantics can be implemented
within the individual model/code structures. Here each instance
of a model element has individual semantics. E.g., when a transi-
tion of a state machine is triggered, not only the machine’s actual
state should be changed. In the example application the transition
scanItem triggers the operation scanItem of the bar code scanner
and the operation addItemToCart of the cash desk. The transition
checkout triggers the operation checkout of the cash desk. The
state machine language definition does not contain elements for
expressing such detailed behaviour. They are implementation de-
tails in the context of the MIC. For executing such implementation
details, translations within the MIC may declare entry points. Entry
points may contain arbitrary code, which is not considered a part
of the bidirectional model/code translation. The operation calls
stated above can be implemented within operations provided by

On executable models that are integrated with program code EXE 2018, October 14, 2018, Copenhagen, Denmark

the model/code structures. An execution runtime will then execute
these operations.

4 TEMPLATES FOR MODEL-CODE
TRANSLATIONS

We analysed the requirements of Java-based frameworks towards
the program code for identifying patterns for how models can be
integrated with program code. In related work we defined transla-
tions and model-specific execution runtimes for state machines and
processes [2], interface automata [8], component specifications [6],
and deployment models [9]. Based on these works, we defined a set
of generic translations between models and code—called Integra-
tion Mechanisms—that can be used as templates. Each Integration
Mechanism comprises a meta model/code translation and a corre-
sponding model/code translation. Mechanisms can be instantiated
by applying them to a specific meta model or model element, i.e., by
replacing a place holder with a specific (meta) model element. Inte-
gration Mechanisms are declared for a type of meta model element.
I.e. a class, an attribute, a reference, or a containment reference of
the Ecore meta meta model. The complete set of currently defined
Integration Mechanisms for the Java programming language can
be found in [7, Chapter 5.6], with formal definitions, examples,
variants, and a discussion for each mechanism.

We now describe a selection of mechanisms using the running
example. For a state machine currently no first class elements exist
in the Java language or its adjacent frameworks used in practice.
The mechanism for the class StateMachine is the Type Annotation
mechanism. This mechanism has already been shown in the exam-
ple in Figure 3 and 4 for the class Component.

The mechanisms for the class State is the Marker Interface mech-
anism. Figure 5 shows the mechanism, when it is instantiated for
this class. On the meta model level, the class is translated into an
interface declaration with the name of the class. On the model level
an object of that class is translated into a type declaration with the
value of the attribute name as type name. The type implements
the interface. The entry point in this mechanism is used analo-
gously to the entry point in the Type Annotation mechanism. In
addition, operation signatures can be added to the marker interface,
which implies that they have to be implemented by all types that
implement the interface. An execution run-time may invoke these
operations. The Marker Interface mechanism is usable to represent
classes that have behavioural execution semantics, and provide
callable semantics that may differ between the single instances.
An execution runtime must instantiate the type and provide the
resulting object.

The mechanism for the reference initial from a state machine
to a state is the Annotated Member Reference mechanism. Figure 6
shows the mechanism, when it is instantiated for this reference. On
the meta model level, a reference is translated into an annotation
declaration with the name of the reference, analogously to the
Type Annotation mechanism. On the model level, the reference is
translated into a field declaration with the name of the target’s name
attribute. The interface that represents the target meta model class
is the field’s type. An execution runtime must inject an instance of
the target’s type into this field, so that it is usable by the execution
semantics of the state machine. Which instance to inject is subject

Meta Model and Model Program in the Programming Language Java

M
e
ta

 M
o
d
e
l

M
o
d
e
l

Entry Point

public class Ready implements State {

}

public interface State {

} Entry Point

Figure 5: The mechanism Marker Interface instantiated for
the class State

Meta Model and Model Program in the Programming Language Java

M
e
ta

 M
o
d
e
l

M
o
d
e
l

initial1..1

@Initial(Ready.class)
State initial;

@Retention(RetentionPolicy.RUNTIME)
public @interface Initial {
 Class<? extends State> value();
}

Figure 6: The mechanism Annotated Member Reference in-
stantiated for the reference initial

to the specific runtime. With this construct, a new initial state
can be declared without changing the type of the object attribute
initial. This mechanism does not define an entry point. Variants
for this mechanism exist. Here the variant is shown for reference
targets which are translated with the Marker Interface mechanism,
with a maximum of 1 target. When multiple targets are possible, an
array is used as field type and annotation parameter. If the target
translated with the mechanism Type Annotation, the target’s type
is used directly as field type for x..1 references. For x..* references,
the field is an array of the type “Object”, the root type in Java.

Themechanism for the containment reference transition between
states is the Containment Operation mechanism. Figure 7 shows
the mechanism, when it is instantiated for this reference. On the
meta model level, the reference is translated into an annotation
declaration with the name of the reference, analogously to the
Type Annotation mechanism. On the model level, the reference
is translated into a public method declaration with the name of
the target’s name attribute. The method’s return type is void. The
method is annotated with the annotation of the meta model/code
translation. The method is both a representation of the reference
between the two objects, and a representation of the transition
object. An execution runtime for this model element must allow to
invoke this method, and therefore the execution semantics of the
transition. The entry point of this mechanism is the method body.
The execution semantics can be entered within the body, and has
access to other code elements, e.g. to fields declared by a Annotated
Member Reference mechanism.

EXE 2018, October 14, 2018, Copenhagen, Denmark Marco Konersmann

Meta Model and Model Program in the Programming Language Java

M
e
ta

 M
o
d
e
l

M
o
d
e
l

Entry Point

@Transition
public void scanCode() {

}

@Retention(RetentionPolicy.RUNTIME)
public @interface Transition {

}

Figure 7: The mechanism Containment Operation instanti-
ated for the reference transition

5 EXECUTION RUNTIMES FOR
MODEL-CODE TRANSLATION TEMPLATES

We developed a framework for implementing execution runtimes
for models that are integrated with program code.1 These runtimes
are based on Java’s reflection mechanism to analyse the code, in-
ject instances, and invoke operations at run-time. The framework
comprises a set of abstract classes, that have to be extended for
implementing specific runtime classes. For each Integration Mech-
anism an abstract runtime class exists. For implementing an execu-
tion runtime for a meta model, we map Integration Mechanisms to
each class, (containment) reference, and attribute declared in the
meta model. A tool then generates an execution runtime class for
each of these pairs. This creates a tree of execution runtimes, one
for each meta model element. These generated execution runtime
classes contain functionality to instantiate objects, set reference
targets, and attribute values based on the underlying integration
mechanism. The operational semantics of the modelling language
can be implemented in these classes. The runtimes can effectively
seen as interpreters for the integrated models. They can also trigger
operations to invoke code, that is declared in an entry point, and
therefore trigger the excecution of model semantics, which are
expressed in program code.

Listing 1 shows the generic runtime class for the Type Annota-
tion mechanism as an example. It takes the implementing type and
the annotation type as constructor parameter. The method initialize
verifies that the type actually has the annotation attached, instanti-
ates the type, and stores the instance. Runtime classes for classes
in the meta model also initialize the runtimes for their attributes
and references, and runtime classes for containment references
initialize the runtimes for their targets.

The runtime classes for specific meta model elements extend
these generic mechanism runtime classes. Listing 2 shows the run-
time class for the class StateMachine in the meta model. It extends
the TypeAnnotationRuntime shown in Listing 1. The state ma-
chine runtime class is constructed with the implementing type as
parameter, e.g., the type CashDeskStateMachine. The runtime ini-
tialization is implemented in the type TypeMechanismRuntime in
Listing 1. When the component runtime is initialized for a specific

1A part of the tool Codeling, which implements the MIC – https://codeling.de

implementing type, first all runtimes for attributes, containment
references, and at last for all cross references are initialized. The
execution runtime class in Listing 2 has been generated automati-
cally. Operational semantics is added by manually adding public
operations that act upon the model instance. The state machine run-
time implements operational semantics, that is common to all state
machines: Setting an initial state, executing transitions, and storing
the next state after transition execution. In the given runtime class,
the current state is set after the initialisation of the runtime for the
reference initial in line 27. It uses the runtime for the reference
initial to store the runtime of its current target. Further operational
semantics is added to the runtime class with operations. The op-
eration executeTransition first validates whether the transition
given by its name is executable from the current state. Then it takes
the runtime for the reference transition from the current state. This
is a containment operation, which means that it may implement
individual semantics in an operation. It invokes that operation and
reads the target state. The target state is declared by an annotation
on the containment operation (not shown in the example). This
invocation shows how the runtimes call individual operational se-
mantics of the model elements: The operation that represents the
transition may contain arbitrary code. In the running example, it
logs the execution (not shown here). The operation isExecutable
validates whether a transition can be triggered from the current
state. The operation getPossibleTransitions uses the runtime
graph to return the names of all possible transitions, i.e., the name
of all transition operations.

1 public class TypeAnnotationRuntime <T> extends TypeMechanismRuntime
<T> {

2
3 private final Class <T> implementingClass;
4 private final Class <? extends Annotation > typeAnnotation;
5
6 public TypeAnnotationRuntime(Class <T> implementingClass , Class <?

extends Annotation > typeAnnotation) {
7 this.implementingClass = implementingClass;
8 this.typeAnnotation = typeAnnotation;
9 }
10
11 @Override
12 public void initialize () throws IntegratedModelException {
13 verifyTypeAnnotationMechanism ();
14
15 try {
16 instance = implementingClass.getConstructor(new Class [0]).

newInstance(new Object [0]);
17 Runtimes.getInstance ().put(instance , this);
18 } catch (final Exception e) { ... }
19 }
20
21 private void verifyTypeAnnotationMechanism () throws

IntegratedModelException {
22 if (! implementingClass.isAnnotationPresent(typeAnnotation))
23 throw new IntegratedModelException (...);
24 }
25 }

Listing 1: The generic Type Annotation runtime class
(shortened)

To show how the program code uses the integrated model, we
present the interplay between the cash desk and its state machine.
The interaction is not defined in any of the modelling languages.
Therefore it must be implemented in program code manually. In
the running example the invocation of the cash desk’s business
operations trigger transitions in the state machine. Listing 3 shows

https://codeling.de

On executable models that are integrated with program code EXE 2018, October 14, 2018, Copenhagen, Denmark

1 public class StateMachineRuntime <T> extends TypeAnnotationRuntime <
T> {

2
3 StateRuntime <?> currentStateRuntime; // not generated
4 // Reference Runtimes
5 InitialRuntime initialRuntime;
6 StatesRuntime statesRuntime;
7
8 public StateMachineRuntime(Class <T> implementingClass) throws

IntegratedModelException {
9 super(implementingClass , StateMachine.class);
10 }
11
12 @Override
13 public void initializeContainments () throws

IntegratedModelException {
14 super.initializeContainments ();
15 // Reference Runtimes
16 statesRuntime = new StatesRuntime(this);
17 statesRuntime.initialize ();
18 }
19
20 @Override
21 public void initializeCrossReferences () throws

IntegratedModelException {
22 super.initializeCrossReferences ();
23 // Reference Runtimes
24 initialRuntime = new InitialRuntime(this);
25 initialRuntime.initialize ();
26
27 // Set current state (not generated)
28 currentStateRuntime = (StateRuntime <?>) initialRuntime.

getTargetRuntime(initialRuntime.getTargets ()[0]);
29 }
30
31 public InitialRuntime getInitialRuntime () { ... }
32 public StatesRuntime getStatesRuntime () { ... }
33 public StateRuntime <?> getCurrentStateRuntime () { ... }
34
35 // Operational semantics (not generated)
36 public void executeTransition(String transitionName) throws

IntegratedModelException {
37 if (! isExecutable(transitionName))
38 throw new IllegalStateException (...);
39
40 TransitionRuntime transitionRuntime = currentStateRuntime.

getTransitionRuntime ();
41 transitionRuntime.invoke(transitionName);
42 StateRuntime <?> targetStateRuntime = (StateRuntime <?>)

transitionRuntime.getTargetRuntime ().getTargetRuntime(
transitionName)[0];

43 currentStateRuntime = targetStateRuntime;
44 }
45
46 public boolean isExecutable(String transitionName) throws

IntegratedModelException {
47 return getPossibleTransitions ().contains(transitionName);
48 }
49
50 public List <String > getPossibleTransitions () throws

IntegratedModelException {
51 TransitionRuntime transitionRuntime = currentStateRuntime.

getTransitionRuntime ();
52 List <Method > containmentOperations = transitionRuntime.

getContainmentOperations ();
53 return containmentOperations.stream ().map(Method :: getName).

collect(Collectors.toList ());
54 }
55 }

Listing 2: The StateMachine runtime class (shortended)

how the implementation of the running example makes use of the
state machine’s execution runtime to implement this behaviour. The
cash desk is implemented using the Type Annotation mechanism.
In an initialization method, it creates and initializes the runtime for
its state machine. The parameter is the Java type, that implements
the state machine using the Type Annotation mechanism. In the
business operation addItemToCart, the cash desk first uses the bar
code scanner’s business operation scanItem to scan an item. Then
it executes the transition scanCode of the state machine. In the

business operation checkout the items are cleared and the transi-
tion finishSale is triggered. The cash desk uses the operational
semantics of the state machine runtime to execute transitions. The
initialization of the runtime graph behind the state machine runtime
is automatically provided by the execution runtime framework.

1 @Component
2 public class CashDesk {
3
4 final LinkedList <String > items = new LinkedList <>();
5 StateMachineRuntime smr;
6 @References BarcodeScanner barcodeScanner;
7
8 public void init() throws IntegratedModelException {
9 smr = new StateMachineRuntime(CashDeskStateMachine.class);
10 smr.initialize ();
11 }
12
13 public void addItemToCart () throws IntegratedModelException {
14 items.add(barcodeScanner.scanItem ());
15 smr.executeTransition("scanCode");
16 }
17
18 public void checkout () throws IntegratedModelException {
19 items.clear(); // Should execute a real sale
20 smr.executeTransition("finishSale");
21 }
22 }

Listing 3: CashDesk implementation that uses the State
Machine runtime

6 RELATEDWORK
Executable models use generic model runtimes or generated code,
which implements the semantics for a modelling language. These
runtimes are comparable to runtimes for program code structures
in the MIC. In the approach at hand, specific program code struc-
tures represent the model elements and are executed by extensible,
generic runtimes. This allows for bidirectional interaction between
the behavioural semantics of the model and other program code.

ArchJava [1] adds (textual) architecture model information to
Java programs. It is translated into byte code for the Java virtual
machine. The execution engine in the sense of model execution is
the compiled byte code. In contrast to ArchJava the approach in this
paper is not specialised for a specific modelling language. Balz [2]
describes embedded models as an approach for representing models
with well-defined code structures. He developed specific model/-
code translations for state machine models and process models. The
MIC generalizes the embedded models approach and introduces
Integration Mechanisms as translation templates. These templates
are here used for developing generic execution runtimes for Ecore-
based models.

Alf [4] provides a Java-like syntax for fUML [3]. This approach
is specialized for a specific modelling language and a specific pro-
gramming language. Our approach is more generic, as it can be used
with all models based on a subset of Ecore, and all programming
languages that allow for introspection and dynamic operation calls.
However, our tools currently only support Java.

Yakindu2 is an IDE for specifying state charts, that are integrated
with program code. The approach presented in this paper aims at
integrating arbitrary models with program code instead.

2https://github.com/Yakindu/statecharts

https://github.com/Yakindu/statecharts

EXE 2018, October 14, 2018, Copenhagen, Denmark Marco Konersmann

7 DISCUSSION
The goal of the MIC is to integrate models with program code,
so that the models and code can be kept in an consistent state. A
model can be extracted from the code, changedwith its usual editors,
and the changes can be propagated to the code. We integrated the
generation of execution runtime classes into the code generation of
the MIC tools. We added a runtime framework and code generators
for each Integration Mechanism. With the presented approach
we can define operational semantics for all meta models that are
integrated with the program code using the MIC.

The design-time aspects of the MIC have been used in a set of
case studies to evaluate its applicability in the context of infor-
mation systems [7, Chapter 10]. The runtime aspect has not been
evaluated in a broader context than application examples like the
one presented above. At the time of writing we therefore cannot
assess the effort for creating a runtime with actual operational
semantics for complex systems in comparison to other approaches.

Our execution runtimes are based on a set of abstract classes,
which provide common behaviour like instantiation or utility func-
tions. Execution runtime classes can be generated, when a meta
model element is mapped to an Integration Mechanism. Given an
Ecore meta model and a set of mechanisms, a basic runtime can be
generated, that makes available a runtime object for each model
element. Operational semantics still has to be added. On the other
hand theMIC—as foundation—is a requirement to use these runtime
classes. For each Integration Mechanism used to represent model
elements as program code structures, a generic runtime class and
bidirectional model/code transformations have to be implemented.
We are investigating how the effort for these developments can be
reduced. Once the generic runtimes exist, generating the specific
runtimes is automated. The generated and adapted execution run-
times are directly used by software developers in the context of the
program. The runtime classes publish the operational semantics
by their public operations. Still, the developers have to understand
how the models and the integration work.

Conceptually, the approach is limited to a subset of Ecore as meta
meta model, and can be used to handle models that use classes, refer-
ences, containment references, and attributes. For further elements
of Ecore currently no Mechanisms are defined, and the associated
tools do not support them. We plan to extend the concept and
tools to the complete Ecore. The programming language must sup-
port introspection for managing the run-time model. The current
Integration Mechanisms heavily rely on templates/generics and
object-orientation, but other Mechanisms could be developed.

At the moment, the model execution engines do not allow for
replay and monitoring besides logging. We intend to integrate such
means generically into the framework, so that Ecore models that
are used with the MIC can be monitored and debugged. Currently
there is no support for a model visualisation. We are planning to
support the design time and run time visualisations of the models.

The presented approach has advantages in comparison to related
work: It can be used for each modelling language that can be ex-
pressed by the used subset of Ecore, instead of being specialized
for a specific model type. It is targeted at abstract design models
like architectural models and abstract behaviour, for which no first
class entities in programming languages exist usually, while other

bidirectional model/code translation approaches focus on more low
level models, such as UML class diagrams. However, it also has
disadvantages: While not measured in a realistic scenario yet, it can
be assumed that the generic runtimes perform worse than runtimes
that are specialized for specific model types, or language and model
semantics that is directly implemented in code.

8 CONCLUSION
In this paper we presented our approach for executable models,
that are expressed with specific program code structures. The exe-
cution runtimes make use of templates—called Integration Mecha-
nisms—that express how (meta) model elements can be expressed
in program code. Based on these templates we generate transla-
tions between the program code and its model representation, and
a graph of execution runtime classes, that handle the instantiation
of the executable model. Operational semantics can be added to
these classes. Interactions between the execution runtime and other
program code is possible in both ways.

ACKNOWLEDGMENTS
The work presented in this paper is partially funded by the DFG
(German Research Foundation) under the grant number GO 774/7-1
within the Priority Programme SPP1593.

REFERENCES
[1] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Con-

necting Software Architecture to Implementation. In Proceedings of the 24th
International Conference on Software Engineering. ACM, 187–197. https://doi.
org/10.1145/581339.581365

[2] Moritz Balz. 2011. Embedding Model Specifications in Object-Oriented Program
Code: A Bottom-up Approach for Model-based Software Development. Ph.D. Dis-
sertation. Universität Duisburg-Essen.

[3] Object Management Group. 2016. Semantics of a Foundational Subset for Ex-
ecutable UML Models (fUML). http://www.omg.org/spec/FUML/1.2.1/ OMG
Document Number: formal/2016-01-05, http://www.omg.org/spec/FUML/1.2.1/,
accessed 2017-04-15.

[4] Object Management Group. 2017. Action Language for Foundational UML (Alf)
– Concrete Syntax for a UML Action Language, Version 1.1. http://www.omg.
org/spec/ALF/1.1/

[5] Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deiters, Andreas
Rausch, Ralf Reussner, Klaus Krogmann, Heiko Koziolek, Raffaela Mirandola,
Benjamin Hummel, Michael Meisinger, and Christian Pfaller. 2008. CoCoME -
The Common Component Modeling Example. In The Common Component Mod-
eling Example, Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and František
Plášil (Eds.). Springer-Verlag, Berlin, Heidelberg, 16–53. https://doi.org/10.1007/
978-3-540-85289-6_3

[6] Marco Konersmann. 2014. Rapidly Locating and Understanding Errors Using
Runtime Monitoring of Architecture-carrying Code. In Proceedings of the 1st

International Workshop on Rapid Continuous Software Engineering (RCoSE 2014).
ACM, New York, NY, USA, 20–25. https://doi.org/10.1145/2593812.2593814

[7] Marco Konersmann. 2018. Explicitly Integrated Architecture – An Approach for
Integrating Software Architecture Model Information with Program Code. Ph.D.
Dissertation. University of Duisburg-Essen, Essen, Germany.

[8] Marco Konersmann and Michael Goedicke. 2015. Integrating Protocol Contracts
with Program Code – A Leightweight Approach for Applied Behaviour Models
that Respect Their Execution Context. In Behavior Modeling – Foundations and
Applications, Ella Roubtsova, Ashley McNeile, Ekkart Kindler, and Christian
Gerth (Eds.). Springer International Publishing, 197–219. https://doi.org/10.
1007/978-3-319-21912-7_8

[9] Marco Konersmann and Jens Holschbach. 2016. Automatic Synchronization of Al-
location Models with Running Software. Softwaretechnik-Trends 36, 4 (Nov. 2016),
28–29. http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/
SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_
Running_Software.pdf

[10] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.

[11] R. N. Taylor, Nenad Medvidovic, and Irvine E. Dashofy. 2009. Software Architec-
ture: Foundations, Theory, and Practice (1 ed.). Wiley.

https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/581339.581365
http://www.omg.org/spec/FUML/1.2.1/
http://www.omg.org/spec/FUML/1.2.1/
http://www.omg.org/spec/ALF/1.1/
http://www.omg.org/spec/ALF/1.1/
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1145/2593812.2593814
https://doi.org/10.1007/978-3-319-21912-7_8
https://doi.org/10.1007/978-3-319-21912-7_8
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf
http://pi.informatik.uni-siegen.de/stt/36_4/./01_Fachgruppenberichte/SSP2016/ssp-stt/24-Automatic_Synchronization_of_Allocation_Models_with_Running_Software.pdf

	Abstract
	1 Introduction
	2 Example Application
	3 Foundations: Integrating Models with Code
	4 Templates for Model-Code Translations
	5 Execution Runtimes for Model-Code Translation Templates
	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

