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Abstract. This paper reports on experiences of integrating Agile and
Model-Driven Development, for the development of code generators and
�nancial systems. We evaluate the bene�ts of the Agile MDD approach
by comparing Agile non-MDD and Agile MDD developments of code
generators, and an agile MDD development of a �nancial application with
three other independent versions of the same application developed using
di�erent approaches. We also compare the functionality of the systems
and a variety of technical debt metrics measuring the quality of the code
and its design. Based on the case study results, we have found evidence
that the use of Agile MDD leads to reductions in development e�ort, and
to improvements in software quality and e�ciency.

1 Introduction

Integration of Agile and Model-driven Development (Agile MDD) is of signi�-
cant interest to practitioners who want to utilise the bene�ts of both approaches.
However, only limited research has been carried out to investigate the impact
of their integration [1,3]. In this paper we compare Agile MDD and other ap-
proaches in two di�erent application areas: (i) code generators and (ii) �nancial
systems. Agile MDD developments of UML to C and UML to Python code gen-
erators are compared in Section 3 to Agile non-MDD developments of other code
generators. In Section 4 a comparison between four independent developments of
the same �nance application is carried out, with the developments using di�erent
approaches: Agile MDD, MDD, Agile, and non-Agile hand-coded development.

2 Research methodology

Our research goal is to evaluate the impact of integrating Agile development and

MDD. For this goal we ask the following research questions:
RQ1: What is the impact of integrating Agile development and MDD on the



software product?
RQ2: What is the impact of integrating Agile development and MDD on the
software development process?

In order to answer RQ1, the properties of quality, e�ciency and maintainabil-
ity of the case study versions were compared. For quality and maintainability,
we use measures of technical debt [9]: EAS (Excessive application complexity c
[7] or LOC, with a threshold of 1000); ENR (Excessive number of rules, nrules
> 10); ENO (Excessive number of operations/methods nops > 10); EHS (Ex-
cessive operation/method size, threshold of 100 for c or LOC);MHS (Maximum
operation size); ERS (Excessive rule size c > 100); CC (Cyclomatic complexity
of rule logic or of procedural code > 10); MCC (maximum CC); CBR (Num-
ber of rule/operation explicit or implicit calling relations > nrules + nops, or
any cyclic dependencies exist in the rule/operation call graph); EPL (number
of parameters for a rule or operation/method > 10); DC (duplicate expressions
or statements with token count > 10).

We use threshold values based on those used in the PMD technical debt anal-
ysis tools (pmd.github.io): EAS 1000 LOC; EHS 100 LOC; EPL 10 parameters;
CC 10; ENO 10 per class.

3 Code generation case study

As part of the UML-RSDS toolset (www.nms.kcl.ac.uk/kevin.lano/uml2web) a
number of code generators are provided to map UML and OCL to program
code. Translators to Java (3 versions), C# and C++ were manually coded in
Java using an agile approach over the period 2003 to 2015, whilst more re-
cent code generators, UML2C for ANSI C and UML2Python for Python, have
been developed using our Agile MDD process [2] in UML-RSDS [8]. Speci�cally,
the code generators were developed by writing UML-RSDS speci�cations, from
which code is automatically generated both for testing purposes and for delivery
of executables. All of the generators were written by the same single developer
(the �rst author). The source metamodel of UML2C and UML2Python consists
of 33 classes (www.nms.kcl.ac.uk/kevin.lano/libraries/design.km3), whilst the
C target metamodel has 24 classes. UML2C and UML2Python are the largest
applications that have been developed using UML-RSDS.

A systematic requirements engineering process was followed for the UML2C
and UML2Python generators, involving document mining, scenario analysis, goal
decomposition, exploratory and evolutionary prototyping, inspection and refac-
toring.

For UML2C, the development was organised into 5 iterations, one iteration
for each of the following main functional requirements:

� F1.1: Translation of types
� F1.2: Translation of class diagrams
� F1.3: Translation of OCL expressions
� F1.4: Translation of activities



� F1.5: Translation of use cases.

In each iteration an informal mapping of language elements from UML to the
target languages was constructed. For example, Table 1 shows the mapping of
types from UML to C for iteration 1.

Scenario UML element e C representation e'

F1.1.1.1 String type char*

F1.1.1.2 int, long, double types same-named C types
F1.1.1.3 boolean type unsigned char

F1.1.2 Enumeration type C enum

F1.1.3 Entity type E struct E* type

F1.1.4.1 Set(E) type struct E** (array of E', without duplicates)
F1.1.4.2 Sequence(E) type struct E** (array of E', possibly with duplicates)

Table 1: Informal mapping scenarios for UML types to ANSI C

Table 2 shows the corresponding mapping for Python. There were 2 iterations
with F1.1 and F1.2 considered in the �rst, and F1.3, F1.4, F1.5 in the second.

Scenario UML element e Python representation e'

F1.1.1.1 String type str

F1.1.1.2 int, long, double types int, int, �oat
F1.1.1.3 boolean type bool

F1.1.2 Enumeration type Enum class instance

F1.1.3 Entity type E class E

F1.1.4.1 Set(E) type set(E)

F1.1.4.2 Sequence(E) type list(E)

Table 2: Informal mapping scenarios for UML types to Python

In contrast to the large e�ort expended on writing code in the case of
the manually-coded code generators, the principal e�ort in the UML2C and
UML2Python developments was the formal speci�cation de�nition and review/test-
ing of this speci�cation. In UML-RSDS, the construction, review, testing, op-
timisation, correction and refactoring of the application speci�cation replaces
the corresponding code construction processes in a conventional non-MDD ap-
proach. No manual coding was used for either UML2C or UML2Python, and a
declarative/functional style of speci�cation was used for both.

The formal speci�cation consists of a class diagram and use cases, de�ned by
OCL constraints. An example constraint from UML2C is the following, which
expresses formally the informal mapping F1.1.3:

Entity::



CPointerType->exists( p | p.ctypeId = typeId &

CStruct->exists( c | c.name = name & c.ctypeId = name &

p.pointsTo = c ) )

The constraints map instances of the UML metamodel into instances of a C
metamodel. Additional constraints de�ne how concrete C text is produced from
the C model. In the case of UML2Python, text was directly produced from the
UML model.

The design structure of the UML2C synthesiser is an external transformation
chain of two transformations: uml2Ca, which produces the app.h header �le for
the C output, and uml2Cb, which produces the app.c main code �le. F1.1 and
F1.2 are implemented in uml2Ca (an internal chain of 2 subtransformations),
and F1.3, F1.4 and F1.5 are implemented in uml2Cb as a chain of 3 subtransfor-
mations. For UML2Python a single uml2py transformation was delivered, with
a hierarchical organisation: model2py (implementing F1.1, F1.2, F1.5) is a client
to stat2py (F1.4), which is a client of exp2py (F1.3).

3.1 Evaluation

We compare UML2C and UML2Python to the manually-coded C++ code gen-
erator. The developer had low experience in C++, C and Python, and hence
the three generators are comparable in each requiring signi�cant background
research and experimentation with di�erent generation strategies. UML2C was
the �rst generator to target a procedural language, and presented greater con-
ceptual di�culties than previous generators (eg., how to represent inheritance).
UML2Python was the �rst generator for a dynamically-typed language.

Table 3 compares the overall development e�ort in person days between the
C++, C and Python code generators.

Stage C++ generator UML2C UML2Python

Requirements Elicitation 10 17 2

Evaluation/Negotiation 10 5 1

Speci�cation 60 56 2

Review/Validation 50 57 1

Implementation/ 180 49 3
Testing

Total 310 184 9

Table 3: Development e�ort for C++, C and Python code generators

A major factor in this di�erence is the much simpler and more concise trans-
formation speci�cation of the C and Python code generators (expressed in UML-
RSDS) compared to the Java code of the C++ code generator. Not only is the
UML2C speci�cation 7 times shorter than the UML to C++ Java code, but the
latter is scattered over multiple source �les (eg., Attribute.java, Association.java,



Entity.java, etc) and mixed with the code of other parts of UML-RSDS, mak-
ing debugging and maintenance more complex compared to the C translator,
which is de�ned in 2 self-contained speci�cation �les. In total, the core code of
the UML-RSDS tools is 90,500 lines of Java code, of which approximately 20%
(18,100 lines) is the C++ code generator. In contrast the UML2C speci�cation
is 874 (uml2Ca) and 1576 (uml2Cb) lines, in total 2450 lines. The UML2Python
generator is a single �le of 605 lines. The OCL speci�cation of UML2C is highly
declarative and corresponds directly to the informal requirements, hence it is eas-
ier to understand and modify compared to a programming language implemen-
tation. UML2Python reused the structure of the UML2C informal speci�cation,
and substantial parts of the UML2C formal speci�cation, with simpli�cations
due to the higher level of the Python language compared to C.

Whilst UML2C is explicitly divided into 5 sequential stages, each subdivided
into model to model and model to text modules, the C++ generator has a mono-
lithic structure. UML2Python has a hierarchical structure of 3 strongly separated
subsystems. Only two design patterns (Iterator and Visitor) are used in the C++
generator, whilst 13 are used to organise UML2C and 5 in UML2Python.

Table 4 summarises the di�erences in software quality aspects between the
C++ generator and UML2C and UML2Python.

Measure C++ generator UML2C UML2Python

Size (LOC) 18,100 2,450 605

Abstraction level Low (code) High (speci�cation) High (speci�cation)

Software architecture Partial Detailed Detailed

Modularity Low (1 module) High (10 modules) Medium (3 modules)

Cohesion Low High High

Coupling Low Low Low

Design patterns 2 13 5

Table 4: Software quality aspects of C++ and C, Python code generators

We can also compare the level of design �aws or technical debt in the C++
translator and in UML2C and UML2Python. For the C++ translator the data
has been calculated using the PMD tool (https://pmd.github.io). For UML2C
and UML2Python we used the technical debt metrics built in to UML-RSDS.

Measures of fan-out, duplicate code and coupling between operations are
not measured by PMD, so are omitted in the comparison. Table 5 compares
the TD �gures for UML2C, UML2Python and the C++ generator. For the
latter, the �gures for EHS/ERS, CC and EPL are produced by dividing the
total numbers of �awed operations in the entire UML-RSDS toolset by 5. For
EAS and ENO+ENR we count the number of classes (C++ generator) or sub-
transformations (UML2C and UML2Python) with these �aws. It can be seen
that the �gures for UML2C and UML2Python are generally lower than for the
C++ translator.



Transformation EAS EHS + ERS CC ENO + ENR EPL

C++ generator 5 16.6 110.6 28 0.4

UML2C 2 13 32 4 0

UML2Python 1 8 6 3 0

Table 5: C++ translator versus UML2C and UML2Python technical debt

We also compared the e�ciency of the code generators applied to example
models of varying size up to 100 classes with 100 features in each class.

4 Financial case study

In this case study we compared the Agile MDD approach with three other ap-
proaches: MDD, Agile, and hand-coded approaches. The four applications all
implemented the same problem and were completed independently using di�er-
ent development approaches by di�erent teams. The case study problem is to
calculate and evaluate the risk of �nancial instruments known as Collateralized
Debt Obligations (CDOs) [4,5]. Risk analysis of a CDO involves calculating the
probability P (S = s) of a total credit loss s from the CDO. The speci�cation of
the calculation is given in [5].

To evaluate e�ciency, we measured the total execution time of each applica-
tion version on a sample dataset input of 16 sectors and output of P(S = s) for
all values of s ≤ 20.

In order to answer RQ2, we used qualitative measures through an opinion
survey, in which the developers were asked to report the main bene�ts they per-
ceived, along with the issues they faced in each approach.

Agile MDD approach The CDO application was implemented using the UML-
RSDS Agile MDD approach [8,2]. The customer of this application was a �-
nancial analyst working in a �nancial company. The developer had 10 years
experience of UML-RSDS and had no prior experience in �nancial applications.

MDD approach The CDO case study was redeveloped using the same speci�ca-
tion of [5]. The developer used EMF/ECORE [10] to specify the metamodels,
and the transformation was implemented using the Epsilon Transformation Lan-
guage (ETL) [6]. This solution was developed by one developer who had 4 years
experience of ETL and had no experience in �nancial applications.

Agile approach The CDO application was redeveloped using the Scrum process.
The application was implemented in Java and the development process was or-
ganised in three iterations (each one-week long). Some Scrum techniques were
used such as product backlog, sprint backlog, user stories, requirements prioriti-
sation, sprint planning, sprint review, and frequent customer involvement. The
developer had 5 years experience of Java programming and had no experience



in �nancial applications.

Original CDO application The CDO application was previously developed in
C++ and used in a �nancial company. It was developed using a traditional
code-centric non-agile approach. The developer had over 20 years experience in
C++ programming and was a �nancial analyst in that company.

Table 6 presents the execution time and the size in LOC of the four applica-
tion versions

Agile MDD MDD Agile Original

Execution Time of P(S=s)
for all s ≤ 20

23ms 123ms 39ms 231ms

Execution Time of P(S=s)
for all s ≤ 50

93ms 531ms > 15min > 15min

Size(LOC) 94 143 196 163

Table 6: Execution time and LOC for each CDO version

For RQ2 we use a 3-point scale Low, Medium, High to quantify the di�erent
aspects reported by developers (Table 7).

Aspect Agile MDD MDD Agile Original

Development Medium, due to High, due Medium High
e�ort small to need

speci�cation to rework
size speci�cation

Errors in Low due to High: Missing Low, due to Low
deliverables direct customer functionality customer

feedback feedback

Ability High, due to High, due to Medium Medium
to make small/declarative small
changes speci�cation speci�cation

Development High: based Medium High: based Medium
organisation on on

iterations iterations

Table 7: Impact on development process (CDO case)

Direct communication with the customer representative during development
was very important in reducing errors and correcting misunderstandings in the
Agile and Agile MDD cases. The major challenge for the developers of the Agile
MDD, MDD and Agile versions was in understanding the domain and formalising
the required functionality correctly.



5 Discussion

5.1 Code generator case study

For the code generator versions, there were no signi�cant di�erences in e�ciency
between the Agile MDD C and Python code generators and the Agile non-MDD
C++ code generator. In terms of product quality, there were clear gains in re-
duced application size and reduced technical debt, and improved system struc-
turing. In turn, these bene�ts make the ongoing maintenance of the UML2C
and UML2Python code generators more e�ective than for the manually-coded
generators. For example, we recently implemented a source metamodel enhance-
ment within 30 minutes for each of these generators, the corresponding change
for the C++ generator was around 2 hours. Lessons learnt from the UML2C
development were applied to UML2Python, resulting in a much reduced devel-
opment e�ort (5% of the UML2C e�ort) in the case of UML2Python. Another
factor here is that the language gap between UML and Python is much smaller
than between UML and C (however the gap between UML and C is higher
than between UML and C++). Substantial reuse of the UML2C speci�cation in
UML2Python was facilitated by the concise and semantically-transparent nature
of this speci�cation. Table 8 summarises the di�erence in TD levels between the
three code generator versions.

Transformation �aws �aws/LOC

C++ generator 155.6 0.009

UML2C 51 0.021

UML2Python 18 0.029

Table 8: Summary of code generator technical debt

Although the �aw density is lower for the non-MDD approach, the number of
�aws is much higher. The overall functionality of the C++ and C code generators
is comparable, yet the C++ generator has 3 times the number of �aws of the C
generator.

5.2 Financial case study

For the �nancial case study, in terms of e�ciency, the application developed
using Agile MDD was the fastest. With regard to the product quality, the Agile
MDD application had consistently better metrics than the other versions.

Table 9 and Table 10 present the average of the values of the metrics for the
two Agile versus the two non-Agile approaches and for the two MDD approaches
versus the two non-MDD approaches. Agile approaches therefore have better
values than non-Agile approaches in 8 of the 9 measures while MDD approaches
have better values than non-MDD approaches in 7 of the 9 measures.



E�c. LOC ENO MHS MCC CBR DC �aws �aws/LOC

Agile 31ms 145 10.5 15 4 9(1.5) 1 3 0.0207

Non-agile 177ms 136 11 26 4.5 12(1.5) 1.5 4 0.0294

Table 9: Agile versus non-Agile approaches for CDO

E�c. LOC ENO MHS MCC CBR DC �aws �aws/LOC

MDD 73ms 118.5 10 13.5 2.5 12(2) 0.5 3 0.0253

Non-MDD 135ms 162.5 11.5 27.5 6 9(1) 2 4 0.0246

Table 10: MDD versus non-MDD approaches for CDO

5.3 Outcome of research questions

For RQ1, we found improvements in the quality aspects and TD measures for
the Agile MDD solutions in both case studies, and in e�ciency of the �nancial
case.

For RQ2 we found a 40% reduction in development e�ort for UML2C com-
pared to the C++ code generator, despite the greater challenges of generat-
ing C compared to C++. Speci�cation-level reuse was highly bene�cial in the
UML2Python case, whilst only code-level reuse was possible for the C++ gen-
erator.

Errors in deliverables were reduced in the Agile MDD and Agile versions
of the CDO case due to direct customer collaboration in development. In both
the code generator and CDO case studies, the use of incremental development
and iterations helped in the organisation and decomposition of the Agile MDD
developments.

5.4 Threats to validity

A signi�cant issue concerns the development team size. Agile methods emphasise
communication and team collaboration. In this research, the code generator
application versions and MDD and original CDO versions were implemented
by single developers, whilst the Agile MDD and Agile CDO versions involved a
main developer and an advising customer representative. Therefore it is di�cult
to generalise our conclusions for larger projects.

Secondly, only one form of Agile MDD is used (UML-RSDS) and only one
form of Agile (Scrum), so our analysis does not necessarily hold for other varieties
of these approaches.

Conclusion

Our results in these case studies show some evidence that Agile MDD has im-
proved e�ciency and quality of delivered software. In future work, we intend to
extend this study using larger case studies with larger development teams.
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