
Using sketch recognition for capturing developer’s
mental models

Tatiana De-Wyse, Emmanuel Renaux, José Mennesson
IMT Lille Douai/CRIStAL (UMR CNRS 9189)

University of Lille, France
firstname.lastname@imt-lille-douai.fr

Abstract—The purpose of agile practices is to optimize engi-
neering processes. Beside it, software documentation often suffers
from the priority given to fast and successive deliveries of new
functionalities. As a consequence, incomplete documentation and
graphical representation make it difficult for a developer to
maintain and evolve. Sketching is an integral part of the software
design and development. Indeed, among other stakeholders,
developers use sketches to informally share knowledge about
source code. Since sketches are often hand-drawn, written on
paper or whiteboard without any additional technology tool, they
are not considered as an artifact in agile method or traditional
engineering process but as a disposable production.

In this work, we focus on sketches containing Unified Modeling
Language (UML) diagrams. To produce documentation or to
exploit information from this kind of sketches, developers have to
transcribe it in a UML case tool, what they see as a waste of time
that hinders productivity. We argue that sketches might be worth
considering as non-code artifacts. The fact is that developer or
designer drop informally a lot of information about the software,
which is unusable.

Our goal is to verify that simply capturing sketches can provide
useful information for later use and then improve the modeling
process efficiency. In this paper, we present a preliminary
approach that consists in automatically capture information from
the sketches using image processing and pattern recognition. We
propose a fledgling prototype that demonstrates the proposal’s
viability. Then, as a future work, we plan to put in the hands
of the developers a finalized version of our prototype and study
the added value of our proposal.

Index Terms—Sketch, UML, Image recognition, Engineering
Process, empirical study

I. INTRODUCTION

More and more developers are adopting agile practices, no
matter if it is a fad or a pragmatic evolution of methodologies.
In agile approaches, the source code is considered as the
most valuable artifact. It leaves aside other means to de-
scribe the architecture or functionalities like models and other
human-readable documents. Nevertheless, developers create
and maintain non-code artifacts [14] when developing and
evolving software. These non-code artifacts help to express
the requirements, understand the software architecture or doc-
ument the source code. Each one is dedicated to specific
stakeholders and allows to communicate, exchange and main-
tain the system. The Unified Process [22] precisely defined
different types of artifacts throughout the project lifecycle, in
order to ensure high-quality software production. The agile
methodScrum [33], implies more roughly documents like user

stories, programs, tests cases, and other deliverables created
before designing and implementing the system.

Among these artifacts, graphical representations are widely
used to model the system, as in Industrial Software Devel-
opment [40]. UML1 [31] is a standard modeling language
and a graphical representation that fosters communication
and visualization of software architecture. As a graphical
representation of the system, it helps to understand, discuss or
brainstorm about it. The strength of UML is that any developer
understands it since he learned it at school and it is the de facto
standard for modeling and designing information system.

However, UML is often subject to negative press and is
considered as a waste of time. But surveys like [6], [29]
highlight that although many engineers say they do not use
UML, they use it informally. In fact, engineers actually admit
doing sketches of UML diagrams [2], [28] during activities
like:

• Sharing knowledge about the code in collocated design
collaborations [10]

• Exchanging ideas in design software session with easy
transitions between different types of sketches like lists,
tables, GUIs, ER diagrams, class diagrams, code, draw-
ings. Sketches support mental simulations, reviews of
designers progress and discussions of alternative [28]

• Creating informal graphical representations to quickly
document workflows. Sketches help the comprehension
of code [2]

• Supporting their development workflows by helping them
for different purpose and context [43]

• Finally, externalizing their mental models of source code.
Tools do not allow to support face-to-face communication
[9]

In the next section, we highlight some obstacles to the
adoption of UML in traditional engineering practices. Since
there is little documentation of the software architecture, in
section III, we justify the use of sketches to capture develop-
ers’ mental models of their source code. Related work focuses
on sketching tools in section IV. In section V, we introduce
our prototype that captures and understand sketches without
any effort from the developers. In the prototype, we firstly
restricted our focus to the UML class diagram. Finally, we
discuss a survey we need to further validate our work and the

1Unified Modeling Language



next steps that have to be created to prove that capitalizing on
sketches can improve the development process efficiency.

II. WEAK ADOPTION OF UML IN IT PROJECTS

Documentation and modeling tasks require significant time
to be produced and maintained. IT project engineers do not
maintain quality models since they see them as a waste
of time and effort. Although this proposal is controversial
[29], [40], developers prefer to use this time and effort in
implementing new functionalities, passing tests and solving
problems. Moreover, agile practices do not help the adoption
of UML as they speed up the pace of deliveries. To counter
these adverse developments, we selected in the literature,
three obstacles to the adoption of UML or other graphical
representations in IT projects. Sketching is the more natural
way to draw UML models, even if they are not as formal as in
a UML tool. We think and want to verify that more sketches
in projects and a simply manner to exploit them can help to
counter these obstacles, and reintroduce software architecture
modeling as an efficient practice.

A. Operational software rather than comprehensive documen-
tation

Agile practices encourage short development cycles to pro-
duce a shippable product increment. In these methods highly
used nowadays, documentation and models are seen as a
burden artifact [38]. Hence, the code and testing have taken
the leadership over exhaustive documentation and graphical
design of the software architecture. In terms of tools, teams
mainly use development tools and project management tools
like Jira2. In a simplistic view, the only non-code artifacts
are the user stories. They make it possible to organize sprints
and collaboratively monitor the project on a Kanban board.
Globally, agile processes leave little room for modeling tools
and models. Quick brainstorming sketches contain information
about the source code architecture. It would be nice to be able
to easily retrieve some of this information.

B. Inadequacy of Point&Click tools

Even if project management tools are used, in [1] Azizyan et
al. show that collocated teams prefer physical walls and paper.
Developers also not use Point and Click solutions to model or
maintain software architecture and its behavior but prefer to
use paper or whiteboard. They find them more flexible [34]
as paper and whiteboard allow developers to use their own
graphical representation (informal notation). They used the
sketch as memory help for debugging, explaining task and
refine or improve their idea [43]. Then, if it is required it
allows the preparation of formal documentation and developers
transcribe sketches in a formal way [2]. Sometimes, to deal
with the lack of documentation of the source code, software
visualization tools and reverse engineering tools automatically
provide the UML representation of code for better under-
standing and localization of code source. For example, this
helps developers to take in hand unfamiliar code [25]. Finally,

2https://fr.atlassian.com/software/jira

Point & Click diagramming tool suffers from the lack of
collaborative capacities. In collaborative activities, co-workers
need awareness about artifacts and other coworkers. They need
information about who, how and why things have been done
and then they have to exchange with other co-workers [21].
The use of these point & click solutions could be reduced
by trying to retrieve both the information contained in the
sketches and other contextual information.

C. Cognitive shift due to the proliferation of tools

The need for knowledge exchange and code explanation
fosters the use of communication and social tools [39].
This increases even more, the number of tools used by
developers. Switching from one tool to another or interruption
due to instant messaging, for instance, cause cognitive
shift and knowledge loss. This reduces the efficiency of
the development process and increases the feeling of a
waste of time. Surveys like [14] show that existing tools do
not provide sufficient support for carrying out some tasks
like visualizing artifacts that are larger than their screen
and with interconnected artifacts that have to be accessed
simultaneously. The methods to deal with that problem are
inefficient and frequently error-prone. By reducing the number
of tools and exploiting the engineer’s workstation equipped
with a keyboard and draft paper containing his sketches, we
wish to limit the cognitive shift.

Let’s see in the following how we plan to counter these
obstacles through a better consideration of sketches.

III. CAPTURING MENTAL MODEL THROUGH SKETCHES
RECOGNITION

In traditional development processes, lack of documentation
is a factor of loss in efficiency. For the reasons we gave
previously, developers do not produce an exhaustive UML
model of their source code. However, they create and maintain
mental models of the architecture of the code. Inevitably
there is a loss of code knowledge and developers spend time
understanding and trying to recover the rationale behind the
code. They rely on and interrupt their co-workers to find
answer when they get stuck by a task [24]. The consequence is
that the code becomes hard to debug and complex to maintain
[12].

Understanding the rationale behind source code is the
biggest problem for developers. Graphical representations help
to understand, to discuss, to brainstorm, etc. Sketches are an
example of informal visualizations that are often created when
understanding or explaining the source code [2]. Moreover,
hand-drawn is a natural and flexible way to model a domain.
And even if the sketch do not respect formal notation of
modeling language they foster later their creation. Contrary
to the point & click solution that requires the respect of their
notation, hand-drawn do not constraint developers. Surveys
have revealed that developers make sketches, which often
contain UML diagrams [2], [40].



We base our work on the fact that sketches and diagrams
give an accurate picture of parts of the developers’ mental
model and help to understand a software project [24]. But
since the sketch life cycle is short [43], our goal is to
design a tool that could help us to analyze transparently the
sketches and to exploit the information contained. We want
to improve the software development process using graphical
representation more efficiently with a minimum of effort and
without disturbing the development activity. The key success
factor is for us: capturing the mental model of the developers
in their sketches through sketch recognition.

IV. RELATED WORK

There are a lot of sketching tools since the different devices
allowing sketching activity are numerous. In software design
and development practices, only a few of them allow the
recognition of sketch elements and their semantic meaning
as shown in table I. Here is a list of available sketching tools
we found in a comprehensive survey of the literature.

A. Tools allowing digital sketching activity

Digital Sketching defines a sketching activity realized
thanks to an electronic device like digital pen or finger on
a touch screen, or mouse for computer desktop. This category
also contains e-whiteboard3 with the hand gesture or digital
pen.

a) Formal early design: This category of tools allows
expert designers equipped with an electronic device to freely
create sketches that will be transformed automatically in
formal models.
SUMLOW [8] is a Visual Basic application for early design
stage sketching of UML diagrams on e-whiteboard. It uses
Rubine Algorithm for text recognition and multi-gesture algo-
rithm for shape recognition. It allows annotation of the digital
sketch drawn and their format transformation to be used later
in a case tool.
MaramaSketch [16] is an extension of a Marama meta-tool,
a set of core Eclipse4 plug-ins that provides diagram and
model management. It allows sketch drawn with tablet PC
stylus, mouse, e-whiteboard pen. Recognition of shape and
text element on a sketch is made by HHREco toolkit5.
Tahuti [17] allows a user to draw UML class diagram with
a computer mouse. Recognition of geometrical element of a
class diagram is performed by analyzed stroke made by the
user when he is drawing on Tahuti.
In [23], Lank et al. present a prototype that allows to drawn
sketches thanks to e-whiteboard, tablet, and mouse. Recogni-
tion of what the user has drawn is made by analyzing pen
stroke. Segmentation and correction of what is drawing are
realized by the user to let him drawn freely without any
computation time feeling.

The drawbacks of these tools are: first, developers need to
be equipped with an electronic device, and second, the original

3electronic whiteboard
4http://www.eclipse.org/
5https://ptolemy.berkeley.edu/projects/embedded/research/hhreco/

sketches are lost, and also a lot of information expressed
informally.

b) Informal early design: Informal sketching tool fosters
the communication and collaboration between different stake-
holders.
Calico [27] is a system for e-whiteboard which proposes
a canvas for managing and drawing a digital sketch. No
recognition of what is drawn is provided and links between
sketches have to be done manually by the user.
Gambit [32] supports collaborative early design session of user
interface (UI). Designed according to a client-server model, it
can store and retrieve digital hand-drawn sketches. Users of
Gambit can annotate and use it on a tablet, desktop, and video-
projector.
AugIr [20] provides an interaction room system by combining
multiple e-whiteboards. Stakeholders can manipulate hierar-
chical canvas and freely organize their views. Size, direction
and temporal context of drawn stroke are analyzed to recognize
meaningful text and match the artifact with link automatically.
IdeaVis [13] is a tool for co-located sketching sessions. It uses
digital paper and pen for sketch creation and manipulation on
large interactive display for presentation.
FlexiSketch [44] and his extension FlexiSketch Team [45],
allows collaborative sketching. Symbols recognized are man-
ually pre-defined by user and store in a library for later re-use
and recognition if it is redrawn by users.

On the one hand, informal sketching fosters the communi-
cation and collaboration of stakeholders by providing a totally
informal way of explaining ideas and brainstorm. On the other
hand, this type of tool does not take into account the hidden
figures, the developers, the code and the analog sketches done
beneath the design session.

c) Code explanation/modeling: Tools built on code ex-
planation and modeling increase the comprehension of the
rationale behind the code written by developers.
CodeGraffiti [26] is a prototype for Adobe Bracket6 which
links informal digital sketch on a tablet and smartphone to
source code artifact.
OctoUML [42] supports collaborative UML modeling during
any phase of the software design process, in allowing formal
and informal notations on a touchscreen, e-whiteboard, and
computer with mouse interaction. It allows connection with
version control and source code management.

Even if these tools step the code explanation and documen-
tation up, analog sketches are totally dismissed. Furthermore,
developers that doing sketches, need to take in hand a new
tool and redraw every diagram created on analog support.

B. Tools allowing Analog Sketching

Analog sketching tools allow taking into account the whole
sketch.

a) Informal code documentation: SketchLink [4] is
based on a server, a web application and an IDE (Integrated
Development Environment) plugin 7 to allow the sketching

6http://brackets.io/
7https://www.jetbrains.com/idea/



SUM
LOW

Live
lyS

ketc
h

M
ar

am
aS

ketc
h

GAM
BIT

Id
ea

Vis

Flex
iSketc

h

Octo
UM

L

Cali
co

Cod
eG

ra
ffiti

Sketc
hLink

AugIr
Tah

uti

Lan
k’s

POC

Analog sketch Paper 4 4 4
” Whiteboard 4

Digital sketch E-Whiteboard 4 4 4 4 4 4

” Touch Screen 4 4
” Tablet 4 4 4 4 4 4 4 4 4
” Smartphone 4 4 4
” PC 4 4 4 4 4 4 4 4 4 4
” Stylus 4 4 4 4 4

Online sketch recognition 4 4 4 4 4 4 4 4

TABLE I: Table of tools supporting sketching activity

activity on source code artifact. Analog and Digital sketch
can be stored and have to be manually linked on Java code
source project with the rectangular marker. It fosters HTML
documentation creation on the source code.
LivelySketch [3] enables the capture and the annotation of
analog sketch and diagram by provided a REST API8. Identifi-
cation of a sketch is done by a printed QR code with predefined
UUID (Universally Unique Identifier). Links between sketches
need to be done manually by touch gesture and/or mouse.
Although the sketches are captured and stored, there is another
step required to fully take into account the meaning of sketches
drawn.

All these tools are the example of the wide variety of
devices and technologies that can foster the documentation
in any step of the software development process. However, if
the workplace is not fit with them, sketching with these tools
is useless [36].

The majority of the tools in this related work use online
recognition to retrieve information present in a sketch. Indeed,
online recognition is done by real-time analysis of the stroke
made by the user when he draws on an electronic device.
Offline recognition is another challenge. Unlike the online
approach, offline recognition needs to capture and digitize
the sketch before being analyzed. This analysis consists of
a combination of many image processing algorithms. This
complex mining activity results in finding elements contained
by the image. Some methods dealing with digitized documents
recognition in other domain like architectural plan [15], elec-
tronic diagram [30], flowcharts [18], and geometric shape [37]
can be found. This reveals the possibility of recognizing UML
elements on a bitmap image.

V. OUR APPROACH

In [7] Chaudron and Jolak revealed their vision of a
new generation of software design environments. We try to
approach this vision by raising analog sketches to the level
of project artifacts. We choose offline mode 1) to let the
designer uses any kind of support and 2) to not impose him yet
another tool to manage. To this end, analog sketches need to

8Application programming interface Representational State Transfer

be digitized with for instance a smartphone and recognized to
understand part of their semantic meaning. To partly respond
to the need for collaborative capacities like awareness about
artifacts and other coworkers, some metadata can be added
to the sketch automatically or manually to better identify its
context.

Our goal is to use sketches to capture efficiently the mental
model of the developer without asking him to transcribe it.
Analyzing digitized hand-drawn sketches is a complex task
[5]. Contrary to digital sketching, sketches on paper and
whiteboard are considered as offline documents. In this sense,
we do not have any information on the real-time tracking of
the pen when shapes or text are drawn. So, it is difficult to
segment the image and to recognize shapes and text which
are not normalized. Finally, multiple challenges exist with a
hand-drawn document:

• handwriting style differs from one person to the next,
• non-uniformity in size, shape, and orientation of hand-

written elements,
• text and shape separation due to touching elements,
• text typography does not respect any known font.
In this section, we propose an empirical approach based

on classical tools in image processing to conduct a proof of
concept. The first step is the pre-processing. The image needs
to be cleaned to have the correct format to optimize image
processing algorithm.

A. Pre-Processing phase

Fig. 1: Prototype advancement

In our study, a simple example of a class diagram (Fig. 2) is
used to understand what kind of processing we need to employ.
Indeed, components of hand-drawn class diagram depend on
the way the user has drawn it. For example, boxes representing
classes and lines representing links between classes can vary
a lot from a user to another. In this context, extracting straight
lines using classical methods as Hough transform [11] are no
longer efficient as lines are more or less straight.



Fig. 2: Picture of a simple class diagram

To do that, OpenCV 9 and Python 10 are used to prepare
our image for extraction of text and shapes drawn in our class
diagram. Fig. 1 represents the pre-processing steps which
consist in a binarization of the image (Fig. 3 (a)) followed by
a segmentation of shapes and text.

B. Shapes and text separation

In the case of hand-drawn elements, like in Fig. 2, contours
of class boxes are not closed. Morphological closing [35]
is used to obtain connected components (Fig. 3(b)). Suzuki
algorithm [41] is then used to retrieve contours from the
image (Fig. 3 (c)).

Fig. 3: (a) binary image, (b) connected components extracted,
(c) contours extracted

Fig. 4: (a) filled shapes (b) morphological opening (c) classes
extracted

9https://opencv.org/
10https://www.python.org/

As there is a line between classes, only one connected
component is obtained for the two classes and the association
between them (Fig. 4(a)). In order to separate them, connected
components are filled (Fig. 4(b)) and a morphological opening
is performed. By using the previous image as a binary mask
on image obtain in 3(b), only classes are obtained (Fig. 4(c)).

Fig. 5: Segmentation result of class diagram

C. Segmentation

Finally, thanks to all step realized before, we are able to
segment a class diagram into elements representing individual
class box (Fig. 5(a)), class box component containing the class
name (Fig. 5c) and class box component containing attributes
name (Fig. 5b). Classical recognition methods can be then used
to recognize shapes and classical Optical character recognition
(OCR) as Tesseract 11 can be used to recognize the hand-
written class name (Fig. 5).

VI. FUTURE WORKS

A. Finalization of the sketches recognition tool

The purpose of the work presented in this section was to
elaborate the specifications of our sketch recognition mech-
anism. For the moment, we have only made a very simple
prototype to validate that it is possible to automatically extract
information from the sketch. The few tests carried out have
been promising. So we plan the future steps to continue
developing our tool as shown in Fig 6. First, we will need to
complete the segmentation of shapes and text in more complex
diagrams. Then Tesseract engine will be used to perform OCR
recognition of names, methods, attributes, cardinalities. For
shape features recognition, we will need to build a corpus of
hand-drawn class diagrams. Ho-Quang et al. [19] have built a
similar base of digitized images of class diagrams built with
UML tools and found on the internet. Our base of hand-drawn
CD diagrams will be used to train a classification algorithm an-
alyzing shape elements to extract the information concerning
size, orientation and type. Then, this trained classifier will be
able to identify elements of a CD diagram. Once completing
these steps and combining their results, we hope to obtain
sketches with augmented information.

11https://github.com/tesseract-ocr/tesseract



Fig. 6: Overview of the entire future prototype

B. Experimentation

The goal of our work is to verify that more sketches in
projects and our recognition and classification mechanism
can help to reintroduce software architecture modeling as an
effective practice in the engineering project.

We plan to do an experimentation and evaluation of our
prototype with IT professionals and students. The first step is
to evaluate the interest of an assisted archiving of the sketches.
The second one is to evaluate the added value of later retrieval
in a new project. And the third one is to evaluate the added
value of the archived sketch to understand a code that the
engineer did not write, for instance, a new team member.

a) Assisted archiving: We are designing our tool with
ease of use in mind. We will ask the practicing software
engineer to photograph his sketch with its smartphone. Our
tool will archive the sketch recognizing the maximum of
content semantic (shape, text, etc.) and adding context data
from other tools like the code editor, the project calendar, etc.
The first part of the evaluation is to observe the developer
using our prototype, to find out if it is easy to use and if it

helps to increase the use of sketches in IT projects, and if it
encourages improvement of the quality of the sketches. And
finally, we want to know if the engineer accepts to use and
disseminate his sketches as documentation of its code.

b) The case of a new project: In the case of a practicing
engineer brainstorming on a new project, we experiment with
two types of engineer, the first one starts to draw sketches as
he used to do, the other receives help from our tool. In the
second case, he takes a photo of the draft of a sketch and the
tool shows him all the corresponding sketches. Will it be a
help for an engineer? And what use does the engineer have of
it?

c) The case of a new team member: In the same way,
we will compare two types of engineer. The first one tries to
discover the code without help. The other selects a piece of
code and our tool shows him the corresponding sketches.

VII. CONCLUSION

In this paper, we list some known reasons why docu-
mentation and graphical representation are important for the



software to be designed and maintained. We focused on UML
models. Then we select in the literature some obstacles to
the adoption of UML diagrams to accompany the software
development process. Our motivation is to verify the idea
that using hand-drawn sketches that every developer naturally
does, can improve traditional development processes or agile
approaches. To set up experiments we elaborate a mechanism
simply to use without adding any cognitive load to the
developers. This mechanism uses off-line sketches recognition
techniques. We describe our simple prototype that confirms
we can automatically extract information from the sketch.
So we plan the future steps to continue developing our tool.
Finally, we present as a future work different cases we want to
experiment to check the viability of our proposition in actual
IT projects and to verify if our proposition really improves the
quality and effectiveness of software modeling process.

REFERENCES

[1] Gayane Azizyan, Miganoush Katrin Magarian, and Mira Kajko-
Mattsson. Survey of agile tool usage and needs. In 2011 Agile
Conference, AGILE 2011, Salt Lake City, Utah, USA, August 7-13, 2011,
pages 29–38, 2011.

[2] Sebastian Baltes and Stephan Diehl. Sketches and Diagrams in Practice.
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 530–541, 2014.

[3] Sebastian Baltes, Fabrice Hollerich, and Stephan Diehl. Round-trip
sketches: Supporting the lifecycle of software development sketches
from analog to digital and back. CoRR, abs/1708.01787, 2017.

[4] Sebastian Baltes, Peter Schmitz, and Stephan Diehl. Linking sketches
and diagrams to source code artifacts. CoRR, abs/1706.09700, 2017.

[5] Showmik Bhowmik, Ram Sarkar, Mita Nasipuri, and David S. Doer-
mann. Text and non-text separation in offline document images: a survey.
IJDAR, 21(1-2):1–20, 2018.

[6] Michel R. V. Chaudron, Werner Heijstek, and Ariadi Nugroho. How
effective is UML modeling ? - an empirical perspective on costs and
benefits. Software and System Modeling, 11(4):571–580, 2012.

[7] Michel R. V. Chaudron and Rodi Jolak. A vision on a new generation of
software design environments. In Proceedings of the First International
Workshop on Human Factors in Modeling co-located with ACM/IEEE
18th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 2015), Ottawa, Canada, September 28, 2015.,
pages 11–16, 2015.

[8] Qi Chen, John C. Grundy, and John G. Hosking. SUMLOW: early
design-stage sketching of UML diagrams on an e-whiteboard. Softw.,
Pract. Exper., 38(9):961–994, 2008.

[9] Mauro Cherubini, Gina Venolia, Robert DeLine, and Andrew J. Ko. Let’s
go to the whiteboard: how and why software developers use drawings.
In Proceedings of the 2007 Conference on Human Factors in Computing
Systems, CHI 2007, San Jose, California, USA, April 28 - May 3, 2007,
pages 557–566, 2007.

[10] Uri Dekel and James D. Herbsleb. Notation and representation in collab-
orative object-oriented design: an observational study. In Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2007,
October 21-25, 2007, Montreal, Quebec, Canada, pages 261–280, 2007.

[11] Richard O. Duda and Peter E. Hart. Use of the hough transformation to
detect lines and curves in pictures. Commun. ACM, 15(1):11–15, 1972.

[12] Ana M. Fernández-Sáez, Danilo Caivano, Marcela Genero, and Michel
R. V. Chaudron. On the use of UML documentation in software
maintenance: Results from a survey in industry. In 18th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October
2, 2015, pages 292–301, 2015.

[13] Florian Geyer, Jochen Budzinski, and Harald Reiterer. Ideavis: a hybrid
workspace and interactive visualization for paper-based collaborative
sketching sessions. In Nordic Conference on Human-Computer Interac-
tion, NordiCHI ’12, Copenhagen, Denmark, October 14-17, 2012, pages
331–340, 2012.

[14] Parisa Ghazi and Martin Glinz. Challenges of working with artifacts
in requirements engineering and software engineering. Requirements
Engineering, 22(3):359–385, Sep 2017.

[15] Achraf Ghorbel, Aurélie Lemaitre, Éric Anquetil, Sylvain Fleury, and
Eric Jamet. Interactive interpretation of structured documents: Appli-
cation to the recognition of handwritten architectural plans. Pattern
Recognition, 48(8):2446–2458, 2015.

[16] J. Grundy and J. Hosking. Supporting generic sketching-based input
of diagrams in a domain-specific visual language meta-tool. In 29th
International Conference on Software Engineering (ICSE’07), pages
282–291, May 2007.

[17] Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch
recognition system for uml class diagrams. In ACM SIGGRAPH 2006
Courses, SIGGRAPH ’06, New York, NY, USA, 2006. ACM.

[18] Jorge-Ivan Herrera-Camara and Tracy Hammond. Flow2code: From
hand-drawn flowcharts to code execution. In Proceedings of the
Symposium on Sketch-Based Interfaces and Modeling, SBIM ’17, pages
3:1–3:13, New York, NY, USA, 2017. ACM.

[19] T. Ho-Quang, M. R. V. Chaudron, I. Samelsson, J. Hjaltason, B. Karas-
neh, and H. Osman. Automatic classification of uml class diagrams from
images. In 2014 21st Asia-Pacific Software Engineering Conference,
volume 1, pages 399–406, Dec 2014.

[20] Markus Kleffmann, Sebastian Rohl, Matthias Book, and Volker Gruhn.
Evaluation of a traceability approach for informal freehand sketches.
Autom. Softw. Eng., 25(1):1–43, 2018.

[21] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs
in collocated software development teams. In 29th International Con-
ference on Software Engineering (ICSE 2007), Minneapolis, MN, USA,
May 20-26, 2007, pages 344–353, 2007.

[22] Philippe Kruchten. The Rational Unified Process: An Introduction,
Second Edition. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 2000.

[23] E. Lank, J. Thorley, S. Chen, and D. Blostein. On-line recognition
of uml diagrams. In Proceedings of Sixth International Conference on
Document Analysis and Recognition, pages 356–360, 2001.

[24] D. Latoza, Thomas, Gina Venolia, and Robert Deline. Maintaining
mental models: a study of developer work habits. Proceedings of the
28th International Conference on Software Engineering, pages 492–501,
2006.

[25] Seonah Lee and Sungwon Kang. What situational information would
help developers when using a graphical code recommender? Journal of
Systems and Software, 117:199–217, 2016.

[26] Leonhard Lichtschlag, Lukas Spychalski, and Jan O. Borchers. Code-
graffiti: Using hand-drawn sketches connected to code bases in naviga-
tion tasks. In IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2014, Melbourne, VIC, Australia, July 28 - August
1, 2014, pages 65–68, 2014.

[27] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der
Hoek. Supporting informal design with interactive whiteboards. In CHI
Conference on Human Factors in Computing Systems, CHI’14, Toronto,
ON, Canada - April 26 - May 01, 2014, pages 331–340, 2014.

[28] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der
Hoek. How software designers interact with sketches at the whiteboard.
IEEE Trans. Software Eng., 41(2):135–156, 2015.

[29] Marian Petre. UML in practice. In Proceedings - International
Conference on Software Engineering, pages 722–731, 2013.

[30] Mahdi Rabbani, Reza Khoshkangini, H. S. Nagendraswamy, and Mauro
Conti. Hand drawn optical circuit recognition. In Proceeding of
the Seventh International Conference on Intelligent Human Computer
Interaction, IHCI 2015, Allahabad, India, 14-16 December 2015., pages
41–48, 2015.

[31] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling
Language Reference Manual, The (2Nd Edition). Pearson Higher
Education, 2004.

[32] Ugo Braga Sangiorgi, François Beuvens, and Jean Vanderdonckt. User
interface design by collaborative sketching. In Designing Interactive
Systems Conference 2012, DIS ’12, Newcastle Upon Tyne, United
Kingdom, June 11-15, 2012, pages 378–387, 2012.

[33] Ken Schwaber. Scrum development process. In Jeff Sutherland, Cory
Casanave, Joaquin Miller, Philip Patel, and Glenn Hollowell, editors,
Business Object Design and Implementation, pages 117–134, London,
1997. Springer London.



[34] T. Sedano, P. Ralph, and C. Péraire. Software development waste. In
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), pages 130–140, May 2017.

[35] Jean Serra. Image Analysis and Mathematical Morphology. Academic
Press, Inc., Orlando, FL, USA, 1983.

[36] David Socha and Josh D. Tenenberg. Sketching and conceptions
of software design. In 8th IEEE/ACM International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 2015,
Florence, Italy, May 18, 2015, pages 57–63, 2015.

[37] Dan Song, Dongming Wang, and Xiaoyu Chen. Retrieving geometric
information from images: the case of hand-drawn diagrams. Data Min.
Knowl. Discov., 31(4):934–971, 2017.

[38] Christoph Johann Stettina and Werner Heijstek. Necessary and ne-
glected?: An empirical study of internal documentation in agile software
development teams. In Proceedings of the 29th ACM International
Conference on Design of Communication, SIGDOC ’11, pages 159–
166, New York, NY, USA, 2011. ACM.

[39] Margaret-Anne D. Storey, Alexey Zagalsky, Fernando Marques Figueira
Filho, Leif Singer, and Daniel M. Germán. How social and communi-
cation channels shape and challenge a participatory culture in software
development. IEEE Trans. Software Eng., 43(2):185–204, 2017.

[40] Harald Störrle. How are conceptual models used in industrial soft-
ware development?: A descriptive survey. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, EASE 2017, Karlskrona, Sweden, June 15-16, 2017, pages
160–169, 2017.

[41] Satoshi Suzuki and KeiichiA be. Topological structural analysis of
digitized binary images by border following. Computer Vision, Graphics,
and Image Processing, 30(1):32 – 46, 1985.

[42] B. Vesin, R. Jolak, and M. R. V. Chaudron. Octouml: An environment for
exploratory and collaborative software design. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), pages 7–10, May 2017.

[43] Jagoda Walny, Jonathan Haber, Marian Dörk, Jonathan Sillito, and
M. Sheelagh T. Carpendale. Follow that sketch: Lifecycles of diagrams
and sketches in software development. In Proceedings of the 6th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, VISSOFT 2011, Williamsburg, VA, USA, September 29-30,
2011, pages 1–8, 2011.

[44] Dustin Wüest, Norbert Seyff, and Martin Glinz. Flexisketch: A mobile
sketching tool for software modeling. In Mobile Computing, Applica-
tions, and Services - 4th International Conference, MobiCASE 2012,
Seattle, WA, USA, October 11-12, 2012. Revised Selected Papers, pages
225–244, 2012.

[45] Dustin Wüest, Norbert Seyff, and Martin Glinz. FLEXISKETCH
TEAM: collaborative sketching and notation creation on the fly. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 2, pages 685–688, 2015.


