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ABSTRACT

The term “Internet of Things” (IoT) refers to a distributed network
of physical objects and applications that create, transform and con-
sume data. Due to the growing interest in digital transformation
and Industry 4.0 topics, IoT is becoming more and more important.
However, in order to correctly implement IoT concepts that are
mostly highly complex, solutions and techniques must be provided
to tackle a multitude of challenges such as heterogeneity, collabora-
tive development, reusability of software artifacts, self-adaptation,
etc. Model-Driven Engineering (MDE) uses the abstraction power
of models to handle the complexity of systems and thus it may
act as a key-enabler for IoT systems and applications. Therefore,
we present an initial mapping study on the state-of-the-art in the
field of MDE4IoT. This study aims to identify to which extent MDE
techniques are currently being applied in the field of IoT, and which
challenges are addressed.
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1 INTRODUCTION

The Internet of Things (IoT) is the network of physical things and vir-
tual appliances that communicate and interact with each other [4].
The term “things” refers to a wide range of different devices like
vehicles, wearable devices, physical sensors (e.g., an embedded air
humidity sensor), virtual sensors (e.g., a keystroke analyzer), etc.
These things are further interconnected and can exchange data [11],
which allows monitoring and controlling devices remotely.

Since embedded hardware (a key enabler for IoT devices) is be-
coming more affordable, more and more devices are developed and
produced every year [12]. Due to the increasing number of devices
and complexity of systems, IoT faces different challenges such as
(i) heterogeneity [14], (ii) availability of devices [6], (iii) big amount
of data [10, 11], (iv) security and privacy [6, 11], etc. Various [oT
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concepts have emerged in order to tackle some of these challenges,
such as the ones listed below:

e Device Description
During runtime devices execute different operations, sen-
sors provide continuous readings, actuators are triggered
and might log their actions in some logging facility. Conse-
quently, a multitude of data is generated. A device descrip-
tion resembles a way to hold metadata to simplify the task of
consuming the right data for the right task, and to overcome
some forms of heterogeneity as presented in [44]. Beside de-
vice information, developers and manufacturer may describe
non-functional properties (e.g., energy consumption) which
need to be meaningfully represented [12, 42].

e Discovery
The discovery concept addresses the challenge of availability
of devices in an ever-changing environment. For instance,
newly added participants can be registered by the discovery
of devices and service processes [17, 23]. Yet, easy discovery
need to be established in a secure manner, such as to prevent
attacks from third parties.

e Deployment
The deployment concept is the distribution of software com-
ponents to middleware and hardware. Executable artifacts
are deployed to suiting devices. Deployment further deals
with the possibility of changing the firmware of things (e.g.,
in order to provide security patches).

o Self-Adaptation
Self-adaptation is the power of a system to adapt itself when-
ever there is a change in the environment. For instance, Cic-
cozzi and Spalazzese present an example of self-adaptation
by a smart street light example [12]. In this example, road
users are automatically warned about the speeding of other
cars, bikes, or pedestrians by means of lampposts and col-
ored lights. If a lamppost is unfortunately not available, the
system must automatically react by self-adaptation in or-
der to guarantee the safety of road users. Another aspect of
self-adaptation refers to self-healing properties, i.e., the ca-
pability of a device to overcome failure of a sub-component
or another connected device that is required for normal op-
eration.

e Service Composition
IoT devices expose their data and functionality through re-
motely accessible services and so abstract from the under-
lying hardware. IoT appliances can consume these services,
aggregate input data from various sources and provide new
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information that can in turn be consumed by other appli-
ances or devices. The resulting IoT application represents a
“service composition” [41, 42].
o Cloud/Fog/Edge
Cloud services play typically an important role in IoT en-
vironments to consolidate data from various sources and
to overcome the limited computational power of embedded
devices that operate at the edge of the network. In order to
reduce the amount of data sent between edge devices and
central cloud services, or to reduce the response time for a
given remote call, a hierarchical network might be used in
certain cases. Resulting local cloud services resemble the fog
of an IoT system. Time-critical data can be processed at the
edge of the network (edge computing) and/or using local
cloud services (fog computing) [40, 44].
o Middleware

Middleware aims to hide the heterogeneity of IoT devices
and communication protocols in a distributed system and to
create a homogeneous interface for interaction purposes [2].
Often, middleware comprises (i) methods to describe the
services of devices and (ii) a communication protocol for
accessing these services. In a complex IoT application one
could easily have to deal with a number of different middle-
ware approaches that need to be understood and supported.

This listing gives a hint on the complexity and diversity of available
IoT concepts. One way, amongst others, to handle complexity is the
use of Model-Driven Engineering (MDE) techniques [8, 37]. MDE
follows the principle “everything is a model” for driving the adop-
tion and ensuring the coherence of model-driven techniques [7].
A key principle is to address engineering issues with formal mod-
els, i.e., machine-readable and processable representations. Thus,
MDE provides a set of advantages for driving an engineering pro-
cess effectively and efficiently [8]. Thereby, modeling languages,
including Domain Specific Languages (DSLs), are used together
with techniques like semantic models, code generation, and model
transformation to reduce the effort and costs of developing soft-
ware applications [33]. For instance, through the abstraction power
of models the representation of a system can be more human un-
derstandable [23, 35]. Models can be aligned to create a global
and integrated representation of systems from different viewpoints
in order (i) to reason about consistency, (ii) to improve the inter-
nal structure without changing the overall behavior, and (iii) to
translate them to other formalisms for code generation and simu-
lation [8]. Various modeling environments offer tool support for
these tasks, which can be adapted to the used modeling language.
The overall goal of this mapping study is to get an initial in-
sight how and which IoT concepts are used in combination with
MDE. The remainder of the paper is structured as follows. Section 2
discusses related work. Section 3 presents our research method,
the defined research questions, and the screening process. In Sec-
tion 4 the extracted data is analyzed and the results are visualized.
Section 5 presents the conclusion and an outlook for future work.

2 RELATED WORK

In this section, we discuss systematic literature reviews (SLR) deal-
ing with MDE approaches in combination with the aforementioned
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concepts such as cloud computing, self-adaptation, service com-
position, etc. The following discussed SLRs give an overview of
related works in this direction without the claim of completeness.

In [32], the authors investigate the application of MDE approaches
and techniques in cloud computing. They were firstly interested in
the extent to which MDE is an effective development approach for
cloud computing, and secondly on cloud computing tools which
were developed by applying MDE techniques. In this context, they
identified 25 research works originated during 2009-2016. They
classified these works and related them to three different layers,
which are Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS). Roughly summarized, MDE
techniques are mostly applied on cloud applications at the SaaS
layer.

Often in literature the term “Cyber-Physical Systems (CPS)” is
used synonymously or closely related to IoT. Therefore, we point
to an SLR, presented by [31], which examines the concept of self-
adaptation in the domain of CPS. The authors report about a number
of studies using self-adaptation features in the engineering of CPS.
In our initial mapping survey, we also consider self-adaptation
as an IoT-concept, amongst others. Muccini et al. found out that
self-adaptation is a cross-layer concern, where engineering solu-
tions combine different adaptation mechanisms within as well as
across layers. Furthermore, the main concerns for self-adaptation
are performance, flexibility, and reliability.

An SLR in the domain of smart homes is delivered by [18]. The
survey analyzes tools for supporting end-user development for
smart home configuration and management. The investigated tools
have rule-based behavior definitions and visual interfaces, and they
are made for users without experience in software development.
However, since MDE has no matter of importance in this SLR it is
unclear whether MDE techniques have been applied when devel-
oping these tools, or not.

A related field to IoT are embedded systems, so we refer to
another SLR presented by [38]. This SLR do not explicitly consider
IoT and its concepts, but MDE techniques. The objective of this SLR
was to identify current features of the usage of choreography in the
domain of embedded systems. The SLR indicates that choreography
is seen as a solution for problems caused by technical as well as
technological heterogeneity, which are challenging problems in the
IoT domain. The authors found out that middleware is the context
in which choreography is most frequently studied and that MDE
techniques are frequently used for adaptation strategy.

Another SLR that takes MDE and service choreography adap-
tation into account is delivered by [28]. The authors classified 24
relevant existing studies in six categories based on the studies’ in-
vestigated topics which were: model-based, measurement-based,
multi-agent-based, formal-based, semantic reasoning-based, and
proxy layer approaches. Based on this classification, the authors
present a detailed summary of the state-of-the-art of service chore-
ography adaptation.

The main difference between the discussed SLRs to our initial
mapping study is that the presented ones are focusing on a single IoT
topic like cloud computing, self-adaptation, or service composition
in combination with MDE techniques. In contrast, we are taking
more than one topic into account when investigating MDE4IoT.
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3 METHODOLOGY

This section gives an overview of the search and screening pro-
cess of our initial mapping study. We firstly define our research
questions, and then conduct the search process by Google Scholar!.
Additionally, we use the snowballing method introduced in [43]
in order to find additional papers for our research scope. The pro-
cedure of our initial study is oriented towards the guidelines for
systematic literature reviews [5] and systematic mapping stud-
ies [34].

3.1 Research Questions

The research questions to be addressed are as follows:

o RQ 1: Which IoT concepts are tackled by MDE4IoT approaches?
o RQ 2: Which MDE approaches/techniques are used to solve
the challenges of IoT?

The main aim of this initial survey is to find out to which extent
MDE techniques are currently being applied in the field of IoT.
In addition, we investigate which of the previously introduced
challenges (cf. Section 1) are tackled by MDE approaches.

3.2 Search Process

We use Google Scholar for conducting our search process. The ac-
cepted languages of publications for our result set were restricted
to English and German. We made no restrictions for publication
date. We settled on the following search query:

(“‘model driven engineering’’ OR MDE OR ‘‘model based’’
OR ‘‘model driven’’)(‘‘internet of things’’ OR IoT)

Using this query, we were not focusing on specific IoT concepts
or MDE techniques, since our aim was to find publications with
a high relevance of, both IoT and MDE. Therefore, we selected
whole phrases (quotation mark) and not single words (except for
abbreviations). As output we got 18.400 results. In a next step, we
sorted the papers by date (newest first) and by relevance. Based on
Google Scholar, “relevance” in our survey means to take the number
of occurrences of the search terms within a paper into account.

For further investigations, we used the 22 most relevant papers
and the 15 most recent ones. Additionally, the 15 most quoted
papers were selected. Since Google Scholar cannot sort papers
according to the number of quotations, we looked through the first
500 publications manually. In a next step, we checked these 52
publications and filtered out all papers that had no reference to
MDE or IoT. After this filtering, 22 papers remained in the result set.
As mentioned before, we also used snowballing to get high relevant
papers in the scope of IoT and MDE. For this purpose, we checked
the references of the result set and found 24 additional papers in
our field of interest. Finally, our result set covers 46 documents: 22
from Google Scholar search and 24 from snowballing process. 3
publications of these 46 are project deliverables, and 43 are scientific
conference papers and articles.

!https://scholar.google.at/
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4 MAPPING OF PAPERS

In this section, we describe analysis and results to answer the
research questions (RQ 1 and RQ 2). For analyzing and classifying
the publications of our result set, we primarily used the abstract
and conclusion of a paper. If an assignment based on these two
parts was not possible, the approach of the paper has been read.
Whenever we were not able to do an assignment of a paper to one of
the IoT concepts and/or the defined MDE techniques, we excluded
it from our analysis. After this additional screening process, 26 of
46 publications remained in our result set.

4.1 RQ 1: Which IoT concepts are tackled by
MDEA4IoT approaches?

To answer this first research question, we started by analyzing the
covered IoT concepts of the publications in the result set. For this
purpose we checked and classified them regarding the used IoT
concepts (cf. Section 1) in order to deal with IoT challenges. Table 1
shows the utilised IoT concepts and the assigned publications. The
ordering is done by the numbers of publications assigned to an IoT
concept (i.e., we have done an occurrence count).

Table 1: Distribution of publications by IoT concepts

Concept Count | Publications

Service Composition | 15 [3], [6], [13], [15], [20], [21],
[22], [24], [25], [26], [27],
[29], [39], [40], [41], [42]

Discovery 11 (1], (3], 6], [9], [11], [13],
[24], [25], [36], [42], [44]

Device Description 10 (3], [6], [12], [13], [23], [30],
[33], [36], [42], [44]

Middleware 8 [13], [16], [22], [25], [27],
[29], [33], [44]

Cloud/Fog/Edge 7 (1], [9], [19], [22], [36], [40],
[44]

Deployment 6 [6], [11], [16], [24], [27],
[33]

Self-Adaptation 4 [11], [12], [29], [42]

We found out that most of the listed publications cover more
than a single IoT concept. One of the reasons is that IoT concepts
usually work together to successfully solve open challenges, there-
fore the introduced approaches serve several concepts. The pa-
pers [13, 42, 44] cover at least 4 different IoT concepts. The presented
approach in [13] presents a model-driven development toolkit for
industrial applications. The authors of [42] show a design of a com-
prehensive description ontology for IoT knowledge representation
and in [44] an architecture for massive IoT is presented. These three
publications examine IoT in a larger context, and therefore several
concepts were addressed.

An additional remarkable aspect is that all mentioned IoT con-
cepts (cf. Section 1) are applied in the research field of MDE4IoT.
This proves that the advantages of MDE are taken in different IoT
fields. Many papers of the result set used Web services such as SOAP
and especially RESTful Web services to expose the functions and
data of IoT devices. There is also a project focusing the MDE4IoT
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area. This project named BIG IoT [3, 9, 24, 36] tries to tackle the
challenges by building an ecosystem over multiple platforms. The
goal of the BIG IoT framework is to support the transformation from
an offering description representation to a W3C Thing description
representation [24].

4.2 RQ 2: Which MDE approaches/techniques
are used to solve the challenges of IoT?

For answering the second research question, we analyzed the publi-
cations on the basis of the used MDE techniques. Based on this, we
differ the following techniques which tackle various IoT challenges:

o Semantic Model/Meta Model: This category includes all ap-
proaches that use the concept of metamodeling.

o Code Generation: This category includes all approaches that
contain the automatic generation of source code in a specific
programming language.

e DSL/DSML: This technique describes the approaches where
a domain-specific language was developed.

e Model Transformation: This category includes all publica-
tions that use model transformations (transformation from
source to target models).

e UML Profile: This category is used for publications whose
approach presents its own UML profile.

o Specific Framework: All approaches in this category work
on specific model-based implemented frameworks.

Based on the listed MDE techniques, we classified the selected
and filtered publications. Table 2 shows the MDE techniques and
assigned publications. The scientific papers of [12, 15] introduce

Table 2: Distribution of publications by MDE techniques

Technique Count | Publication

Semantic Model/Meta Model | 17 [3], [6], [9], [11],
(13], [15], [16], [23],
[24], [25], [26], [29],
[30], [36], [39], [41],
[42]

Specific Framework 13 [1], [12], [15], [19],
[20], [22], [23], [24],
[25], [30], [33], [39],
(40]

Code Generation 5 [12], [15], [33], [40],
(41]

DSL/DSML 5 [11], [21], [27], [33],
(44]

Model Transformation 3 [12], [15], [39]

UML Profile 2 [12], [40]

MDEA4IoT frameworks covering more than only a single MDE tech-
nique. In contrast to the other publications, these two papers cover
in total 4 different techniques. The IoT-A deliverable [6] is the only
publication of our result set where the interaction of a user with
a device is modeled. In this context, the user can be a human or a
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digital entity, such as a service. Furthermore, the approach intro-
duced in [15] uses already IoT-A in the Papyrus? for IoT modeling
environment.

It is worth to mention that many different modeling tools, lan-
guages as well as frameworks were applied in the selected and
filtered publications. The following list gives an overview of this
diversity:

e EMF - Eclipse Modeling Framework>

o Xtext*

e MOF - Meta Object Facility®

e SysML - Systems Modeling Language®

e BIP - Behavior-Interaction-Priority’

e IoTML - IoT Modeling Language®

e MIM - Model Integrated Mechatronics®

e Srijan Languages!”

e ThingML!!

o UMLA4IoT!?

e MDEA4IoT [12]

e Sm@rt - Supporting Models at Run-Time!3

e DDL - Device Description Language!4

o MARTE®

4.3 Synopsis

Based on the classification of our result set it is now possible to
link IoT concepts with MDE techniques to an initial MDE4IoT map
(cf. Fig. 1). To put it in a nutshell, the most common combination is
semantic model/meta model with service composition. This com-
bination results from the fact that most approaches describe an
architecture for IoT as semantic model / metamodel where both
metadata and non-functional requirements are comprehensibly
mapped.

5 CONCLUSION AND OUTLOOK

In this initial mapping study on MDE4IoT, we investigated (i) to
which extent MDE techniques are currently being applied in the
field of IoT, and (ii) which MDE approaches/techniques are used
to solve the challenges of IoT. We used Google Scholar and snow-
balling to search for publications in the field of MDE4Iot and got
26 publications for our result set. We found out that the IoT con-
cepts such as service composition, discovery, deployment, device
description, middleware, cloud/fog/edge and self-adaptation are all
used in that area to solve IoT challenges (e.g., heterogeneity). In
concrete numbers this means that the most addressed IoT concept
is service composition with 16 occurrences followed by discovery
(11 occurrences), device description (10 occurrences), middleware

Zhttps://www.eclipse.org/community/eclipse_newsletter/2016/april/article3.php
3https://www.eclipse.org/modeling/emf/

“http://www.eclipse.org/Xtext/

Shttps://www.omg.org/mof/

Chttp://www.omgsysml.org

"http://www-verimag.imag.fr/Rigorous- Design-of-Component-Based. html
8https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-iotml.git
“http://seg.ece.upatras.gr/MIM/
Ohttps://github.com/pankeshlinux/IoTSuite/wiki/Specifying_Domain_Vocabulary
Uhttp://thingml.org/

2https://sites.google.com/site/umldiot/

Bhttp://code.google.com/p/smatrt/
Yhttps://www.cise.ufl.edu/~helal/opensource. htm
Dhttps://www.omg.org/omgmarte/
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Figure 1: Map of MDE techniques with IoT concepts

(8 occurrences), cloud/fog/edge (7 occurrences), deployment (6 oc-
currences), and self-adaptation (4 occurrences).

For answering our second research question (cf. Section 4.2), we
found out that the most occurring MDE technique in our result set
is semantic model/meta model with 17 occurrences, followed by spe-
cific framework (13 occurrences), code generation (5 occurrences),
DSL/DSML (5 occurrences), model transformation (3 occurrences),
and UML profile with an occurrence of 2.

Additionally, we investigated which of these techniques occur
with which IoT concept in the same paper. We found out that the
most frequent combination is semantic model/meta model (MDE
technique) with service composition (IoT concept).

We further found out that in many scientific papers RESTful
Web services were applied to expose the functions and data of
IoT devices, and most frequently used MDE frameworks are DDL,
ThingML, MDE4IoT, UML4IoT, and EMF.

Regarding the presented initial mapping study, we foresee the
following next steps. First of all, we plan to expand the used digital
libraries for the search process. We just used Google Scholar but
there are many other digital literature libraries available on the
Web such as Scopusl(’, ACM'7, and IEEE Xplorelg. Thus, in this ex-
tended search scope additional filtering criteria are offered by these
libraries that can be used for a better screening process. Second,
we plan to extend this mapping study to a systematic literature re-
view in order to enable a more precise analysis and a more detailed
synthesis.

From a content-wise perspective, it should be examined whether
MDEA4I0T has effects on existing modeling languages, or not. For
example, is it necessary to expand CloudML! for IoT or can this
language be used directly for modeling IoT concepts? The general

1Shttps://www.scopus.com
https://dlacm.org/
Bhttps://ieeexplore.ieee.org/Xplore/home.jsp
https://cloud.google.com/ml-engine/

question is, whether we need a domain specific language for a
domain such as IIoT, or whether general purpose languages are
sufficient to describe the IoT domain.
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