CEUR-WS.org/Vol-2245/mdebug_paper_3.pdf

A Generalized Stepping Semantics for Model Debugging

Simon Van Mierlo
University of Antwerp
Flanders Make vzw
simon.vanmierlo@uantwerpen.be

ABSTRACT

Stepping is arguably one of the most important operations for model
execution, and model debugging specifically. Each formalism, how-
ever, has a different set of supported stepping operations (e.g., big
step, combo step, and small step). Furthermore, many tools provide
a different terminology for these different steps (e.g., small step, mi-
cro step, and epsilon step). As such, the exact semantics of stepping
is unknown to the modellers, and might even differ between differ-
ent tools. Additionally, tool developers have no framework to check
whether they have implemented all useful stepping operations for
their formalism. In this paper, we define a hierarchical terminology
of stepping operations to provide a generalized vocabulary for both
users and developers of debuggers. We distinguish four “levels” of
stepping operations, related to the available knowledge in the exe-
cution trace. From a high to low level of abstraction, we term them
simulation stepping, black-box stepping, white-box stepping, and
implementation stepping. After introducing the framework and
terminology, we apply it to a number of already existing debuggers
for a large variety of formalisms.

KEYWORDS
Debugging, Stepping, Simulation

1 INTRODUCTION

Stepping through the execution of a program is arguably one of
the most essential debugging operations a developer has available.
Instead of observing the effects caused by the full execution of
the program, stepping operations provide a way of controlling the
execution manually. This serves different purposes: developers can
get a view into the evolution of the execution state step-by-step,
or even into how the evolution of the state is implemented in the
simulator/executor. Stepping is thus a way of understanding the
execution of a program, by exposing certain details of the execution
algorithm and state information to the user.

Given its importance in the programming domain, stepping has
frequently been ported to the (executable) model debugging domain
as well. In this case, modellers can freely step through the execution
of an executable model, as was the case with programs.

Many such executable modelling languages, or formalisms, exist,
each with their own set of tools to design, simulate, execute, and
debug. When it comes to stepping, formalisms (and their related
tools) may offer a set of stepping operations at different level of
detail. For example, in program code debugging, a step into offers a
view into the function called at the current line, while a step over
jumps over the line and shows the result of calling the function

MDEbug’18, October 2018, Copenhagen, Denmark
2018.

Yentl Van Tendeloo
University of Antwerp
yentl.vantendeloo@uantwerpen.be

Hans Vangheluwe
University of Antwerp
McGill University
Flanders Make vzw
hans.vangheluwe@uantwerpen.be

at the current line. In other formalisms, the distinction is often
made between a big step and a small step. For example, in the DEVS
debugger presented in [14], a big step jumps from the current
state to the next (stable) state. A small step, on the other hand,
shows the internal simulator steps needed to arrive at the next
stable state, thereby exposing implementation details. For Model
Transformations (MTs), Tichy et al. [11] transpose step into, step
over, step return, run until from traditional code debuggers, while
Sun and Grey [10] define a step operation that steps through all the
operations executed during pattern matching.

In contrast to most operational programming languages, which
are line-based, models have a widely varying structure. Some mod-
els are similarly line-based (e.g., an explicitly modelled action lan-
guage), whereas other are graph based (e.g., Petrinets) or a combina-
tion of multiple (e.g., Statecharts). The vocabularies used therefore
differ from formalism to formalism, and even from debugger to de-
bugger for the same formalism. We consider three potential issues
due to this disparity in terminology. First, it makes it difficult for
users of a tool to intuitively grasp the semantics of a given stepping
operation in a tool for a given formalism. Second, tool developers
cannot easily assess the completeness of the provided stepping
operations, with respect to the level of detail that is being offered
by these stepping operations. Third, developers of a new language
would benefit from a unified terminology to use as a prescription for
the definition of the language’s semantics specification. This would
further benefit the area of language design, and, more specifically,
the modular design of language fragments.

In this paper, we define a hierarchical terminology of stepping
semantics to provide a generalized vocabulary for both users and
developers of debuggers. We distinguish four “levels” of stepping
operations, related to the available knowledge in the execution trace.
From a high to low level of abstraction, we term them simulation
stepping, black-box stepping, white-box stepping, and implementa-
tion stepping. This leads to a framework, allowing to reason about
debuggers for any type of formalism.

Structure. Section 2 introduces the language DEVS and its debug-
ger, to serve as a running example. Section 3 explains our approach,
which considers stepping at different levels based on the infor-
mation exposed to the user. Section 4 applies our approach on a
number of representative formalisms by categorizing their stepping
operations using our vocabulary. Section 5 discusses the relevance
of our framework to several areas of research. Section 6 discusses
related work, and Section 7 concludes.

2 RUNNING EXAMPLE

As a running example for this paper, we present the Discrete Event
System Specification (DEVS) formalism [20]. DEVS is a discrete-
event formalism with well-defined syntax and semantics. A DEVS
model accepts a trace of input events, and produces a trace of output
events as the result of simulation. During simulation, the internal
state of the DEVS components evolves over (simulated) time. Due
to the precisely defined semantics, as well as the clear separation
between input event trace, output event trace, and state trace, DEVS
is an ideal candidate to demonstrate our approach.

2.1 The DEVS Formalism

DEVS, and in particular Parallel DEVS [2], is used to model the
behaviour of discrete event systems. Its basic building blocks are
atomic DEVS models, which are structures

M=<X,Y,S, 5int’ 5ext7 6conf» /1» ta,qinit >

where the input set X denotes the set of admissible input events
of the model. The output set Y denotes the set of admissible out-
put events of the model. The state set S is the set of sequential
states of the model. The internal transition function 8in; : S — S
defines the next sequential state, depending on the current state.
The output function A : S — Y? defines the bag of output events
to be raised for a given sequential state, upon triggering the in-
ternal transition function. The external transition function Sext :
Q x x? > Swith Q = {(s,e)ls € S,0 < e < ta(s)} gets called
whenever an external input (€ X) is received. The time advance
function ta : S — Ry . defines the simulation time the system
remains in the current state before triggering its internal transition
function. The confluent transition function Sconf S X xb 5 sis
called if both an internal and external transition collide at the same
simulation time, replacing both functions. The initial total state
qinit = (50, €0) € Q defines the initial state of the model (so), and
how long the model has already been in this state (eg) [17].

A network of atomic DEVS models is called a coupled DEVS
model. The output of one atomic DEVS model can be connected to
the input of other atomic DEVS models using “channels”. For each
channel, a transfer function can be defined to translate output to
input events. Parallel DEVS is closed under coupling, which means
that coupled models can be nested to arbitrary depth.

An abstract simulator for Parallel DEVS, which computes the
next state of the system (a “step”) until its end condition is satisfied,
is described in [3]. The algorithm can be summarized as follows.

(1) Compute the set of atomic DEVS models whose internal
transitions are scheduled to fire (imminent components).

(2) Execute the output function for each imminent component,
causing events to be generated on the output ports.

(3) Route events from output ports to input ports, translating
them in the process by executing the transfer functions.

(4) Determine the type of transition to execute for the atomic
DEVS model, depending on it being imminent and/or receiv-
ing input.

(5) Execute, in parallel, all enabled internal, external, and con-
fluent transition functions.

(6) Compute, for each atomic DEVS model, the time of its next
internal transition (specified by its time advance function).

We previously presented a debugger for Parallel DEVS [14],
which supports three types of steps: (1) a big step executes one
iteration of the simulation algorithm, (2) a small step executes one
phase of an iteration, (3) and a step back steps back to the previous
state in the trace [16]. We will start from these definitions of “steps”
to generalize to the vocabulary and framework presented in the
remainder of the paper.

2.2 An Example Model with a Failure

To demonstrate the different levels of granularity at which bugs can
be found, we consider an example system: a traffic light. To keep
it simple, we consider only two requirements: (1) the traffic light
should continuously cycle between the three lights in this order:
green, yellow, red, green, yellow, red, ..., (2) the traffic light should
stay green for 57 seconds, stay yellow for 3 seconds, and stay red
for 60 seconds.

Our system consists of one atomic model, defined in Equation 1.

Light = (X}, Y, S, 5int, 13 5ext, b 5conf, L AL tag, qinit,l> (1)
Xi=1{}
Y; = {display_red, display_green, display_yellow}
S; = {red, green, yellow}
Oint, 1 = {green — yellow, yellow — red,red — green}
5ext, 1= {}
5conf, 1=1{}
A; = {green — [display_green],
yellow — [display_yellow],
red — [display_red]}
ta; = {green — 57,red — 60, yellow — 3}
init, 1 = {red, 60}

We assume that a test suite is also constructed that checks for
the satisfaction of both requirements. When executing the test
suite, a failure is noticed, thereby meaning that at least one of the
requirements is not satisfied. This will form the starting point of
our debugging efforts.

3 APPROACH

We now present our hierarchical stepping operations and the pro-
posed unified vocabulary, applied to the running example. It is
based on an analysis of the different levels of traces in a simulation
or execution run, where each level increases the amount of detail
offered to the user of the debugger. As presented in [13], a failure
occurs when a requirement of the system is not satisfied by the
design of the system (which, we assume, is described in a model).
Once that failure is observed, the source of the failure (a defect)
can be found by, amongst others, observing the behaviour of the
system in the form of traces.

Depending on the debugger, different levels of detail can be of-
fered. We argue that there are four such levels, and we claim that
they are hierarchical, as shown in Figure 1. Intuitively, when switch-
ing to a lower level, more information is exposed to the user. The
first level is the requirements level, which determines which require-
ment is not satisfied. An arbitrary number of input/output traces
exist that can lead to the requirement failing; at the input/output
(second) level, the externally observable behaviour of the model
that lead to the requirement not being satisfied is exposed. Similar

(Simulation Step)

|[Requirements | 1_|
1

(Black-Box Step) 1

*

1 (White-Box Step) I

State Trace x
(Implementation Step)

*Implementation Trace|

Figure 1: The different levels at which a defect can be ob-
served by the user.

observations hold for lower levels of abstraction. At the state trace
(third) level, which shows the trace of internal (globally consistent)
states that lead to the faulty input/output trace. At the implementa-
tion (fourth) level, the outcome of the intermediate (i.e., non-stable)
simulator states that lead to the faulty state trace is exposed. All
four levels are related to the execution trace, presenting to the user
different levels of detail.

3.1 Simulation Step

At the top-most level (the requirement level), the corresponding
step is the simulation step. This step simulates the whole system and
reports back the result: either the requirement is satisfied or it is
not. As a debugging operation, it merely signals which requirement
was not satisfied. While it is not a traditional debugging operation,
as it is exactly the same as ordinary simulation, it is important to
include it here at the root of our hierarchy. A single simulation
step takes the model to its final state, defined using a termination
condition (e.g., after 1000 seconds of simulated time).

Running Example. In the context of our running example, sim-
ulation stepping for the two test cases made for validating the
requirements signals that requirement 2 is violated: the traffic light
does not display the correct colour for a long enough period of time.
At this level, we have no further insights in the model; we will have
to go to a lower level of abstraction.

3.2 Black-Box Step

One level down from the simulation step is the black-box step. Since
generally the validation of the requirements is based on some type
of query over the input/output trace, this step makes use of the
input/output trace generated during the simulation in which the
requirement was not satisfied. It provides a view on the externally
observable behaviour: a trace of the input and output of the model
under study. These steps are “black-box”, in the sense that they
consider the model as a black box that accepts input and produces
output. Our framework is agnostic to the type of trace: it could be
discrete (a finite number of events in any finite time interval) or
continuous (an infinite number of events in any finite time interval).
In our example, we focus on discrete traces.

A single black-box step takes the model from one externally
observable event to another. This means that we extend the set
of reachable configurations to those points in time where an in-
put or output event occurs. All intermediate configurations are
unreachable and might not even exist.

0 57 60 120

input A

>
>

simulation time

state /

simulation time
output

display_red @ @

display_yellow

display_green

simulation time
Figure 2: Stepping through an input/output trace.

Running Example. In the context of our running example, black-
box stepping would give us the trace shown in Figure 2. As can
be seen, this simple model has no input events, but has several
output events. From these outputs, it is clear that the requirements
are indeed not satisfied, as, for example, the time between the
display_green and display_yellow is not equal to 57. To attempt to
find the cause, we will have to observe the state of the model.

3.3 White-Box Step

One level down from the black-box step is the white-box step. This
step makes use of all the knowledge from the black-box step, but
additionally includes information on the internal state of the model.
The internal state—consisting of variable values, instruction pointer,
internal configuration, ..., depending on the formalism-can evolve
autonomously (without an input event driving the state change)
and does not necessarily lead to an output event. But the internal
state trace leading up to behaviour visible in the input/output trace
is important towards finding the source of a failure. A single white-
box step takes the model from one globally consistent state to
another. This means that we further extend the set of reachable
configuration with the point in time where a state change occurs,
even if the state changes to itself. All intermediate configurations
are unreachable and might not even exist.

Running Example. In the context of our running example, white-
box stepping gives us the trace shown in Figure 3. There are no
additional points in simulated time that we can step to, but we gain
insight into the state evolution of the model. In this case, we see that
the state and events are desynchronized: the event display_green
is shown right before the state changes to yellow. This gives an
additional direction for our search, but it does not pinpoint the
error in the model yet. For that, we will have to dig deeper.

3.4 Implementation Step

One level down from the white-box step is the implementation step.
This step makes use of all the knowledge from the white-box step,
but additionally includes information about the execution order
within the simulator. State changes are always the result of some
(complex) processing steps within the simulator. These steps expose
implementation details of the simulator used, which are usually
shielded: models specify what a system does, not how it does it. As

57 60 120
input

>
>

simulation time

state

@> —> o

? ®

Yellow

Green

>

simulation time
output

display_red @ @

display_yellow

display_green

simulation time

Figure 3: Stepping through a state trace.

aresult, an implementation step can expose non-reachable (globally
inconsistent) states in a set of “phases” the simulator goes through
to compute the next reachable state. For example, in the context of
DEVS, implementation steps are at the level of computing output
functions and performing transitions. One implementation step
might thus cause the execution of the output functions, and the
next implementation step might compute the internal transitions.

Running Example. In the context of our running example, imple-
mentation stepping gives us the trace shown in Figure 4. As can be
seen, the information is exactly the same as before, but now the
“instantaneous” jumps between stable states get broken down in the
various implementation steps that were necessary. By looking at the
sequence of these calls, as well as the arguments passed, we notice
that for each transition, the output function is invoked before the
transition itself. Given this knowledge, which is part of the DEVS
execution semantics, our defect becomes clear: when transitioning
to the green state, the output function is invoked on the red state
(with A(red) = show_red). This is an often made mistake when
modelling with DEVS; it can easily be fixed by updating the output
function to the one shown in Equation 2.

A = {red — [display_green)], (2)
green — [display_yellow],
yellow — [display_red]}

Rerunning the test suite shows that the model satisfies both require-
ments now.

4 UNIFICATION OF EXISTING FORMALISMS

To demonstrate the usefulness of our vocabulary as a framework
for classifying debugging operations, we apply it to a number of
representative formalisms. The goal is to show that we can apply
the framework to formalisms with widely differing semantics. Each
formalism is presented in turn, with some motivation for its inclu-
sion, and then its stepping semantics is discussed. The “simulation
step” is the same for all formalisms (i.e., run the simulation from
beginning to end) and is therefore not discussed.

Causal Block Diagrams (CBD) [1]. Allows the modelling of mathe-
matical equations using a dataflow notation similar to Synchronous

0 57 60 120
input T
>
simulation time
state
Red!

ta(red) = 60
Sint(yellow) = red
Alyellow) = [display_yellow]

A(red) = [display_red] A(red) = [display_red]

Yellow |-)dint(red).= green Sint(red). =.green

ta(yellow) = 3
ta(green) = 57 Sint(green) = yellow ta(green) = 57
Green A(green) = [display_green]
>
simulation time
output
display_red @ @
display_yellow

display_green

simulation time
Figure 4: Stepping through an implementation trace.

Data Flow. It is implemented in tools such as Simulink by the
Mathworks. A model in CBDs consists of blocks representing math-
ematical operations such as addition, division, etc. These blocks are
connected with signals: each block has a number of input and out-
put signals. These operations can be time-dependent: for example,
a block can integrate its incoming signal value over time. Algebraic
loops can be created if the input signal of a block depends on its
own output value; this requires to feed all strongly connected com-
ponents (representing a (linear) set of equations) to a solver. The
simulation algorithm for CBDs updates the output signal values of
each block each time step. To do this, each iteration starts with a de-
pendency analysis to discover the strongly connected components,
and to create a schedule that decides the order in which the signal
values will be computed. Then, the simulation algorithm loops over
all blocks, computing their new output signal value. This effectively
discretizes the behaviour. We map our steps onto CBDs as follows:

o Black-Box Step: step to the next sampled input/output signal
value.

e White-Box Step: step over one iteration of the simulation
algorithm, showing the new values of all signals. Due to the
discretization and the fact that each block is recomputed in
every iteration, this is exactly equal to black-box stepping.

o Implementation Step: step through the inner loop that com-
putes the new values of the components in order, or option-
ally solve an algebraic loop.

Statecharts (SCs) [6]. Offers abstractions to model the timed, re-
active, autonomous behaviour of a system. Its main abstractions
are states, which model the configuration the system is in, and
transitions between these states, which model the dynamics of the
system and can be triggered by (input) events or by a timeout, op-
tionally accompanied by a condition on the state variables of the
system. States can be composed orthogonally (where each orthogo-
nal region has an active state) or hierarchically in composite states.
Similar to DEVS, it is a discrete-event formalism: state changes
occur at discrete points in (simulated) time, and are triggered by
discrete events. Nonetheless, DEVS and Statecharts have differ-
ent notions of modularity and hierarchy, making them sufficiently
different. We map our steps onto SCs as follows:

o Black-Box Step: step to the next event in the I/O trace.

o White-Box Step: step to the next globally consistent state,
which executes applicable transitions, possibly concurrently.

o Implementation Step: step through the inner loop that de-
tects enabled transitions, selects the applicable ones, and
atomically executes a single one even if multiple are to be
executed concurrently.

Action Language (AL) [15]. Is a line-based formalism and is com-
parable to procedural programming languages. Nonetheless, its
syntax and semantics are explicitly modelled using a metamodel
and model transformations, respectively. Its syntax consists of the
usual imperative programming constructs (variable declaration
and assignment, while- and for-loops, function definitions), which
are executed sequentially in a line-by-line fashion. It is not timed,
although a sleep function is provided. AL provides facilities for ex-
ternal input and output, similar to stdin and stdout, through the
use of special input and output functions. These “events” are times-
tamped by their wall-clock time, relative to the start time of the
program’s execution. We map our steps onto AL as follows:

o Black-Box Step: step to the next call to the input/output func-
tions in the program.

e White-Box Step: step through the execution of the program
line-by-line.

o Implementation Step: show how statements are executed by
the runtime. This reveals implementation details, such as
program counter and memory locations, as well as how the
instructions of the target platform are executed one-by-one
to execute the phases of the (currently executing) statement.

Petri Nets (PN) [8]. Allows to model non-deterministic systems.
Its main abstractions are places (containing tokens) and transitions,
which have a number of input places and a number of output places.
A transition is enabled if there are at least as many tokens in its
input places as the weight of the link. An enabled transition can be
triggered, thereby removing tokens from its input places and adding
tokens to its output places. Petri Nets are mainly used to evaluate
safety properties of systems, such as making sure they cannot
reach an unsafe/invalid configurations (corresponding to a marking,
which lists the number of tokens for each place). The analysis of a
PN results in a reachability graph, listing all reachable markings,
and the transitions that lead from one marking to another. Stepping
through an analysis is possible, but here we restrict ourselves to the
simulation of a PN model: instead of analyzing the full model, we
simulate one possible trace through possible reachable markings.
We map our steps onto PN as follows:

o Black-Box Step: there is no input/output, except for whether
or not the system has reached a safe state. So the black-box
step is equivalent to the simulation step.

e White-Box Step: execute one enabled transition, out of po-
tentially many concurrently enabled transitions.

o Implementation Step: show how the set of enabled transitions
is computed; then, show how one of them is chosen to trigger.
Even more detailed, a step could allow manual intervention,
by allowing to choose the enabled transition to be triggered.

5 DISCUSSION

This section discusses the relevance of this contribution to sev-
eral areas where it can be useful: analyzing the completeness of
tools, modularly building hybrid languages, and the development
of domain-specific languages.

5.1 Tool Completeness

For tool developers, and in particular developers of model debug-
gers, there currently is no way of analyzing whether the set of
operations the tool provides is complete, in the sense that all useful
operations are implemented. Our vocabulary can act as a framework
for these developers, with which they can decide at which level
debugging support is offered. While from the user’s point of view it
is ideal to have debugging support at all the levels we defined, this
might not be feasible or even desirable for practical reasons (e.g.,
too low level of abstraction), as well as for the protection of intel-
lectual property (e.g., do not reveal simulation algorithm). But even
then, our vocabulary allows reasoning about such concerns and
make an informed decision at which level(s) stepping operations
are provided.

5.2 Hybrid Languages

An interesting application of our vocabulary is the design of hybrid
languages. Such languages are often the result of composing both
the syntax and semantics of two existing languages. These compo-
sitions are often either parallel (i.e., two simulation algorithms are
interleaved), or hierarchical (i.e., the simulation algorithm of the
“child” formalism is called at certain points in the simulation algo-
rithm of the “parent” formalism). Languages such as BCOoL [19]
offer a way of defining such interleavings. Our vocabulary can
assist such methods by explicitly defining at which stepping level
the formalisms are combined. This possibly leads to an extension
of our framework, since there will be two orthogonal dimensions
of input/output traces, state traces, and implementation traces.

5.3 Domain-Specific Languages

Defining debuggers for new domain-specific languages is now
mostly done ad-hoc, and is based on the knowledge of the lan-
guage designer. For a user of these languages, it is not necessarily
clear from the onset what each stepping operation performs if no
common vocabulary is used. Our vocabulary can therefore be used
as an “interface” between the language designer and the language
user to avoid misunderstandings and improve the usability of the
language and its tools. For the language designer, it becomes possi-
ble to approach the design of stepping operations from the bottom
up, instead of top-down as we presented in this paper. Since the
language designer has control over the simulation algorithm, it
might be easier to view the implementation trace as the source of
all information. Subsequent higher levels of traces (the state trace,
input/output trace, and simulation trace) can then be obtained by
successively filtering the traces. This can aid the language developer
to more intuitively define stepping semantics at each level.

6 RELATED WORK

The step operation has its roots in code debugging [21]. Procedural
languages traditionally provide a number of stepping operations:

step over (the currently executing line), step into (the function called
at the current line), and step return (the currently executing func-
tion). These functions all assume a view of the code, and as such are
classified as white-box steps in our vocabulary. Certain debuggers
also offer stepping support at the assembly instruction level, which
in our vocabulary is classified as an implementation step.

Most model debuggers offer a stepping operation. For example,
Vangheluwe et al. [18] define a big step and small step operation
for the Causal Block Diagrams formalism, based on the simulation
algorithm presented earlier in this paper. They do not consider
input/output steps, however. Van Mierlo defines debugging support
for alarge set of formalisms [12]. For each formalism, the simulation
algorithm is explicitly modelled and subsequently instrumented
with debugging support, resulting in stepping operations at differ-
ent level of detail. The vocabulary ranges from small step, combo
step, big step, time step, and is not consistent between formalisms.
In their recent work, Jukss et al. [7] build a debugger for model
transformations, and observe the different levels at which a transfor-
mation can be debugged (schedule, rule, matching algorithm), and
the different levels of steps this leads to. Their debugging operations
all reside at the white-box level. Similarly, Corley et al. [4] look at
debugging support for model transformations, defining (white-box)
stepping operations that can go forward and backwards (imple-
menting omniscient debugging) in the state trace.

In other work, the notion of a simulator “step” is important as
well, either to classify language variants based on how they imple-
ment a hierarchy of steps, or to analyze simulation algorithms and
possibly combine them at different levels of steps. Esmaeilsabzali
et al. [5] analyze the semantics of big-step modelling languages,
such as Statecharts, and discern four levels of steps: big step (which
processes one event), combo step (which executes one transition for
each concurrent region) and small step (which executes one tran-
sition). They then define a family of possible big-step modelling
languages semantics, based on how events are managed, whether
transitions are executed in parallel, etc. While they introduced the
stepping semantics of big-step modelling languages, it is unclear
how their terminology can be intuitively transposed to other lan-
guages (e.g., action language). Mustafiz et al. [9] define a method
for merging languages at the semantic level, by building a canonical
form of the simulators that distinguishes between macro- and micro-
steps. Since the canonical form is known, they can be merged at the
level of these steps. In our vocabulary, macro-steps are white-box
steps, while micro-steps are implementation steps.

7 CONCLUSION

This paper defines a vocabulary to classify stepping operations at
different levels of granularity. We distinguish between simulation,
black-box, white-box, and implementation steps. These correspond to
the level at which information is presented to the user: respectively
at the requirement, input/output trace, state trace, and implementa-
tion trace level. We apply this vocabulary on a running example
in the DEVS formalism and then generalize to a set of semanti-
cally varying formalisms, demonstrating its wide applicability. In
future work, this vocabulary can be refined and used as a basis for
building new debugging techniques and tools for (domain-specific)

formalisms, and used as a basis for other, related research areas
such as modular language design.

ACKNOWLEDGMENTS

This work was partly funded by a PhD fellowship from the Re-
search Foundation - Flanders (FWO). This research was partially
supported by Flanders Make vzw, the strategic research centre for
the manufacturing industry.

REFERENCES

[1] Frangois E. Cellier. 1991. Continuous System Modeling (first ed.). Springer-Verlag.

[2] Alex Chung Hen Chow and Bernard P. Zeigler. 1994. Parallel DEVS: a parallel,
hierarchical, modular, modeling formalism. In Proceedings of the 1994 Winter
Simulation Multiconference. 716-722.

[3] Alex Chung Hen Chow, Bernard P. Zeigler, and Doo Hwan Kim. 1994. Abstract
simulator for the parallel DEVS formalism. In Al Simulation, and Planning in
High Autonomy Systems. 157-163.

[4] J. Corley, B. P. Eddy, E. Syriani, and J. Gray. 2016. Efficient and scalable omniscient
debugging for model transformations. Software Quality Journal (2016), 1-42.

[5] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee, and Jianwei Niu. 2010.
Deconstructing the semantics of big-step modelling languages. Requirements
Engineering 15, 2 (2010), 235-265. https://doi.org/10.1007/s00766-010-0102-z

[6] David Harel. 1987. Statecharts: A Visual Formalism for Complex Systems. Sci.
Comput. Program. 8, 3 (1987), 231-274.

[7] Maris Jukss, Clark Verbrugge, and Hans Vangheluwe. 2017. Transformations
Debugging Transformations. In Proceedings of MODELS 2017 Satellite Events.

[8] Tadao Murata. 1989. Petri Nets: Properties, analysis and applications. In Proceed-
ings of the IEEE. 541 - 580.

[9] Sadaf Mustafiz, Claudio Gomes, Bruno Barroca, and Hans Vangheluwe. 2016.

Modular Design of Hybrid Languages by Explicit Modeling of Semantic Adapta-

tion. In Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS

Integrative M&S Symposium (DEVS ’16). San Diego, CA, USA, 29:1—-29:8.

Yu Sun and Jeff Gray. 2013. End-User Support for Debugging Demonstration-

Based Model Transformation Execution. In Modelling Foundations and Appli-

cations, Pieter Van Gorp, Tom Ritter, and LouisM. Rose (Eds.). Lecture Notes

in Computer Science, Vol. 7949. Springer Berlin Heidelberg, 86-100. https:

//doi.org/10.1007/978-3-642-39013-5_7

Matthias Tichy, Luis Beaucamp, and Stefan Kogel. 2017. Towards Debugging the

Matching of Henshin Model Transformations Rules. In Proceedings of MODELS

2017 Satellite Events.

Simon Van Mierlo. 2018. A Multi-Paradigm Modelling Approach for Engineering

Model Debugging Environments. Ph.D. Dissertation. University of Antwerp.

[13] Simon Van Mierlo, Erwan Bousse, Hans Vangheluwe, Manuel Wimmer, Martin

Gogolla, Matthias Tichy, and Arnaud Blouin. 2017. Report on the 1st Interna-

tional Workshop on Debugging in Model-Driven Engineering (MDEbug’17). In

Proceedings of MODELS 2017 Satellite Events, Vol. 2019. CEUR-WS.

Simon Van Mierlo, Yentl Van Tendeloo, and Hans Vangheluwe. 2017. Debugging

Parallel DEVS. SIMULATION 93, 4 (2017), 285-306.

[15] Yentl Van Tendeloo. 2015. Foundations of a Multi-Paradigm Modelling Tool. In

MOoDELS ACM Student Research Competition. 52-57.

Yentl Van Tendeloo, Simon Van Mierlo, and Hans Vangheluwe. 2017. Time- and

Space-Conscious Omniscient Debugging of Parallel DEVS. In Proceedings of the

2017 Symposium on Theory of Modeling and Simulation - DEVS (TMS/DEVS ’17,

part of the Spring Simulation Multi-Conference). Society for Computer Simulation

International, 1001 — 1012.

Yentl Van Tendeloo and Hans Vangheluwe. 2018. Extending the DEVS Formalism

with Initialization Information. ArXiv e-prints (2018). arXiv:1802.04527

Hans Vangheluwe, Daniel Riegelhaupt, Sadaf Mustafiz, Joachim Denil, and Simon

Van Mierlo. 2014. Explicit Modelling of a CBD Experimentation Environment.

In Proceedings of the 2014 Symposium on Theory of Modeling and Simulation -

DEVS (TMS/DEVS ’14, part of the Spring Simulation Multi-Conference). Society for

Computer Simulation International, 379-386.

[19] M. Vara Larsen, J. DeAntoni, B. Combemale, and F Mallet. 2015. A Behavioral

Coordination Operator Language (BCOoL). In Proceedings of the ACM/IEEE 18th

International Conference on Model Driven Engineering Languages and Systems

(MODELS 2015).

Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of Modeling

and Simulation (second ed.). Academic Press.

Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[10

[11

[12

[14

[16

(17

=
&

[20

[21

https://doi.org/10.1007/s00766-010-0102-z
https://doi.org/10.1007/978-3-642-39013-5_7
https://doi.org/10.1007/978-3-642-39013-5_7
http://arxiv.org/abs/1802.04527

	Abstract
	1 Introduction
	2 Running Example
	2.1 The DEVS Formalism
	2.2 An Example Model with a Failure

	3 Approach
	3.1 Simulation Step
	3.2 Black-Box Step
	3.3 White-Box Step
	3.4 Implementation Step

	4 Unification of Existing Formalisms
	5 Discussion
	5.1 Tool Completeness
	5.2 Hybrid Languages
	5.3 Domain-Specific Languages

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

