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Abstract. Conventional wisdom on bidirectionality in Model-Driven Engineer-
ing (MDE) suggests that it represents a crucial component to achieve superior
model management, whether it be round-tripping, synchronisation, or consis-
tency restoration. Despite their relevance, bidirectional transformations remain
difficult to design and implement due to the complexity they must usually encode
and their semantic intricacy. Using a proper traceability support enables transfor-
mations to be persistent and permits designers to deal with such cases that would
be otherwise largely unfeasible. This also implies dealing with the different types
of model relationships that may exist in order to establish (re)usable traceability
links. This paper proposes to leverage traceability information between source
and target elements of a transformation to a first-class status in order to i) automa-
tise its generation, ii) enable a model-based representation and iii) ease reuse and
refinement in a further stage. The approach is realized within the JTL framework.

1 Introduction
Conventional wisdom on bidirectional transformations in Model-Driven Engineering
(MDE) [13] suggests that they are crucial components to achieve superior model man-
agement, whether it be round-tripping, synchronization, or consistency restoration [17,
19]. Rather than writing two unidirectional transformations, which need to be kept con-
sistent, the implementor may provide a single relational specification that can be con-
sistently executed in both directions.

Despite their relevance, bidirectional transformations remain difficult to design and
implement due to the complexity they usually encode and their semantic intricacy. In
fact, the invertibility of a transformation can be severely affected in case of partiality
and/or non-injective mappings [7]. Current tools when dealing with non-injective map-
pings expose two different kinds of behaviour: either they make arbitrary choice of one
consistent model based on heuristics, or they generate all consistent models and let the
user pick one. In the latter case, invertibility might be jeopardised if the information
about which model is singled out by the user is not made persistent while transforming
it in both directions [18]. As to partial transformations, they typically do not cover all
the (source) concepts with consequent information loss that may give place to unwanted
behaviour when the transformation is reversed. As a matter of fact, practical model
transformation engines frequently fail to restore consistency between models [16].
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Complex round-tripping scenarios are very challenging and tools tend to respond
with ad-hoc solutions compromising relevant properties as shown in Sect. 2, where bet-
ter mechanisms to enforce persistence in bidirectional transformations are needed for
storing relevant aspects about the transformation execution. This paper proposes a trace-
ability model to maintain persistence in bidirectional transformations. The approach has
been realised within the Janus Transformation Language [3] (JTL) framework, that is
specifically tailored to support bidirectional model transformations and change propa-
gation even in case of non-determinism [4]. Its relational semantics relies on Answer
Set Programming [6] (ASP) that make use of constraint solver to generate one or more
solution models starting from a bidirectional transformation specification. In previous
works [3, 4], the traceability capabilities of JTL have been introduced as an implicit
mechanism of the underlying engine. Such an implicit mechanism has been used to
maintain a reference linkage between source and target elements and then discarded af-
ter the transformation execution. This paper extends the previous work and presents an
advanced traceability approach aiming at: i) automatically storing expressive traceabil-
ity information between source and target elements to prevent transformation volatility
even in case of partial and non-injective mappings ; ii) first-class representation of trace-
ability as separate models, and iii) reuse of traceability in the transformation process to
enable the invertibility of the transformation and provide a support for managing models
as well as their traceability information.
Structure of the paper. Section 2 illustrates a motivating example that is used through-
out the paper to demonstrate the approach. Sect. 3 proposes a metamodel for traceability
and Sect. 4 describes how our approach has been realized within the JTL framework. In
the next sections, related work and some conclusions are presented.

2 Motivating example
Over the last decade, the need for testing and evaluating transformation tools led to the
Transformation Tool Contest (TTC) workshop series. During the 2017 edition1 (held
under the umbrella of the STAF Conference2) three cases have been selected via single
blind reviews in order to assess the expressiveness, the usability, and the performance
of transformation tools. In this section, the Families to Persons Case [1] is considered
because of the challenges it might pose. The considered bidirectional scenario involves
the metamodels Families and Persons (as described in [1]). A family register stores
a collection of families whose members are distinguished by their roles, i.e., mother,
father, daughters, and sons. Besides that, a person register maintains a flat collection
of persons who are either male or female. Families and persons models are kept in
a consistent state by means of a bidirectional transformation, so that: i) mothers and
daughters (fathers and sons) are mapped to females (males), and vice versa; and ii) the
name of every person is composed of the family name and the member name. Further-
more, there may be multiple families with the same name and multiple persons with the
same name and birthday.

The metamodels are clearly non-isomorphic since there are not one-to-one corre-
spondences among the concepts in both metamodels; for instance, the birthday attribute
in person does not have a counterpart in family members. Moreover, a person may corre-

1 http://www.transformation-tool-contest.eu/2017/
2 http://www.informatik.uni-marburg.de/staf2017/



spond to a parent or a child, and persons may be grouped into families in different ways,
which is clearly non-injective. As a consequence, depending on the transformation en-
gine models can be transformed in different ways leading to unwanted behaviours over
which designers may have little or no control as shown in the rest of the section.

Fig. 1: Sample models for the Families to Persons case
Figure 1 describes a round-trip scenario, where the Families model in the upper-

left corner consists of the family Simpson, with a father Homer and a son Bart, and a
family Flanders, with a son Rod. The corresponding Persons model is given in the
upper-right corner: it consists of the corresponding male persons, i.e., Homer Simpson,
Bart Simpson and Rod Flanders, whose birthday(s) are set to the metamodel de-
fault value 0001-01-01 as they do not have a counterpart in the source model. At this
point, the Persons model is manually modified as follows (see the lower-right part of
Fig. 1): À a new female Marge Simpson is added (initially its birthday is set to the
default value); Á Homer Simpson is changed in Todd Flanders; Â the birthday(s)
of both Flanders’ and Simpson’s are changed. Propagating such changes back to the
source model is not univocal as more than one valid update policy is possible as illus-
trated in the lower-left corner of the same figure where dashed lines denote alternative
elements. While, Bart and Rod are deterministically restored in their original families
and role (sons), the change À can be propagated in four different ways: Marge can
be either mother or daughters in the existing Simpson family or in a new Simpson

family. Due to the change Á, Homer is no longer a member of the Simpson family be-
cause his full name changed; thus, Todd can be equally mapped as a father or sons
either in the existing or the new Flanders family. Finally, the change Â can not be
propagated to the source model since birthday is missing in the Family metamodel.

The non-injective and partial mappings described in the scenario are clearly chal-
lenging for most (if not all) existing transformation engines. In order to mitigate the



problem of the uncertainty related to the above scenario, the TTC case authors have
provided two configuration parameters controlling the backward transformation: one
regulates whether a person is mapped to a parent or a child, while the other whether
a person is added to an existing or a new family. However, the problem remains in-
trinsically difficult to solve and, despite the parameters, the execution of the TTC test
cases on several tools highlighted some shortcomings as demonstrated by executing the
TTC testsuite on Medini QVT3 and eMoflon4. Both tools make use of some traceabil-
ity management to enable incremental updates controlled by the configuration param-
eters. While eMoflon correctly restores already existing elements, Medini is not able
to restore the Bart and Rod original roles and families (see Fig. 1). According to the
following configuration parameters settings (PREFER CREATING PARENT TO CHILD =

true and PREFER EXISTING FAMILY TO NEW = true) in eMoflon the new female
Marge is added as mother in the existing Simpson family; while in Medini Marge
is wrongly added in a new Family. As to the renaming (cfr. Á), Medini again exposes
difficulties in restoring existing roles, whereas eMoflon is not able to configure the
preference when both family and role changed. Finally, both approaches are forgetful
when dealing with the modified birthdays in the target domain (cfr. Â) failing in re-
establishing them during a forward execution. While placing reliance on tracing infor-
mation is well-accepted in order to support round-tripping processes, the mechanisms
adopted by these tools seem not accurate and do not help in achieving relevant trans-
formation properties, such as correctness (in the sense of [15]), which is - at the end of
the day - the reason because they are adopted. It worths also noting, that the configura-
tion parameters as a mean for controlling transformation behaviour seem problematic
because they are subjectively decided and not part of the transformation specification.

Despite the described scenario is not complex, it demonstrates that transformation
tools are far from being reliable up to the point that new research directions (e.g., [16])
are exploring sub-optimal characterisations to cope with tool difficulties. In particular,
invertibility in bidirectional transformations can be supported by managing traceability
information of the transformation executions, which can be exploited later on to trace
back the target models. In fact, each generated element can be linked with the cor-
responding source and contribute to the resolution of some problem. For instance, in
Fig. 1 the correspondence between a person and its source role and family is necessary
to restore Bart and Rod in their original families as sons. However, no trace links can be
maintained for the new elements that cause the generation of multiple alternatives. Fi-
nally, information not considered by the partial mapping should be stored so that is not
lost in the backward transformation. For instance, the updated birthday dates should be
stored in order to be mapped in next alignments. Supporting traceability allows trans-
formations to be persistent and overcome these difficulties.

3 A metamodel for traceability
In this section, we introduce the Trace Metamodel adopted in our approach. It allows to
specify links between model elements by using expressive traceability relationships for
enabling a correct behaviour in bidirectional transformation executions.

3 Medini QVT: http://projects.ikv.de/qvt
4 eMoflon: http://www.moflon.org



The Trace Metamodel is depicted in Fig. 2; for each transformation execution (both
in forward and backward directions) a trace model (TraceModel) is generated; it re-
lates a model belonging to a left domain to a model belonging to a right domain.

Fig. 2: Trace Metamodel
In particular, a set of trace links between left and right elements and the transfor-

mation rule that enforced their mapping is collected. A trace link is characterized by
an id, a rule name (trule), a name (i.e., concatenation of trule and id), a boolean
isNonInjective (that is true in case of non-injective trace) and a boolean isPartial
(that is true in case of partial trace). Furthermore, it relates one or more elements be-
longing to the left domain (leftLinkEnd) and the correspondent one or more elements
belonging to the right domain (rightLinkEnd); such references target elements of
type TraceLinkEnd, that have a name and a type. Each TraceLinkEnd represents a
specific object in the left or right domain (EObject).

Fig. 3: A sample of trace model
Hereafter, a sample of trace model is depicted (see Fig. 3). It represents a fragment

of the trace model generated by the forward execution of the Families to Person case as
described in Fig. 1. The model in figure shows the following trace links:

- FamilyRegister2PersonRegister 1 relates objects :FamilyRegister and
:PersonRegister via the rule named FamilyRegister2PersonRegister

- FamilyMember2Male 3 relates the object Homer of type FamilyMember to the
object Homer of type Male via the rule named FamilyMember2Male

- Family 2 is a partial link that stores the object Simpson of type Family that does
not have a counterpart in the Persons domain

- Family.father 204 is a non-injective link that stores the reference father of
the object Simpson of type Family that is involved in a non-injective mapping.



At this point, in order to let the JTL engine manage traceability models defined above,
we need to extend the framework as follows.

4 Traceability management
In this section, we present our approach to traceability management. It has been realized
within JTL (Janus Transformation Language) [3], that is a constraint-based transforma-
tion framework specifically tailored to support bidirectionality and change propagation.

4.1 Including traceability in the bidirectional transformation process
The JTL semantic engine is written in the Answer Set Programming (ASP) [6] language
and makes use of the the DLV solver [11] to execute transformations in both directions.
It is able to find and generate, by a deductive process and in a single execution, all the
possible models which are consistent with the transformation rules.

The overall architecture of the JTL environment, upgraded with traceability capa-
bility, is reported in Fig. 4. The engine executes JTL transformations which have been
written in a QVT-like syntax, and then automatically transformed into ASP programs.
Also the source and target metamodels of the considered transformation (MM1, MM2)
are automatically encoded in ASP and managed by the engine during the execution of
the considered transformation. For each transformation execution, a trace model relat-
ing source and target model elements is generated and optionally given as input of the
next execution (TM1M2, TM2M1). Trace models that conform to the metamodel TTM
are automatically mapped in/from ASP. The overall architecture has been implemented
as an Eclipse plugin5 and mainly exploits the Eclipse Modelling Framework (EMF) [2].

Fig. 4: Overview of the JTL framework with traceability
The traceability management is composed of the following phases:

- Automatic generation: The traceability mechanism exploits the intrinsic character-
istic of the ASP-based engine to derive relevant details about the linkage between
source and target model elements at execution-time (including the applied transfor-
mation rules). This step relies on the Traceability Engine;

- Explicit representation and storing: Trace links are extrapolated during the trans-
formation execution and made explicit by the framework. In particular, the ASP

5 JTL: http://jtl.di.univaq.it



trace links are automatically mapped in Ecore. That is, trace models are maintained
as models conforms to the Trace Metamodel, as defined within EMF (see Sect. 3);

- Re-use: Trace models can be re-used during the transformation execution. In par-
ticular, a trace model can be given as input of the transformation execution in order
to (re-)establish consistency, manage ambiguities and guarantee the correctness of
the transformation. In particular, the Traceability Engine is able to include trace-
ability information in the execution process.

The traceability management is shown in practice in the next section. In particular, the
proposed approach to the Families to Persons case was presented in Sect. 2 with the
intent to illustrate how it works in round-trip scenarios.
4.2 Families to Persons round-tripping
According to the scenario described in Sect. 2, the input model conforming to the
Families metamodel is reported in its Ecore representation in the left-hand side of
Fig. 5. The application of the JTL Families2Persons bidirectional transformation 6. on
sampleFamily generates the corresponding samplePerson model as depicted in the
right part of Fig. 5. At the same time, the trace model sampleFamily2samplePerson,
depicted in the middle of the Fig. 5, is generated (dashed arrows connect trace elements
to the elements they refer to in source and target models).

...

Fig. 5: The forward execution of the Families to Persons case
The generated trace model is composed of: a) trace links FamilyRegister2-

PersonRegister 1, FamilyMember2Male 3, FamilyMember2Male 4, and Family-
Member2Male 6, that store how family elements (left TraceLinkEnds) have been

6 The interested reader can access the implementation at http://jtl.di.univaq.it/



mapped to person elements (right TraceLinkEnds), b) partial trace links Family-

families 102, Family families 104, Family 2, Family 5, that represent ele-
ments or structural features not covered by the transformation and c) non-injective trace
links FamilyMember father 204, FamilyMember sons 206, FamilyMember sons-

504 store elements involved in non-injective mappings. Note that, by re-applying the
transformation in the backward direction it is possible to obtain again the sampleFamily
source model. The missing information about the original families and role of the mem-
bers are restored by means of trace information, that is giving as input the trace model
sampleFamily2samplePerson obtained in the previous forward execution.

...

...

Fig. 6: The backward execution of the Families to Persons case
After a refinement step, the target model including the changes described in Sect. 2

is shown in the left part of Fig. 6. The modified model samplePerson’ and the trace
model sampleFamily2samplePerson (obtained in the previous execution) are given
as input of the backward transformation execution. Due to the non-injectivity, 16 al-
ternative models, namely sampleFamily’{1,2,..,16} are generated. All the alter-
native models correctly restore families and roles of the members as in the original
source model. Furthermore, the new female Marge Simpson can be propagated both as
a mother or a daughter in the existing Simpson family as well as in a new one. Analo-
gously, the changed member Todd Flanders can be propagated in four different ways
by adding Todd to the existing or to a new family either as father or as a son. Finally, for
each generated model, a correspondent trace model is generated. In the middle and right
side of the Fig. 6, two representative generated models and a fragment of their traces are
illustrated. In both family models, Marge Simpson is created as mother of the existing



Simpson family, as stored in the trace link Mother2Female.mother 210 in both the
trace models. Moreover, in the model sampleFamily’1 Todd Flanders is created as fa-
ther of the existing Flanders family, while in the model sampleFamily’2 he is created
as father of a new family, as stored in the trace links Father2Male.father 204 and
Father2Male.father 212 in the first and second trace models, respectively. Note
that, by selecting one of the alternative models and re-applying the transformation in
the forward direction it is possible to obtain again the samplePerson’ model. The
missing information about the birthday attributes are restored by means of trace infor-
mation, that is giving as input the trace model sampleFamily’12samplePerson’
obtained in the previous forward execution.

5 Related work
The technological importance of traceability is well recognized in model transforma-
tions. Most existing transformation approaches adopt an internal traceability model that
can be interrogated at execution time; for instance, to resolve dependencies between
the rules or to check if a target elements was already created for a given source ele-
ment. Widely used unidirectional languages as ATL [9] and ETL [10] automatically
create traceability links during the transformation execution. The traceability approach
is specific to each transformation language; both in ATL and ETL, relations have to be
bijective and traceability is used to resolve dependencies between the rules.

In bidirectional transformations, the state may be stored in explicit or implicit way.
Medini QVT uses a trace model to facilitate model transformations and conformance
checking, and to enable also incremental updates during further executions. The trace-
ability metamodel is deduced from the transformation specification. In QVT-R relations
may not be bijective, however during the execution it only addresses bijective relations.
Thus, trace data are not used to the resolution of some ambiguities. In TGG [14], the cor-
respondence graph ensures traceability between source and target elements and trace-
ability can be used to check the correspondence between two models and to synchronize
models incrementally. eMoflon provides a Java-based API via which the designer can
choose the priority matches as soon as there are multiple choices available in the trans-
formation process. Tracing information are not used to support partial and non-injective
cases. Traceability is an intrinsic property in lens-based approach [5, 8, 12]; in fact each
element of the abstract structure is related with a correspondent element in the con-
crete structure. In particular, the put function updates the concrete structures restoring
any information discarded during the forward transformation. When a change is per-
formed, the transformation engine propagates the change towards the other direction.
In Boomerang 7 and BiFlux 8, traceability information is not explicitly visualizable or
stored in any files. In GRoundTram 9, trace information can be generated during the
transformation execution as a graph (or textual) file. However, in such functional ap-
proaches no support to partial and non-injective transformations is given.

6 Conclusion and future work
Bidirectional transformations are a key mechanism to maintain consistency among in-
terrelated models. However, they remain difficult to design and implement due to the

7 Boomerang: http://www.seas.upenn.edu/ harmony/
8 BiFlux: http://www.prg.nii.ac.jp/projects/BiFluX/
9 GRoundTram: http://www.biglab.org/



intrinsic complexity they must encode. This paper proposed to employ traceability
information in order to enable persistent bidirectional transformations. The proposed
approach extended the JTL framework by: i) automatize the generation of expressive
traceability information, ii) giving and explicit model-based representation and iii) ease
reuse and refinement in further stage to enforce consistency restoration. As future work,
we plan to extend the approach to work when the traceability model describes different
types of traceability links. Furthermore, we are interested in describing constraints over
traceability links and maintain that through model transformations.
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