
Interface protocol inference to aid understanding legacy
software components

Kousar Aslam1, Yaping Luo1,2, Ramon Schiffelers1,3, Mark van den Brand1
1. Eindhoven University of Technology, The Netherlands 2. ESI (TNO) 3. ASML

{k.aslam,y.luo2,r.r.h.schiffelers,m.g.j.v.d.brand}@tue.nl

ABSTRACT
More and more high tech companies are struggling with the main-
tenance of legacy software. Legacy software is vital to many or-
ganizations, so even if its behavior is not completely understood
it cannot be thrown away. To re-factor or re-engineer the legacy
software components, the external behavior needs to be preserved
after replacement so that the replaced components possess the
same behavior in the system environment as the original compo-
nents. Therefore, it is necessary to first completely understand the
behavior of components over the interfaces, i.e., the interface pro-
tocols, and preserve this behavior during the software modification
activities.

For this purpose, we present an approach to infer the interface
protocols of software components, from the behavioral models of
those components learned with a blackbox technique, called active
automata learning. We then perform a formal comparison between
learned models and reference models ensuring the behavioral re-
lations are preserved. This provides a validation for the learned
results, thus developing confidence in applying the active learning
technique to reverse engineer the legacy software components in
the future.

1 INTRODUCTION
Large scale software systems are inherently complex. The soft-
ware also undergoes repeated changes over time due to evolving
requirements, hardware changes and emerging technology trends.
During this evolution phase, the software documentation may not
be regularly updated and the developers initially working on the
project may no longer be available, as discussed by Lehman in
[15]. These factors turn the software into so-called legacy software
which becomes harder to understand and costly to maintain. The
legacy software usually implements crucial domain logic which
cannot be thrown away or easily replaced. However, for different
reasons, such as change of technology or performance issues, the
legacy components may need to be re-factored or re-engineered.
To support this, the implicit domain logic (behavioral models) of
these components and interface protocols implemented between
the components need to be extracted and learned.

Several techniques exist in literature for reverse engineering
of the existing components. These techniques can be widely cate-
gorized as static or dynamic analysis techniques. Static software
analysis methods examine the code without actually executing it.
This provides an understanding of the code structure and compo-
nents constituting the software [11]. Dynamic software analysis
techniques analyze the actual execution of the software, either by
analyzing execution traces (passive learning [14]), or by interactive

interaction with software components (active automata learning
or active learning [21]). In this work, we have explored the active
learning technique as the technique shows promising results when
applied to learning reactive systems [4][17][20].

Fiterău-Broştean et al. [6][7] combine active learning and model
checking to learn network protocol implementations. Schuts et
al. [20] combine active learning and equivalence checking to gain
confidence in the re-factoring of legacy components. Equivalence
is checked between active learning results obtained from the legacy
and re-factored component using the mCRL2 toolset [10].

These current studies are based on an assumption that active
learning can learn the correct and complete model. However, due to
the number of queries posted to the System Under Learning (SUL)
being finite and limited for practical reasons (see Section 2.1), it is
typically impossible to guarantee that the learned model is the true
representation of the behavior of the legacy component. Therefore,
the correctness and completeness of learned results cannot be en-
sured. To reduce the uncertainty in the learned models, we propose
to formally verify the active learning result obtained from learning
the software components.

Moreover, existing case studies performed with active learning
mostly focus on learning the current behavior of software com-
ponents. To the best of our knowledge, there is no publication on
inferring interface protocol for software components based on ac-
tive learning results. To address this, we propose a methodology
to infer interface protocols from the active learning results. We
verify the active learning results by comparing with the reference
models using the model checking toolset, mCRL2 [10]. After this,
interface protocol is inferred from the learned model. A formal
validation is then performed again by verifying that the original
behavioral relations have been preserved during inference of the
interface protocol. The formal verification increases the confidence
in the learned and inferred models. This work provides the basis
for inferring interface protocols of legacy software components,
which do not have reference models.

This research takes place at ASML, the world market leader
in lithography systems. ASML develops complex machines called
TWINSCAN, which produce Integrated Circuits (ICs). A TWIN-
SCAN is a cyber-physical system consisting of a huge software
codebase (comprising over 50 million lines of code). The software
architecture is component based, where components interact with
each other over interfaces. ASML uses Model Driven Engineering
(MDE) techniques, such as Analytical Software Development (ASD)
[3]), to build this software but still a considerable amount of soft-
ware exists that has been developed with traditional practices, such
as, manual coding. It will be very time consuming to manually cre-
ate models for this huge software codebase. ASML, therefore aims
for an automated cost-effective transition from existing software



ModComp’18, October 2018, Copenhagen, Denmark K. Aslam et al.

Figure 1: Active Learning framework

to models. In this paper, we propose an approach to support re-
factoring or re-engineering of such manually constructed software
components with active learning.

2 BACKGROUND
2.1 Active Learning
Angluin [2] presented active learning in 1987 to learn regular lan-
guages. The technique is based on the minimal adequate teacher
(MAT) framework. Fig. 1 shows the MAT framework for active
learning. The MAT framework assumes the availability of a teacher
who is minimally able to provide correct answers to the queries
posted by the learner. The learner is provided with a finite input
alphabet for the SUL.

With this input alphabet, the learner starts learning the SUL by
posting membership queries to the SUL. Based on the responses
to these queries, the learner formulates a hypothesis. To verify the
correctness of this hypothesis, the learner posts an equivalence
query to the teacher. If the hypothesis is a true representation of
the behavior of the SUL, the learning is completed and thus stopped.
Otherwise the teacher returns a counterexample based on which
the learner further refines the learning. The counterexample shows
the difference between the currently learned model and the SUL.
To find these counterexamples, the teacher generates test queries
using some conformance testing method, such as the W-method
[5], the Wp-method [9] or the Hopcroft [1] method, to test the
hypothesis. The learning cycle continues until the hypothesis is
accepted by the teacher.

In theory, using the W-method as equivalence oracle can learn
a complete model. This requires the number of states of the SUL
to be known. But for legacy systems, the (exact) behavior of SUL
is unknown. Therefore, in practice an estimation of the number of
states is used. As theW-method requires exponentiallymore queries
when the difference in number of states between a hypothesis
and the actual system behavior increases, the estimates are often
reduced for performance reasons. Due to the number of queries
posted to the SUL being finite, and the use of reduced estimates, it
is practically impossible to guarantee that the learned model is the
true representation of the behavior of the legacy component.

We choose Mealy machines to represent the results of active
learning because Mealy machines are good representations for
reactive systems. A Mealy machine is a tuple M = ⟨S, Σ,Ω,→, ŝ⟩,
where

Figure 2: Communication over ASD interfaces

• S is a set of states,
• Σ is a set of input actions,
• Ω is a set of output actions,
• →⊆ S × Σ ×Ω × S is a transition relation and
• ŝ ∈ S is the initial state.

2.2 Analytical Software Development (ASD)
ASD:Suite, a tool by the company Verum1 is based on Verum’s
patented Analytical Software Development (ASD) [3] technology.
ASD and ASD:Suite are used interchangeably in this paper. ASD is
a component based technology which enables engineers to spec-
ify, design, validate and formally verify software components for
complex software systems.

ASD components provide and use services from other compo-
nents. An ASD component is composed of two types of models;
namely interface and design models. The external behavior of a
component is specified in the interface model. The design model
specifies the internal behavior of the component and how it inter-
acts with other components. All ASD components have both an
interface model and a design model.

ASD interfaces: With the help of Fig. 2 we explain the terminol-
ogy related to ASD, w.r.t. the SUL, that will be used later in this
paper. The figure consists of three components, C, SUL and S. The
interface model specifies application, notification and modelling
interfaces for a component. A component provides services to other
components via application interfaces. Over application interfaces,
call events are sent and reply events are received. Here, C is the
client for SUL and S is the server for SUL. Notification interfaces
exist to provide notification events to clients. Modelling interfaces
defines modelling events, which represent spontaneous behavior
of an interface model. In this paper modelling interfaces are out of
scope.

2.3 mCRL2
mCRL2 is a formal model verification and validation language,
with an associated toolset. Specifications written in mCRL2 can

1http://www.verum.com/



Interface protocol inference to aid understanding legacy software components ModComp’18, October 2018, Copenhagen, Denmark

be converted to labelled transition systems. A labelled transition
system (LTS), is a tuple L = ⟨S,Act ,→, ŝ⟩, where

• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act × S is a transition relation and
• ŝ ∈ S is the initial state.

Even in presence of reference models, it is hard to manually com-
pare the models when the number of states and actions increases.
We therefore use mCRL2 for behavioral reduction of models and
formal comparison between learned and reference models. For this
purpose we define the transformation from Mealy machine to LTS.

Given a Mealy machine M = ⟨S, Σ,Ω,→, ŝ⟩, we define the
underlying LTS as L(M) = ⟨SL , Σ ∪Ω,→L , ŝ⟩, where SL and→L
are the smallest sets satisfying:

• S ⊆ SL
• for every (s, i,o, t) ∈→, there are transitions in→L such that
s

i−→ s1
o−→ t , where s1 ∈ SL that does not have any other

incoming or outgoing transitions.
For every ASD engineered component, its interface model refines

its design model modulo failure divergence refinement, denoted by
⊑FDR . LetLi , where i ∈ {1, 2}, be two LTSs. The LTSL1 refines on
LTSL2 in failure divergence semantics if and only if divergences(L2)
⊆ divergence(L1) and failures(L2) ⊆ failures(L1). An action that
can happen but cannot be directly observed is called an internal
action, denoted by τ . A state from which infinite number of τ
actions can be done is called a divergent state and the trace leading
to that state is called a divergent trace. The set of divergences for
an LTS contains all divergent traces for that LTS. The set of failures
contains information about all the actions that are not allowed for
each state of that LTS. For a more detailed explanation of FDR, the
reader is referred to [25].

We check weak trace equivalence and weak trace inclusion [10]
for verifying the learned result and inferred interface protocol,
respectively. We choose these relations because the theory of active
learning technique is based on traces. For some cases we may
observe stronger relations but at least weak trace equivalence and
inclusion must hold between corresponding models.

3 METHODOLOGY
In this section we present our methodology to infer the interface
protocol of a software component. In this paper, we use the terms
learned models for models obtained by learning implementation of
software components, and inferred models for interface protocols
inferred from learned models. The overview of the methodology
is shown in Fig. 3 which summarizes the learning and validation
steps for learning the software component behavior and inferring
its interface protocol. Often the formal verification and learning
approaches are considered disjoint. We propose to combine these
in our methodology. We choose to learn ASD components as this
research takes place at ASML where ASD is used for developing
new software. This provides us with a chance to validate our ap-
proach on industrial components. For ASD designed components,
the reference models are also available for formal comparison with
the learned results. However, our approach can be easily applied on
legacy software components, as we already applied and tuned our

Figure 3: Methodology: From component to interface proto-
col. The function symbols represent abstraction and trans-
formation functions. Dotted lines represent formal rela-
tions. The extensions .im and .dm represent ASD interface
and design model, .lts and .mm refer to Labelled Transition
System and Mealy machine formalisms, respectively.

methodology on components with reference models providing us
the confidence to apply this methodology on components without
reference models.

We learn ASD software components and use ASD design models
as reference models for formal comparison with the learned result
(the model learned by active learning algorithm by interacting with
the implementation of the ASD software component), and ASD
interface models for formal comparison with inferred interface
protocols for that particular component. This in turn provides the
validation for the active learning technique as well. The confidence
in the technique and learned results cannot be gained by learning
an arbitrary blackbox component.

Our approach comprises two main steps. First, we learn the
components with active learning and validate the learning results
by formally comparing them with the reference ASD design models
of software components, indicated by 1 in Fig. 3. In the second step
we abstract the active learning results to the level of the desired
interface. The inferred interface model is also verified formally to
ensure it refines the ASD design model of that component modulo
FDR, indicated by 2 in Fig. 3. Below we explain each step in detail.

3.1 Learning the components behavior and
validating learned results

Let A.dm be the design model of an ASD engineered software
component and our SUL from now on. The A.dm implements the
services specified in the interface model A.im and also uses ser-
vices from other components. As already explained in Section 2,
A.im refines A.dm in failure divergence semantics. The ASD code
generator generates code from A.dm. An active learning algorithm
interacts with this code to learn the behavior of the component. We
perform this learning under the assumptions listed below.

• A is input enabled.
• A can be isolated from its environment.
• Outputs from A can be observed.



ModComp’18, October 2018, Copenhagen, Denmark K. Aslam et al.

Figure 4: Mapping between (a): active learning scope and (b):
translated ASD models from [13].

• A can be reset to initial state after every query.
• A is deterministic.

These assumptions relate to the conditions needed to be fulfilled
by the SUL. Non-determinism is out of the scope for this work. The
learning algorithm interacts with the component through a mapper.
The mapper translates the input symbols from the input alphabet to
concrete function calls, sends these to SUL, receives return values
as responses and translates these to output symbols from the output
alphabet. The output of learning is a Mealy machine.

To validate the learning results, we formally compare the learned
results with the ASD design models using the mCRL2 toolset. Based
on the translation schemes presented in [13], ASD interface and de-
sign models can be translated into mCRL2 models, indicated by the
functions fIM and fDM , respectively in Fig. 3. The mapping between
active learning results and translations obtained from [13] is shown
in Fig. 4. Before we can compare the translated ASD design models
with the active learning results, we apply renaming to synchronize
the names of actions between translated and learned models. So
from now on we use (outwardNotification, triggerNotification) for
Notification events, (outwardReply, sendReply) for Reply events and α
for Call events. To unify the naming between active learning results
and reference models we apply the function fLTS on A.dm.lts.

To update the transition relation, we define fLTS (⟨S,Act ,→
, ŝ⟩) = ⟨S,Act , {ρ(e)| e ∈→}, ŝ⟩, where

ρ((s1,a, s2)) =



(s1,α , s2) if a ∈ { outwardReply(α ),
sendReply(α ),
outwardNotification(α ),
raiseNotification(α ) }

(s1,a, s2) otherwise.
This renaming is done within the mCRL2 toolset. The resulting

LTSmay contain a relatively large number of τ actions which can be
reduced by applying weak trace reduction to increase understand-
ability and readability of the resulting LTS. Now having derived
A.dm′.lts, we check whether weak trace equivalence holds between
the active learning result A.mm.lts and its reference design model
A.dm′.lts. If the relation holds, it shows the learned model is correct.
This comparison is done using ltscompare tool from mCRL2.

3.2 Inferring interface protocol
The second step of our methodology concerns inferring the inter-
face protocols of the software components. For an ASD compo-
nent, the potential interface models for a given design model are
those which are failure divergence related to that design model, i.e.,
{im | im ⊑FDR dm}, where im represents an interface model and
dm represents a design model. This suggests that one design model
can have several potential interface models. As we have already
learned the component behavior, one of the immediate solutions
can be to use the learned model itself as the interface protocol
by applying the identity function. Every design model is failure
divergence related to itself so the learned behavioral model can
be considered as the interface protocol. From the set of potential
interface models, this is the most strict interface model as it allows
only what is possible to be done according to the design model. The
most flexible is the flower model, i.e. the model which allows every
possible action.

To abstract away the details of the interaction with the services
provided by other components, we introduce a function fIM ′ to
infer the interface protocol from A.mm.lts, the model obtained by
active learning. ForA.mm.lts, we define Σused ⊂ Σ andΩused ⊂ Ω,
where Σused andΩused represent input and output actions from
used services respectively. We define Actused = (Σused ∪Ωused )
containing actions from used services. Then fIM ′(⟨S,Act ,→, ŝ⟩) =
⟨S,Act , {ρ(e) | e ∈→}, ŝ⟩, where ρ is defined as follows:

ρ((s1,a, s2)) =
{
(s1,τ , s2) if a ∈ Actused
(s1,a, s2) otherwise

In the same way as for fLTS , mCRL2 is used for renaming. Weak
trace reduction can be optionally applied after renaming for reduc-
ing τ ′s to increase readability of the inferred interface protocol. To
confirm the inferred interface protocol A.im′.lts is a valid interface
protocol, we need to formally check how it relates to A.dm′.lts.
Before applying this comparison check, we apply fLTS ′ = fIM ′ to
A.dm′.lts to hide actions from used services. The expected result is
A.im′.lts ⊑FDR A.dm′′.lts, which validates A.im′.lts as interface
protocol for A.dm′′.lts.

To guarantee that the translation from ASD models to mCRL2
models is correct and does not lose any behavior, we check that
A.im′.lts failure divergence refines A.dm′′.lts, as expected.

The tool chain used to implement our methodology is as follows:
Referring Fig. 2, from A.im to A.java ASD is used to automatically
generate the code from the design model. LearnLib is used to learn
implementation of A.java with active learning algorithm and output
is A.mm. All the formal relations are checked with mCRL2 toolset.

In this way, we presented an approach for the formal validation
of the results learned from active learning. We have also developed
a framework in Java to automate this methodology, which will
be used to perform further case studies on a range of industrial
components. In the following section, we discuss a small example
as a proof of concept for our methodology.

4 EXAMPLE
To demonstrate our approach, we designed an example ASD compo-
nent Awith one application interface. Fig. 5 shows the interface and
design models of component A and the interface model of its server



Interface protocol inference to aid understanding legacy software components ModComp’18, October 2018, Copenhagen, Denmark

(a) Interface model of A (b) Design model of A (c) Interface model of S

Figure 5: ASD models of the SUL and Used service.

Figure 6: Active learning result of component A, denoted by
A.mm.lts in Fig. 3.

component S 2. The ai.a and bi.b are the call events in application in-
terfaces of A and S respectively, and bni.bn is the notification event
sent by S to A. We learn the behavior of the component A by apply-
ing active learning, using TTT [12] as the learning algorithm and
Wp method [9] with depth 4 as the equivalence checking algorithm.
To validate the active learning result (Fig. 6), we check the formal
relation between the learned result and its ASD design model. We
apply fIM′ to infer an interface protocol. The transformations are
applied as specified in the methodology to obtain A.mm.lts and
A.im′.lts as shown in Fig. 6 and Fig. 7, respectively.

The designmodel (A.dm’.lts) and active learning result (A.mm.lts)
are compared and found to be weak trace equivalent, as expected
in Fig. 3. The inferred interface protocol (A.im′.lts), shown in Fig. 7,
refines the learned model, (A.dm′.lts), modulo failure divergence
refinement. The original interface model, (A.im.lts) refines the in-
ferred interface protocol, (A.im′.lts), modulo weak trace inclusion.

5 RELATEDWORK
A considerable amount of work for retrieving the behavior of exist-
ing software with static and dynamic analysis (passive and active)
techniques can be found in literature.
2For more information on ASD concepts and notations, we refer to
http://community.verum.com/Files/Starting_ASD_Slides/StartingASDCourse.pdf.

Figure 7: Inferred interface model of component A, denoted
by A.im’.lts in Fig. 3.

Static Analysis. An overview of static analysis techniques and
tools for automated API property inference is given in [19]. An
annotation assistant tool to infer pre-conditions and post-conditions
of methods of java programs is presented in [8]. Identifying the
pre-conditions of functions to infer both data- and control-flow is
discussed in [18].

Passive learning. Data mining techniques are combined with
passive learning algorithms in [24] to learn data-flow behavior of
software components. A passive learning algorithm named GK-tail
is presented in [16]. Authors show in [16] that the behavioral models
capturing the constraints on data values and the interactions be-
tween software components are learned with this algorithm. Model
checking has been used to enhance a passive learning algorithm
(QSM) to learn software behavior in [23].

Active learning. The active learning technique has been used
for understanding existing software and analyzing current imple-
mentations for detecting flaws. Active learning is used to learn a
control software component from Oce printers in [22]. To handle
the learning of a bigger system, the input alphabet set is being
split to subalphabets and testing is divided to subphases for each
subalphabet. A smartcard reader for internet banking has been
reverse engineered using active learning [4]. One security flaw was
also detected during the learning of this behavior. In [20], the au-
thors combines model learning and equivalence checking to gain



ModComp’18, October 2018, Copenhagen, Denmark K. Aslam et al.

the confidence in refactoring of legacy components. Equivalence
is checked between active learning results from the legacy and
refactored component with the mCRL2 toolset. If the models are
equivalent, learning ends. Otherwise, models or implementations
are refined based on the counter-examples generated by mCRL2.
This again is based on the assumption that active learning can learn
complete and correct behavior, which does not hold in practice.

All of the work stated above deals with learning existing soft-
ware and the learned results are not formally verified. We propose
that formally verifying the learning techniques (active learning
in our case), brings greater confidence in the methodology when
applied to legacy components. Therefore we formally compared
the learned results with the reference models and guaranteed that
during learning we do not lose any behavioral information and the
formal relations were preserved.

To support the re-factoring and re-engineering of existing soft-
ware, we need to infer the interface protocols for communication
between software components. To the best of our knowledge, there
is no existing work to infer interface protocols using active learning.
In this work, we infer interface protocol from active learning re-
sults and then formally compare the inferred results with reference
models using mCRL2 toolset.

6 CONCLUSIONS & FUTUREWORK
In this paper we have proposed a methodology to gain confidence
in the inferred interface protocols through formal comparison be-
tween learned models and reference models. The active learning
result obtained from learning the implementation provides an in-
sight into the software, thus facilitating adaptations that need to be
made to the component or documentation that needs to be updated.
We then abstract the learned model to infer an interface protocol.
The inferred interface protocol, after formal verification, provides
a starting point for re-factoring or re-engineering of the software
components. To the best of our knowledge, this is the first work to
use active learning technique for inferring interface protocols of
software components.

In the future, we plan to handle more complex cases including
notifications. Currently we are working on automating the pro-
cess to validate the methodology against a larger set of industrial
components. Based on the validation results, we plan to combine
existing techniques, such as passive learning and active learning, to
infer interface protocols for legacy software. We expect scalability
to be a challenge when dealing with industrial components there-
fore the cost of inferring interfaces needs to be estimated. Data
guarded behavior is unavoidable when dealing with real industrial
components and therefore will be a concern for future work.

ACKNOWLEDGMENTS
This research was partially supported by The Dutch Ministry of
Economic Affairs, ESI (part of TNO) and ASML Netherlands B.V.,
carried out as part of the TKI-project ‘Transposition’; and par-
tially supported by Eindhoven University of Technology and ASML
Netherlands B.V., carried out as part of the IMPULS II project.

The authors would also like to express deep gratitude to Dennis
Hendriks, Leonard Lensink, Loek Cleophas, Thomas Neele and Jan
Friso Groote, for their valuable feedback regarding the work in
general and this paper in particular.

REFERENCES
[1] Marco Almeida, Nelma Moreira, and Rogério Reis. 2009. Testing the equivalence

of regular languages. arXiv preprint arXiv:0907.5058 (2009).
[2] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.

Information and computation 75, 2 (1987), 87–106.
[3] Guy H Broadfoot and Philippa J Broadfoot. 2003. Academia and industry meet:

Some experiences of formal methods in practice. In Software Engineering Confer-
ence, 2003. Tenth Asia-Pacific. IEEE, 49–58.

[4] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri De Ruiter. 2014. Auto-
mated Reverse Engineering using Lego®. WOOT 14 (2014), 1–10.

[5] Tsun S. Chow. 1978. Testing software design modeled by finite-state machines.
IEEE transactions on software engineering 3 (1978), 178–187.

[6] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combin-
ing model learning and model checking to analyze TCP implementations. In
International Conference on Computer Aided Verification. Springer, 454–471.

[7] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaandrager,
and Patrick Verleg. 2017. Model learning and model checking of SSH implemen-
tations. In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software. ACM, 142–151.

[8] Cormac Flanagan and K Rustan M Leino. 2001. Houdini, an annotation assistant
for ESC/Java. In International Symposium of Formal Methods Europe. Springer,
500–517.

[9] Susumu Fujiwara, G v Bochmann, Ferhat Khendek, Mokhtar Amalou, and Ab-
derrazak Ghedamsi. 1991. Test selection based on finite state models. IEEE
Transactions on software engineering 17, 6 (1991), 591–603.

[10] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and analysis of
communicating systems. MIT press.

[11] V. Hamilton. 1994. The use of static analysis tools to support reverse engineering.
In IEE Colloquium on Reverse Engineering for Software Based Systems. 6/1–6/4.

[12] Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning.. In RV. 307–322.

[13] Ruben J. W. Jonk. 2016. The semantic of ALIAS defined in mCRL2. Master’s thesis.
[14] Maikel Leemans, Wil MP van der Aalst, and Mark GJ van den Brand. 2018.

The Statechart Workbench: Enabling scalable software event log analysis using
process mining. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 502–506.

[15] Manny M Lehman. 1996. Laws of software evolution revisited. In European
Workshop on Software Process Technology. Springer, 108–124.

[16] D. Lorenzoli, L. Mariani, and M. PezzÃĺ. 2008. Automatic generation of software
behavioral models. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. 501–510. https://doi.org/10.1145/1368088.1368157

[17] Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen. 2004. Ef-
ficient test-based model generation for legacy reactive systems. In High-Level
Design Validation and Test Workshop, 2004. Ninth IEEE International. IEEE, 95–100.

[18] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static specification inference using predicate mining. In ACM SIGPLAN Notices,
Vol. 42. ACM, 123–134.

[19] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2013. Automated API property inference techniques. IEEE Transactions
on Software Engineering 39, 5 (2013), 613–637.

[20] Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. 2016. Refactoring of legacy
software usingmodel learning and equivalence checking: an industrial experience
report. In International Conference on Integrated Formal Methods. Springer, 311–
325.

[21] Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui, and Zakarea Alshara.
2017. Reverse engineering reusable software components from object-oriented
APIs. Journal of Systems and Software 131 (2017), 442–460.

[22] Wouter Smeenk, Joshua Moerman, Frits Vaandrager, and David N Jansen. 2015.
Applying automata learning to embedded control software. In International
Conference on Formal Engineering Methods. Springer, 67–83.

[23] Neil Walkinshaw and Kirill Bogdanov. 2008. Inferring finite-state models with
temporal constraints. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer Society, 248–257.

[24] Neil Walkinshaw, Ramsay Taylor, and John Derrick. 2016. Inferring extended
finite state machine models from software executions. Empirical Software Engi-
neering 21, 3 (2016), 811–853.

[25] TingWang, Songzheng Song, Jun Sun, Yang Liu, Jin Song Dong, XinyuWang, and
Shanping Li. 2012. More anti-chain based refinement checking. In International
Conference on Formal Engineering Methods. Springer, 364–380.

https://doi.org/10.1145/1368088.1368157

	Abstract
	1 Introduction
	2 Background
	2.1 Active Learning
	2.2 Analytical Software Development (ASD)
	2.3 mCRL2

	3 Methodology
	3.1 Learning the components behavior and validating learned results
	3.2 Inferring interface protocol

	4 Example
	5 Related Work
	6 Conclusions & Future work
	Acknowledgments
	References

