CEUR-WS.org/Vol-2245/modcomp_paper_4.pdf

Teaching Playground for C&C Language EmbeddedMontiArc

Evgeny Kusmenko, Bernhard Rumpe, Ievgen Strepkov, Michael von Wenckstern
Software Engineering RWTH Aachen University
http://www.se-rwth.de

ABSTRACT

The development of self-driving vehicles is one of the most in-
novative research domains these days. To inspire students to get
involved in this technology as well as model-based design, partic-
ularly using the Component and Connector (C&C) paradigm, we
created a web-playground allowing us to model controllers for a
simulator and almost instantly see the results in a 3D environment.
We believe that visualization and gamification motivate students
and make the studying process more attractive. This paper uses
EmbeddedMontiArc to implement C&C architectures; however, the
presented approach can be easily adopted to any other C&C based
language and/or tooling.

CCS CONCEPTS

- Computer systems organization — Embedded software; «
Software and its engineering — Data flow architectures; « Com-
puting methodologies — Online learning settings;

KEYWORDS
C&C, Component and Connector, Tutorial, Playground

Reference Format:

Evgeny Kusmenko, Bernhard Rumpe, Ievgen Strepkov, Michael von
Wenckstern. Teaching Playground for C&C Language
EmbeddedMontiArc. In Proceedings of ACM/IEEE Models Conference
Workshops (ModComp'18). 6 pages.

1 INTRODUCTION

Self-driving vehicles are a very important part of our future and
thus an important research area. To inspire students to be involved
in this technology we created a web-playground which allows us
to model controllers for a simulator and almost instantly see the
results in a 3D environment. We believe that visualization will
motivate students and make the studying process more attractive
using gamification [12].

To create an outstanding tutorial platform for C&C models, we
analyzed existing playgrounds and tutorials (also including pro-
gramming languages) in order to understand which tools can be
reused and how we should present the knowledge to students so
that it is easy to understand and well-structured.

C&C models are often used to describe software functionalities
in embedded domains such as avionics [8], robotics [19], and au-
tomotive [5]. One of the main advantages of the C&C paradigm
is that it leads to a hierarchical decomposition of the system. The
obtained C&C models consist of components at different levels,
directed and typed ports, and connectors between them. On the

ModComp’18, October 14th — 16th 2018, Copenhagen, Denmark

other hand, hidden communication and side-effects are strictly for-
bidden. Encapsulation and logical decomposition allow efficient
development, modular reuse, and evolution.

EmbeddedMontiArc[14, 15] is a textual domain-specific language
for the modeling of logical functions based on the C&C paradigm.
Thus, its main elements are components and connectors. Each com-
ponent has ports that can be either incoming or outgoing. Through
these ports, components are interconnected. Each port has a unit
and a range. Units are an inherent part of signal types and prevent-
ing re-connections of physically incompatible signals like km/h and
kg. The given range of the port type specifies that an incoming
signal must be within specified boundaries enabling one to model
limits of non-ideal systems, e.g. to account for the maximal velocity
of a vehicle. Furthermore, the EmbeddedMontiArc language sup-
ports generics. It allows creating generic components for multiple
purposes.

A powerful standalone simulator for EmbeddedMontiArc models
called MontiSim already exists [9, 11]. It has a built-in physics
engine, creates its road network from OpenStreetMap data and
even provides weather effects. However, due to its multitude of
features it rather aims at expert users than newcomers. The set up
procedure is too lengthy to be performed during a short tutorial
and requires some configuration.

Code sharing between a standalone application and a separate
tutorial is often not convenient. Furthermore, at the moment, there
is no tutorial for the existing simulator which can teach the C&C
paradigm by using EmbeddedMontiArc language step-by-step. Be-
cause of the explained reasons, we decided to develop a lightweight
solution taking fewer details into account during the simulation.
While it can manage all basic actions and use a full version of the
existing EmbeddedMontiArc language family, it does not provide
an elaborate physics engine, co-simulation, and communication
protocol stacks.

We believe, that the community can benefit from this paper. We
provide two tutorials for students and solutions for C&C models.
Due to our modular architecture, the tutorials and the domain so-
lutions are nearly language independent. Therefore the models
and solutions provided in our paper can be used for other C&C
languages such as Modelica [2], Simulink [16], LabView [13], or Aut-
oFocus3 [1]. The light-weight 3D simulator which works entirely
in a browser can be used for other projects to visualize the various
scenarios as in the paper Specifying Intra-Component Dependencies
for Synthesizing Component Behaviors [7] where an example of a
car overtaking is shown.

The outline of this paper is the following: section 2 presents
the parking and elk test tutorials as running examples for this
paper; section 3 summarizes current related work on tutorials and
playgrounds for other languages; section 4 shows the technical
aspects of the online teaching playground for EmbeddedMontiArc;
section 5 illustrates how students or other persons being interested



ModComp’18, October 14th — 16th 2018, Copenhagen, Denmark

in C&C modeling can use this playground - it shows the users’
viewpoint; and finally section 6 concludes this paper.

2 RUNNING EXAMPLE

The aim of our tutorial is to create a controller for a self-driving
car. But the task is too complex to be tackled in one shot. We have
borrowed the idea from the agile development manifest [3] to divide
the large task into small ones.

The small tutorials are based on user-stories which allow to get
faster feedback for students. Implementing simple tutorials and
learning the basics of the language, students gain experience in
controller design for autonomous vehicles. It is extremely hard to
solve the big and complex task in one step. Therefore, sub-dividing
the task into smaller pieces is important. The latter can be solved
in shorter amount of time and, hence, lead to prompt feelings of
success.

The running example presents the process of creating controllers
that solve given small but common tasks. To achieve the goal we
have to understand the key aspects of the tasks. It helps to find out
which components are needed. The first task is to carry out parallel
parking between two cars. The second task is to successfully pass
the elk test.

Parking Tutorial. Parallel parking is a well-known every days
scenario for students having a car. But it is not so easy to perform
this maneuver for an inexperienced driver. Therefore, a standard
solution is proposed by German driving schools to accomplish this
task (see Figure 1).

Tutorial(03)

0.1 Carry out a parallel parking between two cars.

Implement a model that manages a parking between two cars. The model needs to have several modules which
are responsible for different actions, for instance:

1. Module controlling the speed of the vehicle depending on the current action (e.g. parking, searching a
parking place).
2. Module looking for a parking gap between vehicles.
3. Module controlling the steering of the vehicle during the parking process.
Each module should be as simple as possible.
To solve this tutorial you have to use at least 6 sensors measuring the distance to objects located on the

front/rear/leftiright side of the vehicle. The speed has to be around 0.5-1 m/s. In the picture you can see the main
idea of the parking procedure:

e 8 8
1%3%
i i

The parking process can be subdivided into 4 steps:

D

-

4
A
S

@D~ D

(D
(]

1. Go straight until a slot have been found.

2. when the slot is found, go back and rotate the car.

3. When the vehicle has reached an appropriate position, rotate it towards the other direction to fit it into the
parking slot.

4. When the car is close to the car behind, stop and go forward until it reaches a certain distance to the front
car.

It is important to know that this web-simulator is a simplified version and does not simulate the angle of
the front wheels but only the actual car yaw.

Figure 1: Screenshot of the parking tutorial

The most interesting point in this example for C&C developers
is that this maneuver consists of several independent steps. This

Kusmenko, Rumpe, Strepkov, von Wenckstern

enables us to delegate different tasks to different components such
that each component only solves one simple task. To manage the
maneuver we have to perform the following steps: find a parking
spot; go back pulling the car over in the parking space; and drive
forward aligning the car with the curb.

During the parking process the given requirements must be met:
(P1) the car must not get into an accident during parking; (P2) at
the end of the parking process, the car is parallel to the curb; (P3)
distances to the front and to the rear car should be about the same;
and (P4) the car should only perform three steps to park (as shown
in Figure 1).

Elk Test Tutorial. Another test that we want to introduce is the
elk test. It is performed to determine how well a certain vehicle
evades a suddenly appearing obstacle. These days, the test is per-
formed by major automotive OEMs, because it proves the ability
of a car to maneuver on average speed (60 km/h) without losing
control. In our context, this test gives an idea how the car responds
to objects on the track and how maneuverable it is depending on
its current speed.

To pass the elk test the following requirements must be met: (E1)
the car does not drive into cones during the test; (E2) it drives on
the shortest path, being as close as possible to the cones; (E3) the
car does not leave the testing area by violating track boundaries;
(E4) the start and end positions are specified; and (E5) the car has
to drive between each pair of cones (as shown in Figure 3).

Tutorial Set-up. Each tutorial is organized as a module, it has
all required elements inside its package. It comprises several files
including a description of the tutorial: this is the text which
students are given to understand the task and to find some useful
hints and recommendations for the implementation; a solution
description providing a detailed specification on how to solve the
current task and displaying a working code solution which can be
used directly; a sample controller: a controller which has been
implemented in advance and is able to pass the current test; an
environment configuration: a file, which contains all important
objects and their positions; a reference trajectory used to check
the students’ solutions.

To prepare the simulator environment for tutorials, a configu-
ration file is used. The configuration defines an initial position of
the car. For each tutorial the position specified depends on the task
and an area on the track where an action is going to happen. The
configuration also defines the positions of further objects relevant
for the scenario. It is very convenient to have configurations for
different tutorials, because it provides flexibility during the tutorial
preparation process and simplifies the creation of new tutorials.

3 EXISTING SOLUTIONS WITH TUTORIAL
CHARACTER
This section presents how tutorials are created by other tool ven-

dors for their languages. We have taken in consideration different
tutorials from different areas.

Simulink. Simulink [16] is a C&C modeling environment for
simulation and model-based design of various domains. There are



Teaching Playground for C&C Language EmbeddedMontiArc

plenty of tutorials from many different areas with detailed descrip-
tions and videos explaining the solution step-by-step. But the prob-
lem here is, that they don’t have methods for validating the correct-
ness of the user’s solution and do not encourage the users to try it
out by themselves instead of just copying the sample solution. It is
however obvious that the learning effect rises dramatically when
students have to find the solution on their own.

Rust. Rust [17] is a very popular programming language the
prevalence of which is growing every day. It has a consistent tuto-
rial which describes language constructs with gradually increasing
complexity. It has an informative and structured index, where users
can easily jump from one topic to another almost instantly and then
just go back to the place they were reading before. They use high-
lighted areas to show code examples, which facilitate understanding
of the presented material.

Microsoft Z3 Solver. Z3 [6] is a state-of-the art theorem prover
from Microsoft. They provide an experience similar to the Rust tuto-
rial. Additionally, they provide the possibility to execute the tutorial
code directly in the browser accelerating the learning process. It is
helpful to see the direct connection between written commands and
the real result and improves the understanding of given material.

Octave Online. Octave Online is a web-playground for the high-
level language Octave [18] primarily intended for numerical compu-
tations. It has a simple and intuitive interface despite the complexity
of the internal implementation. It provides fast execution and error
handling directly in the browser. Even if you do complex computa-
tions it is not needed to install any software on the PC. Everything
works on-line out of the box.

Wolfram Alpha. Wolfram Alpha [20] is a very powerful tool,
which works by using expert-level knowledge and algorithms to
automatically answer questions, do analysis and generate reports.
It supports matrix operations and calculations to describe atomic
components, similarly to the EmbeddedMontiArcMath language.
Beyond solving linear equations, it allows to specify the behavior
of controllers. Then by solving the equations a controller can be
synthesized. Furthermore, it has one very interesting and useful
feature providing an interactive visualization of given data. The idea
behind is that you can "feel” how certain parameters influence the
final result. It promises a better understanding of the dependencies
between the components or elements of the system.

TypeScript Playground. TypeScript [4] is a typed superset of
JavaScript. It has a clean and simple playground which shows
the difference and benefits of TypeScript over JavaScript. It has
preloaded examples showing the actual difference and thus pro-
vides a direct comparison giving a better understanding of the
language and facilitating further analysis.

Swift Playgrounds. Swift [10] Playgrounds has been created for
teaching the Swift language in a hands-on experience. You can
create small programs that instantly show the results of your code.
In the right part of the screen a 3D world is shown. The tutorials
are pretty simple but the concept is very interesting. They have
automatic verification of the correctness of an implemented solution
in the 3D environment. To produce many diverse game oriented

ModComp’18, October 14th — 16th 2018, Copenhagen, Denmark

tutorials, it would be convenient to have a simple 3D model import
for various 3D formats designed in different tools.

Summary. Having thoroughly analyzed the solutions listed above,
we have derived the following list of requirements for our tuto-
rial: (R1) an appropriate visualization for demonstration purposes;
(R2) Simple, clean and intuitive interfaces; (R3) Support for all
common operating systems and no need for an installation; (R4)
Automatic verification of obtained results; (R5) Import and reuse
of existing 3D models for the visualization; (R6) Displaying the
object’s trajectory; (R7) Integrated unit testing support.

Table 1: The table summarizes the comparison between all
considered tutorials. (+ supported, P partially supported, -
not supported)

Z3 | Octa- | Wol- | Type-| Swift | Rust | Simu-| EMAM
ve fram | Script link
R1|- + + - + - + +
R2| + + + + +
R3[+ |+ + - - +
R4/ - - - - + - + +
R5| - - - - - - + +
Re[- |- P - P - P +
R7| - - - - - - + +

Table 1 summarizes the differences between the tutorials regard-
ing the derived requirements.

(R1) Appropriate visualization for demonstration purposes:
Four considered tutorials have a 3D visualization. Octave online has
a possibility to generate plots and graphs for given data. Wolfram
Alpha has a powerful tool for the generation of 3D models. The
student can interact with these models and see the changes in real
time. The Swift Playground has the most advanced 3D world which
is part of the tutorial and result presentation. Simulink provides
means to build appealing 3D models which can be involved in the
simulation process. However, the users have to build everything
themselves.

(R2) Simple, clean and intuitive interface: This is the only
requirement which all tutorials were able to satisfy. We believe that
it is very important to have an understandable and clear interface
which does not distract from the educational process.

(R3) Work on any operating system and without installa-
tion: Almost all examined tutorials have a web-implementation and
work without installation, except the Swift tutorial and Simulink.
The Swift tutorial has only an iOS realization. Simulink does not
provide an on-line interface, however Matlab has a partial web-
implementation.

(R4) Automatic verification of obtained results: Only one
among the examined tutorials, the Swift tutorial, has an automatic
verification of the solution provided by the student. It generates
additional interest during the studying process, and can be a moti-
vation to keep solving the tasks by analogy with computer games.
In Simulink such a feature can at least be implemented by the user
but is not provided out-of-the-box.

(R5) Import and reuse of existing 3D models for the sim-
ulation: Only Simulink provides the ability to import 3D models.



ModComp’18, October 14th — 16th 2018, Copenhagen, Denmark

It helps to create tutorials quickly and efficiently by using the previ-
ously created models and configurations. An example of reusing a
3D object can be a cone that is used in many exercises. This feature,
in our opinion, simplifies the process of creating new tutorials and
decreases the time which has to be invested in the creation process.

(R6) Displaying the object’s trajectory: Wolfram Alpha, Swift,
and Simulink have partial support for this feature in case that you
can see the whole process of movement of the object from the
very beginning to the end. But we decided to improve the concept
and to add a separate window which permanently displays the
traversed route of the object for better visual perception and visual
comparison of results. In our case the object is a car.

(R7) Integrated testing support: Only Simulink has integrated
testing capabilities. In the domain of our tutorial, however, testing
plays an important role. By writing blackbox unit tests for a com-
ponent (called stream tests in EmbeddedMontiArc) we can ensure
correct handling of incoming data. Tests make the components
more reliable and robust. What is more, we think that today’s tu-
torials should teach students to develop tests before starting to
work on the implementation. Taking into account all these derived
requirements we are going to present our solution.

We want to emphasize that our platform is not the best
although it outperforms the presented tools regarding the
proposed requirements according to Table 1. The other tu-
torial platforms, especially Simulink and Swift, support a much
broader domain for tutorials; Simulink for example provides excel-
lent tutorials including high-quality videos and Matlab on Ramp
for image processing, deep learning, aerospace, and an electrical
powertrain.

The main purpose of Simulink is to provide templates showing
how a problem can be solved using this tool; our main purpose
is to teach the students the C&C modeling paradigm including
testing. We chose the domain of self-driving cars for our tutorials
and therefore developed a simple TypeScript based simulator. Note
that we only covered a small selection of available tutorials.

4 ARCHITECTURE

This section presents the software architecture referring to the
high-level structure of our online web tutorial; it also discusses
some decisions we needed to revert due to technical problems.

At the very beginning, we came up with the idea of a serverless
application which can be hosted on GitHub pages. First, the solution
looked very promising, as there already is a Clang In Browser (CIB)
project to compile the generated C++ code to WebAssembly and to
run it directly in a browser. But then we figured out some issues with
this approach: CIB does not support dynamic linking yet. Therefore,
we cannot link against the large Armadillo mathematics library,
which is used by EmbeddedMontiArc. Static linking on the other
hand would extend the linking process to several minutes.

Due to this reason, we decided to use a stateless server applica-
tion: a user sends the C&C files to the server which translates them
to WebAssembly [15]. Then the client receives the WebAssembly
controller which is used by the web simulator. The huge advantage
here is that the server is not involved in the simulation process.
Thus, it is much easier to handle multiple users and it does not
run into critical performance issues, due to multiple requests. The

Kusmenko, Rumpe, Strepkov, von Wenckstern

.wasm controller, error
report, svg schemas

Backend

EMAM2WASM \

Testing |, 5 Web-server Web IDE for

toolchain MontiArc
Trajectory
builder
SVG generator
EMAM model

br&igsereb2sirsimi tdetiore rof) € B1(€ raiyl idvee tiwt bidall pdaddtiom for
each user and, in our opinion, has a massive impact on the user
experience. Also, the maintenance of a stateless server is much
simpler than the maintenance of a stateful one.

The disadvantage is that users have to wait for the compilation
on the server side (compilation for a single tutorial for one user
needs about 15s) and it can take longer due to multiple requests.
Furthermore, compilation is not possible without a connection to
the server. Nevertheless, the user can observe a fluent visualization
showing the car driving in the simulator.

In our case, EmbeddedMontiArc is already developed as a self-
contained service based on jar archives. Due to the derived require-
ment (R3), we have to develop a web-based application. Therefore,
on the server-side some services from EmbeddedMontiArcStudio
can be selected and integrated.

But still, one server-side component is missing. The server must
handle multiple users at the same time as well as the messaging
from the back-end to the front-end. Students should get a response
from the server to receive compiled controllers or just fix errors
which can appear during the compilation process. EmbeddedMon-
tiArcStudio, the offline development IDE of EmbeddedMontiArc,
has its own 3D simulator having a lot of powerful features [9, 11].
But it requires a powerful computer and a more rigorous configura-
tion thereby contradicting some of our requirements. So we decided
to develop a new simple simulator satisfying our requirements. For
implementation, we have picked TypeScript.

Working on the front-end, the simulator delivers a smooth and
fluent experience for the user. Therefore we are using fully indepen-
dent front-end for the simulator and back-end for the preparation
phase of the controller. We went even further and decided to use
WebAssembly for the controller. WebAssembly is a new type of code
that runs in modern web browsers; it is a low-level assembly-like
language with a compact binary format that runs with near-native
performance. WebAssembly compilers are available for different
source languages such as C/C++ facilitating the usage of such lan-
guages in web applications. WebAssembly is well suited for our
task due to the fact, that EmbeddedMontiArc comes with a C++
code generator, i.e. a generator taking EmbeddedMontiArc models
as input and producing equivalent C++ code as output. For this
reason, the EmbeddedMontiArc to WebAssembly converter was
developed.

Figure 2 shows the architecture overview.

To clarify the goal of each component which is shown in the
picture, we will consider the seven most important components
that are linked together:

Web-playground (Frontend)

3D simulator




Teaching Playground for C&C Language EmbeddedMontiArc

IDE for the EmbeddedMontiArc language: it helps to write
components, reveals the errors and shows incoming and outgoing
ports of the components.

Web-server: it receives the requests for compiling the Embed-
dedMontiArc models and sends back a finished controller, packs
and extracts models, controls the compilation process providing
error handling for users. The server has a queue which provides
the handling of multiple users simultaneously.

EMAM2WASM generator: it gets the model from the web-
server and compiles it, generating the web-assembly file, which is
the "brain" of the simulator.

Testing toolchain: it provides stream testing for incoming mod-
els. The toolchain consists of EMAM2CPP (EmbeddedMontiArc to
C++) generator, which generates tests, then the tests are compiled
and executed. The output from the stream testing phase can be
used to be shown to a user or for generating the WebAssembly file.

SVG generator: it generates a picture of the components and
connections for better readability. Users can find errors easier using
the visual component schema.

Browser-based simulator: it receives a compiled model from
the server and instantiates it directly in the browser. Then the
controller is used to process data from sensors, which are located
in the car to produce commands for the actuator.

Trajectory builder and comparator: It builds a trajectory of
the car movements in real time and performs a comparison with
the reference trajectory. The comparator allows some deviations
from the reference trajectory.

In this architecture we reuse some previously developed compo-
nents and introduce new ones allowing us to accomplish our goal
in the most efficient and optimal way.

5 USERS’ VIEWPOINT

This section shows the users’ viewpoint of the C&C tutorial; e.g.
how students are going to use the web-playground to understand
C&C modeling languages like EmbeddedMontiArc.

The main idea of the playground is to increase interest in the
learning process using gamified tutorials. There are several simple
steps in the learning process. The first tutorial is a task which
already has a solution but the idea behind it is to show the main
constructions and principles of the language and the playground.

Following tutorials have tasks with increasing complexity and
provide some hints motivating students to use particular patterns.
The visualization of the process provides a feeling for the language
and an understanding of the connection between written code and
real actions caused by this code.

The process of writing tests shows benefits of test-driven devel-
opment and helps to understand the importance of independent test-
ing of the components. The process of using the web-playground is
very simple. Students don’t have to install any applications on their
computers and it is possible to use it from any platform, e.g. Mac,
Windows, or Linux; only a modern browser with WebAssembly
and HTML 5 support is needed. IDE, tutorials, and the visualization
are located in one window and have a very intuitive interface as
shown in Figure 3.

Solution for Example 1 (Parking Scenario). To start working on
the solution we have to know the way how to communicate with

ModComp’18, October 14th — 16th 2018, Copenhagen, Denmark

the car to achieve the desired behavior. For this purposes, there
is an interface to the simulator which is given for every tutorial.
The interface is shown in Listing 1. The interface has 8 sensors to
measure distances to objects, velocity, steering angle, acceleration,
a position of the car and execution time.

As shown in Listing 1, ports have units and ranges in Embedded-
MontiArc. The ranges give an advantage during the testing phase
and provide the possibility to use a variety of units depending on
the particular case, e.g. km/h or m/s.

Listing 1: Interface of MainController to communicate with
TypeScript simulator

component MainController {
ports
in Q(0m:200m) fl, //front left sensor from Om to 200m
(0m:200m) fr, //front right sensor
(0m:200m) slf ,//side left front sensor
(0m:200m) slb ,//side left back sensor
(0m:200m) srf ,//side right front sensor
(0m:200m) srb,//side right back sensor
(0m:200m) bl, //back left sensor
(0Om:200m) br, //back right sensor
(0s:00s) time,
in Q(0m/s:25m/s) velocity , //car velocity
in Q(-200m:200m) x,//car position X
in Q(-200m:200m) y,//car position Y

out Q(—2m/s\"2:2m/s\"2) acceleration, //car acceleration

out Q(—180Af:180Af) steering; //car steering

}

Based on the predefined interface, students can now create new
subcomponents and connect their ports to solve this task. In this
particular example (see Listing 2), we use three components which
are responsible for different actions during the parking process:
VelocityController: this component controls the velocity of the
car depending on the current action (e.g. parking, searching a park-
ing place, etc.). ParkingController: this component controls the
steering angle of the car during the parking process. SearchPark-
ingPlace: this component looks for a gap between cars for the
parking.

When we have decided which component is responsible for what,
it is necessary to understand which ports are needed and how they
have to be interconnected.

Listing 2: Add subcomponents to MainController and con-
nect the ports of the subcomponents

instance VelocityController velocityController;
instance ParkingController parkingController;
instance SearchParkingPlace searchParkingPlace;

connect velocity —>velocityController.velocity;
connect velocityController.acceleration —>acceleration;
connect slf —>searchParkingPlace. frs;

To improve the visual perception of the interconnections, the
demonstrator has an SVG generator producing a graphical C&C
model. Figure 4 shows the graphical model of the solution controller.

Solution for Example 2 (Elk Test). Due to paper length limita-
tion, the solution of this example is only available at our website:

‘ http://www.se-rwth.de/materials/ema_tutorial/

//simulation time from 0s to infinity


http://www.se-rwth.de/materials/ema_tutorial/

ModComp’18, October 14th — 16th 2018, Copenhagen, Denmark

Selection ¢

nner.emam MainController.eman

ontrollerdd;

Workspace

TocityController;
neRunner;

ontroller{

Kusmenko, Rumpe, Strepkov, von Wenckstern

Figure 3: Screenshot of Tutorial Environment: left IDE, right top: 3D visualization, right bottom: trajectory

component
input name ™) f component Cac
port mainController” -
velocity velocity output
Controller port

“lacceleration

backLeftSide
. T/ port
frontLeftSide name
frontLeft
frontRight status
backLeft { ]steering

backRight [ ] ﬁ/canmzm‘or

Figure 4: Graphical C&C model of Listing 1 and Listing 2
6 CONCLUSION

In this paper, we have analyzed existing tutorials from various do-
mains. Our aim was to find the most important features having
an influence on the studying process of modeling languages, to
discover weaknesses of existing approaches and to overcome them.
We came up with a suitable architecture using already implemented
building blocks thereby decreasing the amount of work without
having a negative influence on the user experience. Furthermore,
we showed how to use the tutorials and demonstrated two inter-
esting real-world examples presenting the main concepts of our
component and connector modeling language and revealing impor-
tant integrated features like stream testing and result verification.

REFERENCES

[1] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hélzl, and Bernhard
Schitz. 2015. AutoFOCUS 3: Tooling Concepts for Seamless, Model-based Devel-
opment of Embedded Systems.. In ACES-MB.

Modelica Association et al. 2005. Modelica language specification. Linkoping,
Sweden (2005).

Kent Beck, Mike Beedle, Arie van Bennekum, et al. [n. d.]. Agile Manifesto
http://agilemanifesto.org/.

Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding type-
script. In Conference on Object-Oriented Programming. Springer, 257-281.

[11

(12]

[13

(14]

[16]
(17]
(18]

[19

[20]

Eckard Bringmann et al. 2008. Model-based testing of automotive systems. In
2008 International Conference on Software Testing, Verification, and Validation.
IEEE, 485-493.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Stefan Dziwok, Sebastian Goschin, and Steffen Becker. 2014. Specifying Intra-
Component Dependencies for Synthesizing Component Behaviors.. In Mod-
Comp@ MoDELS. Citeseer, 16-25.

Peter H Feiler and David P Gluch. 2012. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley.
Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bernhard Rumpe,
and Alexander Ryndin. 2018. Distributed Simulation of Cooperatively Interacting
Vehicles. In 21st IEEE International Conference on Intelligent Transportation Systems
(ITSC’18).

Cristian Gonzalez Garcia, Jordan Pascual Espada, Begona Cristina Pelayo Garcia
Bustelo, and Juan Manuel Cueva Lovelle. 2015. Swift vs. objective-c: A new
programming language. I7IMAI 3, 3 (2015), 74-81.

Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and
Michael von Wenckstern. 2017. Simulation Framework for Executing Component
and Connector Models of Self-Driving Vehicles. In Proceedings of MODELS 2017.
Workshop EXE.

Wendy Hsin-Yuan Huang and Dilip Soman. 2013. Gamification of education.
Research Report Series: Behavioural Economics in Action, Rotman School of Man-
agement, University of Toronto (2013).

National Instruments. 1998. BridgeView and LabView: G Programming Reference
Manual. Technical Report 321296B-01. National Instruments. 667 pages.
Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. 2017. Modeling Architectures of Cyber-Physical Systems. In ECMFA.
Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von Wenck-
stern. 2018. Highly-Optimizing and Multi-Target Compiler for Embedded System
Models: C++ Compiler Toolchain for the Component and Connector Language
EmbeddedMontiArc. In MODELS.

Mathworks. 2016. Simulink User’s Guide. Technical Report R2016b. MATLAB &
SIMULINK. 4022 pages.

Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103-104.

Sandeep Nagar. 2018. Introduction to Octave: For Engineers and Scientists, volume
1of 1. Apress.

Christian Schlegel, Thomas Haf3ler, Alex Lotz, and Andreas Steck. 2009. Robotic
software systems: From code-driven to model-driven designs (International Con-
ference on Advanced Robotics). IEEE, 1-8.

Stephen Wolfram. 2013. Wolfram research. Inc., Mathematica, Version 8 (2013),
23.



	Abstract
	1 Introduction
	2 Running example
	3 Existing Solutions with Tutorial Character
	4 Architecture
	5 Users' Viewpoint
	6 Conclusion
	References

