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ABSTRACT
Component-based systems can be modeled as black-box, stand-

alone components, coordinated by an interaction protocol. In this

paper we focus on developing reliable protocols, specified in a

coordination language where their design, implementation, and

property verification rely on the exact same model. In this con-

text, to construct complex protocols compositionally, we use Reo, a

powerful channel-based coordination language with well-defined

semantics. We extend the current set of back-end languages sup-

ported by Reo’s compiler with Promela, the specification language

of the model checker SPIN. The automatic generation of Promela

code from Reo specification enables system simulation and verifi-

cation of LTL properties of Reo models using SPIN.
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1 INTRODUCTION
Development of a complex distributed system relies, generally, on

assembling existing COTS (Commercial off-the-shelf) components

(or services), such that their interactions after the composition man-

ifest that of the required system. A major difficulty in developing

such systems involves the correctness of the interaction protocol

among their constituent heterogeneous components. As such, cor-

rect behavior of individual component is insufficient to imply the

correctness of the composed system, because such system’s behav-

ior depends on the protocol that coordinates its components. Precise

specification and correctness of coordination protocols, thus, play

a crucial role in construction of complex distributed systems.

Coordination languages, like Reo [3], offer powerful "glue-code"

to specify interaction protocols. Reo offers a non-traditional inter-

action centric paradigm for design of concurrent system. It is a

coordination language, that supports exogenous composition of

components and services via explicit, composable, pure interac-

tion specifications. The Reo model of a concurrent system consists

of a set of components that interact with each other through a

set of externally specified protocol constructs, called, connectors,

that constrain synchronization and exchanges of data among those

components. Primitive and complex connectors are specified in a

graphical or textual syntax [11]. Many semantic formalisms exist

for formal specification of the behavior of Reo connectors [14].

In this paper we propose to use Reo to guarantee a precise speci-

fication of complex protocols, and our main purpose is to propose

a formal approach for verifying their correctness. For that, we pro-

pose to exploit the SPIN model checker [13] to verify safety and

liveness properties of the specified protocols.

Our choice of SPIN is motivated by the fact that it is one of the

most employed model checkers, in both industrial and academic

communities, for detecting software defects in concurrent system

designs. SPIN has been applied to everything from the verifica-

tion of complex call processing software that is used in telephone

exchanges, to the validation of intricate control software for inter-

planetary spacecraft. In SPIN, a formal specification is built using

Promela, which is an imperative language that resembles C in, .e.g,

variable and type declaration.

To ensure the correctness of translation from Reo to Promela, we

present sufficient conditions to compile a protocol into a Promela

program. We first introduce the notion of input/output designation,

to direct the data flow in the protocol. Then, we define an envi-

ronment as a set of processes that the protocol coordinates, and

write the functional response of the protocol from the environment

as a formula in guarded commands form. We finally present the

translation of the guarded commands to Promela, to verify their

LTL properties. We show the correctness of our translation by con-

sidering the behavior of the protocol specified in Reo and Promela.

We demonstrate the relevance of our work in a case study involving

design and verification of a railway component-based system.

Proofs of propositions and theorem are accessible at [1].

2 REO
Reo is a channel-based coordination language used for compo-

sitional construction of coordinated systems. In this section, we

explain the terminology used in Reo, together with a graphical

syntax used to draw Reo circuit. We then present a logical syntax

for representation of exogenous constraints. We define a guarded

command form for logic formula, and use this structure to generate

executable and verifiable code.

Terminology. The basic constructs in Reo consist of components,
ports, channels and nodes. A port is a unidirectional means of syn-

chronous exchange of data between two parties. Two operations

can be performed on a port: put and get. The unidirectionality of

a port means that each of the two parties on its two sides can use

the port exclusively either as input or as output. A party that uses

a port as output, can perform only put operations on that port, and

a party that uses a port as input can perform only get operations

on that port. A port fires whenever it has a get and a put operation

pending on its respective sides. Firing of a port transfers the data

item from the put operation to the get operation. A component is

defined with a set of ports at its boundary, called its interface. Each
port of an interface is either an input or an output port. When a

port is shared by two components, we say that those two compo-

nents are in composition. The port must be used as input in one

component, and as output in the other component. A component

can internally contain several components in composition, in which

case we say that the component is composite. A component is called

atomic if its behavior is defined in a specific formal semantic. A

binary component, meaning that one whose interface consists of

only two ports, is called a channel.

As pictured in Fig. 1, we represent graphically some standard

Reo component. More details can be found in [3]. We define in the

next subsection a syntax to write the constraint relations among

the ports of a component. We later define a semantic of those
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constraints as the set of data streams accepted by the constraint on

their respective ports of the component.

2.1 Exogenous constraints as formula
Logical constraints. We can express the externally observable

behavior of a component as a relation over the sequences of data

items that it exchanges with its environment through its ports. In

this view, an interaction protocols is a relation that constrains the

exchanges of data among the ports of various components. We can

use logic formulas to express these constraints. We usually sepa-

rate two types of constraints. A synchronization constraint relates
firing of ports, and a data constraint relates the values exchanged
among ports. We follow the work of [10], where they used a spe-

cial data item NO-FLOW (that we represent here as ∗) to encode

synchronization as data constraint.

We use D to denote the set of data items that flow through

ports and are stored in memories. We use a special symbol ∗ < D,
that represent no-data, to encode synchronization. We use D∗ to
denote the set D ∪ {∗}. We use P to denote the set of variables that

represent values exchanged through their homonym ports,M the

set of variables that represent the current values stored in their

homonym memory cells, andM ′ the set of variables that represent
the next values to be stored in their unprimed homonym memory

cells. We denote the set of variables as V , which consists of the

union of P ,M andM ′. Variables take their values from the domain

D∗. Q and F respectively denote the set of n-ary predicate symbols

and n-ary function symbol.

A term is either a variable v ∈ V (which can be a port or a

memory variable), an n-ary function f ∈ F , or a constant d ∈ C
(where C is the set of constant symbols).

t1,t2 ::= d | f (t1, ...,tn ) | v

The set of term expression is denoted by E
A formula is built inductively by:

ϕ ::= t1 = t2 | B (t1, ...,tn ) | ϕ1 ∧ ϕ2 | ¬ϕ | ∃pϕ

Where B ∈ Q is a predicate symbol. The set of formula expres-

sions is denoted by F . We use the shorthand notation t1 , t2 for
¬(t1 = t2), ⊥ for t1 , t1, and we get ϕ ∨ψ = ¬(¬ϕ ∧ ¬ψ ) as well
as ∀tϕ = ¬(∃t¬ϕ) and ϕ =⇒ ψ = ¬ϕ ∨ ψ . Quantifiers range
over port variables only. We call atomic a formula that is either an

equality, an inequality, or a predicate. We call Vϕ the set of free

variables occurring in ϕ.

Solution of constraints. We use γ : F → Dn
∗ → D∗, the interpre-

tation function for function symbols, and Γ : V → D∗ to denote

the interpretation function for variable symbols. We identify a con-

stant c with its homonym value in D∗. We define the interpretation

of terms J·K(Γ,γ ) : C ∪ F ∪ V → D∗, over the functions Γ and γ ,
inductively as:

JdK(Γ,γ ) = d ∈ D∗
Jf (t1, ...,tn )K(Γ,γ ) = γ ( f ) (Jt1K(Γ,γ ) , ...,JtnK(Γ,γ ) ) ∈ D∗
JvK(Γ,γ ) = Γ(v ) ∈ D∗

Each n-ary predicate symbol B ∈ Q is assumed to have an in-

terpretation denoted by I (B), such that I (B) ⊆ Dn
∗ Given an in-

terpretation function γ for the function symbols, a solution to a

formula ϕ is an assignment Γ such that Γ satis f ies ϕ, written as

Γ |= ϕ, defined inductively on ϕ as:

Γ |= ⊤ always

Γ |= t1 = t2 iff Jt1K(Γ,γ ) = Jt2K(Γ,γ )
Γ |= ϕ1 ∧ ϕ2 iff Γ |= ϕ1 and Γ |= ϕ2
Γ |= ¬ϕ iff Γ ̸ |= ϕ

Γ |= ∃pϕ iff there exists d ∈ D∗ such that Γ |= ϕ[d/p]

Γ |= B (t1, ...,tn ) iff (Jt1K(Γ,γ ) , ...,JtnK(Γ,γ ) ) ∈ I (B)

We extend the domain definition of an n-ary function from Dn

to Dn
∗ by defining f (t1, ...,tn ) = ∗ ⇐⇒ t1 = ∗ ∨ ... ∨ tn = ∗.

2.2 Permanent and ephemeral constraints
Components and permanent constraints. A Reo component, as

introduced earlier, constrains the flow of data through its boundary

ports. We call the logical formula used to represent this relation

on the data flow through the ports of a component the perma-
nent constraint of the component. Fig.1 shows several examples of

permanent constraints of component.

Given a port p ∈ P , the proposition of whether or not p fires is

encoded as an equality between p and elements of D∗. We say that

p fires if p , ∗. On the other hand, p does not fire if p = ∗. Taking
a,b ∈ P , we can now express that a and b fire synchronously, as

the formula a = b.

sync(a,b)
a b

a = b

fifo(a,b)
a b

•

(m′ = a ∧ a , ∗ ∧ b = ∗ ∧m = b) ∨
(m′ = a ∧ a = ∗ ∧ b , ∗ ∧m = b) ∨

(m′ =m ∧ a = ∗ ∧ b = ∗)

Figure 1: From left to right: textual syntax, graphical
syntax and permanent constraints. From top to bottom:

sync channel, and fifo channel.

The permanent constraint for a fifo channel has three clauses.
The first one corresponds to filling the buffer with the data item

observed at port a; the second one empties the buffer through port

b; and the last one corresponds to the case where no port fires, in

which case the value in the buffer must remain unchanged.

As hinted previously, protocols can be built by composing prim-

itive. In the case of a composite component, the resulting perma-

nent constraint is defined as the conjunction of the permanent

constraints of the underlying components.

The logic is agnostic regarding the direction of data flow and

merely represents the constraint on the data observed at each port.

We introduce in the next paragraph the designation of input and

output for variables, and the notion of ephemeral constraint.

I/O designation and ephemeral constraints. Given a formula, ϕ,
and its set of variable Vϕ = P ∪ M ∪ M ′, we write the function

io : Vϕ → {0,1} as a designation for input and output variables

such that:

io : v 7→



1 v ∈ M
0 v ∈ M ′

io(v ) ∈ {0,1} v ∈ P

We define V in
ϕ as the set of variables v such that io(v ) = 1 and

V out
ϕ the set of variables such that io(v ) = 0. We also extend the

notation to P in and Pout , referring to the set of input and output

port variables as designated by the io function.
Since a port is a shared entity between two components, we

introduce the relative notion of environment for a component as

the constraint imposed by the external world on its boundary ports.
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A component knows about the constraint imposed by the environ-

ment only by sensing the state of its boundary ports, and cannot

access the permanent constraint that describes the environment.

We model an environment ∆ by:

∆ : P∆ → D∗, v 7→



∗ v ∈ Poutϕ ∩ P∆

∆(v ) ∈ D∗ v ∈ P inϕ

where P inϕ ∩ P∆ = P inϕ , and Poutϕ ∩ P∆ ⊆ Poutϕ . We introduce the

notion of ephemeral constraints ϵ and µ as opposed to a permanent
constraint ϕ. In contrast to a permanent constraint, an ephemeral

constraint may change in time. An environment ∆ imposes an

external ephemeral constraint µ =
∧
v ∈P∆ (v = ∆(v ) ∨ v = ∗) on

the free variables of the permanent constraint ϕ of a component.

The external ephemeral constraint µ represents the fact that, if

the environment assigns ∗ to a variable, then the component does

not have a choice but to assign ∗ to the same variable; however, if

the environment has a data item pending at port v (described by

the constraint ∆(v ) , ∗), the component can still chose to assign

∗ to the variable and let the environment wait. An assignment Γ
such that Γ |= ϕ imposes an internal ephemeral constraint on the

next state of the component with ϵ =
∧
m∈M (m = Γ(m′)). In other

words, the next assignment Γ′ must then satisfy the constraint

ϕ ∧ ϵ , where ϵ represents the internal state of the component, i.e.,

its memory values.

Intuitively, we can understand external ephemeral constraints

as a current state of the ports on the boundary of a component

(whether or not the environment has some I/O requests pending

on a subset of ports), and the internal ephemeral constraint reflects

the current state of the memory in a component. In composition

with the permanent constraint, we get the current constraint of the

component in the context of its internal and external states.

2.3 Behavior and language of protocols
Operational semantic. Operationally, we consider formulas as

labels for states, and assignments Γ as labels for transitions between
states. Each state is labeled by an ephemeral constraint ϵ ∧ µ. We

assume an initial state ϵ0 ∧ µ0, given ϵ0 =
∧
m∈M m = cm where

cm ∈ D∗, and µ0 =
∧
p∈P p = ∗. In the initial state, the constraint µ0

ensures that all port variables have the value ∗, and the constraint

ϵ0 gives an initial value for all memory variables. We say that two

states ϵ1 ∧ µ1 and ϵ2 ∧ µ2 under a permanent constraint ϕ are

related by an assignment Γ if and only if Γ |= ϕ ∧ ϵ1 ∧ µ1 and

ϵ2 =
∧
m∈M (m = Γ(m′)). In this case, we write ϵ1 ∧ µ1

Γϕ
−−→ ϵ2 ∧ µ2,

and drop the subscript ϕ when it is clear from the context.

Note that there exists an assignment Γ that relates each state with
itself. Indeed, choosing the assignment Γ such that Γ(m) = Γ(m′)
for all m ∈ M and Γ(p) = ∗ for all p ∈ P is a solution for any

ephemeral constraint. Multiple distinct assignments may relate

the same two states, in which case the labeled transition system

contains multiple labeled edges between the same pair of states.

We refer to an infinite path in the labeled transition system

ϵ1 ∧ µ1
Γ1
−−→ ϵ2 ∧ µ2

Γ2
−−→ ϵ3 ∧ µ3

Γ3
−−→ ... by the infinite sequence of its

labels Γ1,Γ2, .... ByT , we designate the set of infinite label sequences

of the LTS. Given τ ∈ T , we write τ (i ) for the i-th assignment in

the sequence τ , and τ (i ) (v ) for the value of the variable v ∈ Vϕ in

the i-th assignment of the sequence τ .

Language of protocols. Analogously, an infinite sequence Γ0,Γ1, ... ∈
T can also be transformed into a tuple of data streams. For each

variable v ∈ V , we define the data stream σv : N→ D∗ such that

σv (i ) = Γi (v ) for all i ∈ N. We call σV the tuple (σv1
,σv2
, ...,σvN )

where {v1, ...,vN } = V
We define the language of a formulaϕ with initial memory values

defined by ϵ0 as the set of tuples of data streams for the variables

v ∈ V , i.e.:

Lϕ =
⋃
τ ∈T

{(σv1
, ...,σvN ) | σvi (t ) = τ (t ) (vi ) f or all vi ∈ V and t ∈ N}

a ∗ 1 1 ∗ ...

b ∗ 1 1 ∗ ...

a ∗ 1 ∗ 1 ...

b ∗ ∗ 1 ∗ ...

Figure 2: Examples of data streams on a ports a and b of a
synchronous (left) and asynchronous (right) channel.

Each component defines a constraint on the exchanges of data

items through its own boundary ports and two resulting time data

streams are shown in Fig. 2. This constraint is represented by a

formula such that the interpretation of the formula describes the

intended behavior of the component. We represent the behavior of

a component as a set of data streams, as also described in [11]. The

symbol ∗ used in the table represents the case where no data flow

is observed at its respective port.

This overview suffices to understand the Reo compiler, compre-

hend the behavior of independent components, and that of com-

posite components. In the next subsection, we explain the logical

form which the compiler uses to optimize the composition of com-

ponents. We define the notion of the guarded command form for a

formula, and relate it to code generation. The formal development

in the next subsection is supported by a tool [2] developed at CWI.

Currently, the tool consists of a compilation suite from Treo, a tex-

tual language for Reo [12], to executable code (Java) or verifiable

code (Promela). We explain the formal steps in the compilation

process in the next subsection.

2.4 Compilation
The language of constraints expressed previously is not yet suf-

ficient to define compilation into a program. We need to restrict

the expressiveness of the constraints such that we can compile

the resulting protocol into a program. We provide in this section

a restriction of the language of constraints and define a generic

constraint solver for it.

Guarded commands. Given a formulaϕ representing a constraint,

and an io designation, we define sufficient conditions for ϕ to be

written in the guarded command form. We first introduce a frag-

ment of the logic of constraints, give some requirement on ϕ to be

expressible as a guarded command, and show some properties if ϕ
satisfied those requirements.

We denote by vin and vout a variable v such that io(v ) = 1 and

io(v ) = 0, respectively. We denote a term by t in and tout such that:

t in ::= d | f (t in
1
, ...,t inn ) | vin tout ::= vout

The language of guards д is defined by the following grammar:

l ::= B (t in
1
, ...,t inn ) | t in

1
= t in

2
| tout = ∗ | ¬l

д ::= l1 ∧ l2

The language of commands c is defined by the following grammar:

c ::= tout = t in | c1 ∧ c2
We say that a formula ϕ is in guarded command form if

ϕ =
∧
i
(дi =⇒ ci ) ∧ (

∨
j
дj )

where дi are formulas in the language of guards and ci are formulas

in the language of commands. Given ϕ in guarded command form,

we call an implication of the typeд =⇒ c inϕ, a guarded command

of ϕ. We call the number of guarded commands in such a formula,

the size of that formula. We denote the set of guards by G, and the

set of commands by C.
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We say that a quantifier free formula ϕ = ϕ1 ∨ ... ∨ ϕn in dis-

junctive normal form and expressed in the language of constraints

is deterministic if ϕ can be written with the grammar of guarded

commands such that ϕ = д1 ∧ c1 ∨ ... ∨дn ∧ cn , where ∧ has prece-

dence over ∨, дi are guards, ci are commands, and дi ∧ дj ≡ ⊥ for

all i, j where i , j.
We assume that if a term tout is involved in an equality, then

the other term is either ∗, or an input term t in . In other words, if an

equality tout
1
= tout

2
appears in the constraint ϕ, there must exist

an input term t in such that tout
1
= t in and tout

2
= t in . Moreover,

Proposition 1. A deterministic formula ϕ = д1∧c1∨ ...∨дn ∧cn
can be written as a guarded command where:

ϕ = (д1 =⇒ c1) ∧ ... ∧ (дn =⇒ cn ) ∧ (
∨
i
дi )

.

Given two guarded commands ϕ =
∧
i (дi =⇒ ci ) ∧ (

∨
j дj )

andψ =
∧
i (д
′
i =⇒ c ′i ) ∧ (

∨
j д
′
j ), we write the composition ϕ ∧ψ

as the formula:

ϕ ∧ψ =
∧
i
(дi =⇒ ci )

∧
i
(д′i =⇒ c ′i ) ∧ (

∨
i,j

д′i ∧ дj )

Proposition 2. Given two deterministic formulas ϕ andψ , their
product ϕ ∧ψ is also deterministic.

As the construction in the proof of Proposition 2 shows, writing

the composition of two deterministic formulas as a deterministic

formula may increase the size of the resulting formula. Some op-

timizations that can be applied to formulas before forming their

product, but we don’t detail them here for lack of

Example. We now consider an example of guarded commands

for the fifo primitive. The fifo primitive has a permanent constraint

written in Fig. 1, with the io designation of io(a) = 1 and io(b) = 0,

i.e., a is an input port and b is an output port. The formula of a fifo
is deterministic, and with the result of Proposition 1, we can write

its permanent constraint as a guarded command:

ϕf if o =((a , ∗ ∧ b = ∗ ∧m = ∗) =⇒ (m′ = a ∧m = b)) ∧

((a = ∗ ∧ b , ∗ ∧m , ∗) =⇒ (m′ = a ∧m = b)) ∧

((a = ∗ ∧ b = ∗) =⇒ m′ =m) ∧

((a , ∗ ∧ b = ∗ ∧m = ∗) ∨ (a = ∗ ∧ b , ∗ ∧m , ∗)∨

(a = ∗ ∧ b = ∗))

The formula for a fifo channel has two different guards. The first
guard checks whether its source port a is active, in which case

the command fills the buffer with the data observed at port a; the
second guard checks whether the channel’s sink port b is active, in

which case its command empties the buffer through port b.

Proposition 3. Given a deterministic formula ϕ in guarded com-
mand form, and an ephemeral constraint ϵ ∧ µ, Γ is a solution of
ϕ ∧ ϵ ∧ µ if and only if there exists a unique guarded command
д =⇒ c of ϕ such that:

Γ |= д ∧ ϵ ∧ µ and Γ |= c

We now look into the implementation and verification of a proto-

col described by a formula in guarded command form. As Proposi-

tion 3 shows, given a state of an environment and an internal state

of our component, each solution is described by a unique guarded

command. Therefore, given an environment and an internal state,

a program implementing a protocol checks the set of guards that

are satisfied by the state of the environment and the internal state,

and nondeterministically satisfies one and only one corresponding

command. We develop in the next section the steps leading from a

protocol specification to a program written in Promela.

3 FROM REO TO PROMELA
In the previous section, we detailed the requirement and the pro-

cedure to write a protocol as a formula in the guarded command

form. The implication of having such a form for a protocol makes it

possible and easier to translate it into a program. In this section, we

define a translation from a formula written as a guarded command

to a Promela program. We show the correctness of the translation,

by comparing the semantic of a Reo specification, and that of its

target program in Promela.

Throughout this section, we assume a generic data type denoted

as Data for data flowing in the protocol, since data type is specific

in the application that employs the protocol.

3.1 Ports and environment in Promela
Ports. In Reo, as defined in the previous section, a port is a lo-

cation where two components synchronize and exchange data. In

Promela, we implement a Reo port as a pair of two Promela chan-

nels, each with a buffer size of one. We show that our Promela

implementation of a port simulates Reo’s synchronized message

passing between components.

typedef port {
chan data = [1] of {Data};
chan synch = [1] of {int}; }

Listing 1: definition of a Reo port in Promela

As expressed in Listing 1, a port has a data channel and a syn-

chronization channel. The data channel is responsible of the data
flow between input and output ends of a port. The Promela synch
channel ensures synchronous exchange between these two ends.

As described in Listing 2, two actions can be performed on such

a constructed port: put and take.

inline put(q,a) {
int x;
atomic{q.data!a;
q.synch?x} }

inline take(q,a) {
atomic{q.synch!-1; q.data?a} }

Listing 2: put and take functions

The action put has two arguments: a port q and a datum a. The
function call put(q,a) atomically fills the data channel of qwith the
datum a, and blocks on the synch channel, waiting to synchronize

with the component on the output side of q. The integer x is used
to empty the synch channel, but its value does not matter.

The action take has a port q and a variable a as arguments.

The function call take(q,a) atomically notifies, by filling the synch
channel, that there is a component willing to take data, and blocks

on the data channel, until a datum can be taken into the variable a.
The integer value of −1 written into the synchronization channel

is arbitrary, as synch is used only for signaling.

Environment. We call an external component that interacts with

the main protocol, an aдent . For each port q in the protocol’s inter-

face, we assume an aдent connected to that port. More precisely, if

q is used as an input port by the protocol, the aдent connected to q
must use q as an output port, and vice versa. We give in Listing 3 an

example of a definition of an agent with two ports as its arguments.

proctype agent(port p1; port p2){
/* p1: input, p2: output */
do
:: /* action */

od }

Listing 3: A generic structure for an agent

Each agent is defined as a proctype in Promela, and runs concur-

rently with the main protocol. We represent the generic behavior of

an agent as an infinite sequence of non deterministic actions (with

the do − od loop), but the definition of the precise behavior of an

agent is left for the user. Since agents and protocol share ports, it is

possible that an agent blocks until a datum is delivered at its port.
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We assume a set of agents given by the user. Our compiler gen-

erates only the skeleton of an agent including the set of ports in its

interface, with the direction of each port (either input or output).

As an extension, we intend to make the input/output restriction

of ports direction more strict, using the Promela assertion xr and
xs to prevent misuse of port directionality. We later specify some

properties of the desired observable behavior.

3.2 Translation of a Reo specification
We define formally the translation of a formula written in guarded

command form into a Promela specification.

Logical terms. Given a set of term expressions E, we define a
mapping of E to a set of Promela specification P. We assume a func-

tion I that maps every constant, function, and predicate symbol to

its interpretation in Promela. We call J·KE : E → P the function

that maps a term to a unique name expression in Promela, such

that:

Jf (t1, ...,tn )KE = I ( f ) (Jt1KE , ...,JtnKE )
JcKE = I (c ) JmKE =m
Jm′KE =m JpKE = p

Memory variablesm andm′ are mapped to the same name in

Promela, since they refer to the same memory location, subject to

different actions.

Given a formula ϕ, its set of port variables P , and memory vari-

ables M , the function J·KI : P ∪M → P maps each port variable

p ∈ P and memory variablem ∈ M to a definition in Promela, such

that:

JpKI = port JpKE ; and JmKI = chan JmKE = [1] of {Data};

Each port variable is mapped to an instance of the port structure

in Promela. Every port name is unique, and given by JpKE . Each
memory variable is defined as a channel of data type Data and of

size 1. Every memory name is also unique, and given by JmKE .
Besides the mapping of terms to Promela, we introduce Promela

variables to access formula variables’ value. We use J·KV : E →

P as the function that takes a variable expression and returns a

Promela expression such that:

JmKV = _JmKE JpKV = _JpKE Jm′KV = _JmKE
We use JmKV and JpKV to refer to the current value in Promela of

the memory variablem or of the port variable p.

Guarded commands. Because we have assumed the source for-

mula to be deterministic, we define the target Promela program by

induction on the syntax of the formula in guarded command form.

For a set of guards G, we define J·KG : G → P such that:

Jд1 ∧ д2KG = Jд1KG&&Jд2KG
JB (t in

1
, ...,t inn )KG = I (B) (Jt in1 KV , ...,Jt inn KV )

Jt in
1
= t in

2
KG =




Jt in
1

KV==Jt in
2

KV if t in
1
, ∗ ∧ t in

2
, ∗

empty(Jt in
1

KE) if t in
1
, ∗ ∧ t in

2
= ∗ and t in

1
∈ M

true otherwise

J¬(t in
1
= t in

2
)KG =




full(Jt in
1

KE.data) if t in
1
, ∗ ∧ t in

2
= ∗

and t in
1
∈ P

!(Jt in
1
= t in

2
KG) otherwise

J¬(tout = ∗)KG = full(Jtout KE.synch)

Note that guards of the shape p = ∗, where p ∈ P in , are trivially
mapped to true in Promela, since such condition can always be

satisfied (a port could always have a silent behavior). However,

guards of the shape ¬(p = ∗) must distinguish the case where

p ∈ P in , since the port p must have a pending input from the

environment.

Before defining the translation from commands to Promela pro-

gram, we must ensure that the conjunction is properly ordered. We

consider the case where a memory variablem ∈ M is used as input

andm′ ∈ M ′ as output in the same command. In this case, we first

give precedence to the command involvingm over the command

involvingm′, sincem refers to the current value ofm, andm′ refers
to the new value ofm.

For a set of commands C, we define the function J·KC : C → P

such that:

Jc1 ∧ c2KC = Jc1KC; Jc2KC;

Jtout = t inKC =
{
put(Jtout KE,Jt inKV) if tout ∈ P
Jtout KE!Jt inKV if tout ∈ M

The Promela program for a command is directly followed by an

update of the state of the protocol. Since command execution con-

sumes certain values from some port locations, we notify each input

port involved in the command to release its value. Therefore, given

a command c , for each t in occurring in c , we append at the end of

the program JcKC the following statements: take(Jt inKE,Jt inKV)
if t in ∈ P or Jt inKE?Jt inKV if t in ∈ M .

Given a deterministic formula ϕ in the guarded command form,

we inductively define the function J·KF : F → P such that:

Jд =⇒ cKF =JдKG-> atomic{JcKC}

The generic structure of a Promela program obtained from a deter-

ministic formula with n guarded commands is shown in Listing 4.

proctype Protocol(port p1;...){
/* p1: input, ... */
/* Memory declaration */
chan m = [1] of {int};
/* Initial state */
m!0;
/* Local variables */
int _m; int _p1 ;
...

/* Guarded commands */
do
:: (guard_1) ->

atomic{command_1}
:: ...
:: (guard_n) ->

atomic{command_n}
od }

Listing 4: a generic structure of a protocol

Example. We show as example the protocol of a fifo channel. The
corresponding deterministic formula for a fifo is presented in the

example in Section 2.4. Listing 5 shows the generated code obtained

from compiling the deterministic formula representing a fifo.

proctype Fifo(port a; port b){
/* a: input, b: output */
chan m = [1] of {int};
int _m; int _a ; int _b ;
do
:: (empty(m) && full(a.data)) ->

atomic{take(a,_a);m!_a;}
:: (full(m) && full(b.synch)) ->

atomic{m?_m; put(b,_m);}
od }

Listing 5: Promela code generated for a Reo fifo channel
with a String buffer

Note that the last guarded command is removed from the gener-

ated code, since it would result in the trivial statement: true ->
atomic{m?_m;m!_m}, which essentially, merely copies the value of

the memory m to itself.

Initialization. The init process in Promela defines the only active

process in the initial state. Ports are initialized and shared between

processes that run concurrently, i.e., we apply the instantiation

function J·KI for all p ∈ P . We later reason on the set of processes

in the init process only. All agents and protocol are run concurrently.
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Correctness. We use the semantic of Promela defined in [21] to

show the correctness of our translation. The operational semantics

of a Promela program P composed of processes Pi is defined as a

graphT = (Q ,→,q0)whereQ is a set of states and→ is a binary rela-

tion on states. A state q ∈ Q is a tuple q = (l0, ...,lm ,lv1, ...,lvm,дv )
where each li is a location in process Pi , lvi is the vector of local
variable values in process Pi , and дv is the vector of global variables

in P . The state s0 ∈ Q refers to the initial state.

Proposition 4. For every gv vector of global variable values, there
exists an environment ∆ such that ∆ ≡ дv , and vice versa.

We use Jд =⇒ cKF to designate the translation of the guarded

command д =⇒ c to a Promela program. We denote the set of

guarded commands as Sдc .

Theorem 5. Given a permanent constraint ϕ, where JϕKF is its
translation, a state q = (l ,lv,дv ) and an environment ∆ such that
дv ≡ ∆, for every guarded command дc ∈ Sдc and a state q′ such

that q
дc
−−→ q′, there exists an assignment such that Γ |= д ∧ c , where

Jд =⇒ cKF = дc .

Completeness can be derived by showing that every solution of

the guarded command corresponds to an implementation where

the set of agents simulate the environment of the solution. By

taking an implementation that unifies the agents, and using the non-

deterministic properties of Promela, we can simulate any solution of

the formula as a statement and a дv vector in Promela. Elaboration

of this part remains as future work.

Adding our Promela code generator as a back-end for the Treo

compiler significantly extends the application range of the cur-

rent compiler. From the same Reo specification, the compiler can

generate either an executable code in Java, or a verifiable code in

Promela.

4 CASE STUDY
In this section, we consider specification of a railway protocol as a

Reo circuit, its compilation into Promela, and verification of some

of its properties using SPIN.

4.1 Railway case study
We consider the simplified trains protection in CBTC (Communi-

cations Based Train Control) systems. The system is illustrated

in the Figure 3 and detailed in depth in previous work of one of

the author [19]. To illustrate our approach, we propose a slight

adaptation of the original version of the system.

T1

T2

Trains path

Coverage area of MCU

BTS

Wireless communication with T1

Event 1: sending coverage requests to MCU

Event 2: T1 and T2 are covered
Event 3: requesting VMAZs from MCU

Event 4: VMAZs of T1 and T2 from MCU
Event 5: computing VLMA

s1

s2

s3

s4 s5 s6

Velocity profile of T1

DEU
MCU

Wireless communication with T2

p1

TEL HEL s7

TEL HEL

VLMA of T1

Boundary between
VMAZ1 and VMAZ2

Figure 3: Simplified trains protection functions.

The studied system consists of a set of components located in-

side and outside trains, that interact continuously to calculate and

exchange parameters necessary to guarantee safe circulation of

trains.

Figure 4: Reo circuit

In this paper, we focus on modeling and verifying the interac-

tion protocol of the main OBD component (On-Board Device) that

interacts continuously with the Movement Control Unit component

(MCU). This protocol implies constraints on the subcomponents

of OBD (CtrVelocity, EmgcyBrake) and those of MCU (Coverage,

ProdVmaz). Before modeling this protocol as a Reo circuit, in the

next section, we describe it informally by showing the chaining of

component actions that OBD and other components enable during

their interactions.

The OBDs of T1 and T2 initiate the protection process by asking

if they are visible to the MCU component, by sending the message

covReq to Coverage subcomponent. There are several MCUs cover-

ing the entire line, with overlapping coverage sections, useful for

information exchange between them. Locations are sent by wireless

communication to the nearest Base Transmission Station (BTS) and

saved in its Data Exchange Unit (DEU), which in turn transfers them
to MCU (event 1). The internal subcomponent Coverage of MCU

determines whether or not the zone between TEL and HEL (tail and

head external locations ) is completely included within its coverage

area, and responds to T1 and T2 by sending the messages covered or

uncovered (event 2). Next, each train asks from its covering MCUs

its Vital Movement Authority Zone (VMAZ), by sending the message

vmazReq. A VMAZ is an area (sequence of segments) in which the

train can safely circulate (event 3). MCU ensures that VMAZs of

successive trains never overlap to avoid collisions. VMAZs are com-

puted, by the MCU subcomponent ProdVmaz, through chaining of

segments according to route information. Chaining terminates at

the nearest obstacle on the train trajectory: the end of MCU cov-

erage area, an uncontrolled switch, or the beginning of a segment

containing TEL of the next train, etc. Finally, the train computes

the Vital Limit of Movement Authority (VLMA) by incorporating a

fixed safety margin within the limit of its VMAZ (event 5).

Depending on VLMA an OBD component will either enable its

subcomponent CtrVelocity, or EmgcyBrake. The subcomponent

CtrVelocity gradually reduce the train velocity down to zero (via its

internal action ctrVelocity) before HEL reaches VLMA. The activa-

tion of the subcomponent EmgcyBrake results into an emergency

brake action (emдcyBrake action).

4.2 Reo specification
The railway example presented above is translated into a Reo circuit,

described graphically in Fig. 4. Six different type of components are
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used to model the protocol. Two fifo channels are used to represent
the asynchronous communication while Coverage sends an update

and expects an answer, and when Coverage communicates with

ProdVmaz. Transformer channels ComputeVlma and Update are

used to apply functions on the data flowing at their ports. Therefore,

the transformer ComputeVlma returns the speed value, responding

to the message sent by ProdVmaz, and Update updates the data of

the message sent by Coverage. The xrouter component (circle with

a cross) models the routing replication of data to CtrVelocity or

EmgcyBrake. Once a data enters the xrouter component, the data

is sent either to CtrVelocity or to EmergcyBrake but not to both.

Merger, replicator, and sync components have the usual behavior

and are used to model synchronization properties. For more details

on Reo components behavior, please refer to [3].

The protocol component (dashed line and grey font) represents

the permanent constraint of the system. The four components

CtrVelocity, EmgcyBrake, ProdVmaz, and Coverage, correspond to

the environment of the protocol. In the next section, we generate

the Promela code for this protocol, link the protocol with its agents,

and verify some synchronization properties.

4.3 Code generation
Initialization. To generate the Promela code corresponding to

Reo circuit described in Fig. 4, we exploit our compiler that accepts

as input Reo specification and generates as output Promela code by

applying the rules described in Section 4. We obtain the following

Promela proctypes described in Listing 6.

init {
port pcv; port pc1; port pc2;
...
atomic{
run prodVmaz(ppv2,ppv1);run emergencyBrake(peb);
run ctlVelocity(pcv); run coverture(pc2,pc3,pc1);
run Protocol(pcv,pc3,pc1,ppv1,ppv2,pc2,peb) } }

Listing 6: Generated proctypes

Ports are first initialized with a respective unique named. Then,

the Protocol proctype implements the Reo specification of the

interaction protocol, with its corresponding interface. In addition,

the proctypes ProdVmaz, EmgcyBrake, CtrlVelocity, Coverage,

and EmgcyBrake implement the boundary agent, considered as

an environment for the main protocol proctype. Each proctype
accepts as parameters, ports associated with the interface of its

respective component.

Protocol. In Listing 7, we show a partial implementation of the

Protocol proctype corresponding to Reo specification described

in Figure 4. To illustrate the result obtained from the compiler, we

describe, for example, the actions coveReq, and covered , that are
implemented as two guarded commands. The first actionmodels the

message sent by the OBD component to the agent Coverage. The

second one models the message received by the OBD component

from the agent Coverage. For example, as shown in Listing 7 in the

implementation of coveReq, the guard part of the action specifies

that the bufferm1 is full because there is a message to send, and the

port pc2 (instantiation of the parameter p6 in Protocol) associated

to the component Coverage is free. The command part of the action

specifies that the message will be sent in Pc2 and the buffer will be

available.

proctype Protocol(port p1; ... ; port p7){
...
do
::(full(m1) && full(p6.sync)) -> atomic{ m1?_m1; put(p6,_m1);}

/* covereq!*/
...
:: (full(p3.data) && empty(m2)) -> atomic{take(p3,_p3);m2!_p3;}

/*covered*/

od }

Listing 7: Guarded commands for covereq and covered ac-
tions

Simulation and verification. The Promela program generated by

our compiler allows to run random or guided simulation with SPIN

for analyzing the protocol. It allows also to verify safety properties,

such as the absence of deadlock states. The verification performed

on the Promela program, corresponding to the case study, shows

that the protocol behavior does not reach any deadlock state. Using

the approach described in [9], we define, in the next subsection,

some new flag variables used to verify liveness properties. The ex-

periment detailed in the use case can be reproduced by downloading

the Reo compiler [2].

4.4 Verification of LTL properties
Flags. LTL properties, in our case, describe properties of the

run in the generated code. As presented in previous section, the

state of a generated Promela program is entirely captured in the

global variables value, and a vector of local variables value for

each concurrent proctype. We decide, to abstract system’s state by

defining flags to describe the main state we interested in. As shown

in Listing 8

/*flags declaration */
bit hassend=0, hasreceive=0, msg_covReq=0,msg_vmazReq=0,
msg_covered=0, msg_uncovered=0, msg_vmaz=0,brake=0,ctrvelo=0;
...
do
::(full(m1) && full(p6.sync)) -> atomic{ m1?_m1; put(p6,_m1);
d_step{hassend=1; msg_covReq=1; hasreceive=0; msg_vmazReq=0;
msg_covered=0; msg_uncovered=0; msg_vmaz=0; brake=0;
ctrvelo=0;}} /* covereq!*/

Listing 8: Flags of the generated code

Mainly, each sending and receiving action from the protocol point

of view has a dedicated flag. This allows to keep track of the actions

performed by the components and the reactions of their environ-

ment. These flags are updated together with each send/receive

event, using a d_step statement to ensure the values assignment

in one execution step. For example in Listing 8, we present the

Promela code of the guarded command covereq enriched with its

corresponding flags.

LTL properties. To verify the correctness of the specified protocol,
we propose to verify the following LTL properties presented in

Listing 9.

ltl p1{[]((hassend==1 && msg_covReq==1) -> <> (hasreceive==1
&& (msg_uncovered==1 || msg_covered==1)))} /*satified */

ltl p2{[](msg_covered==1 -> <> (hasreceive==1 && msg_vmaz==1
&& brake==1))} /*not satisfied */

Listing 9: Flags of the generated code

The property p1 specifies that, always if the component OBD
sends the message covReq then it will receive a message covered or

uncovered . This property is satisfied. The property p2 specifies that
always if theOBD receives the message covered then it will receive

the messagevmaz and the action emдcyBrake will be enabled. This
property is not satisfied, because there is the option of enabling the

action ctrVelocity instead of emдcyBrake .

5 RELATEDWORK
In this paper, we propose compiling Reo circuits into Promela to for-

mally verify the LTL properties of protocols of interactions among

components. Formal verification of Reo specifications using a num-

ber of tools has already appeared in the literature (see below). Com-

plementing this existing set of tools, in our work, we opted to use

the SPIN model checker, because (i) it is one of the most advanced
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analysis and verification tools available, and (ii) its Promela lan-

guage resembles our guarded command formal specification of Reo

circuits. We are not aware of a comprehensive work on verification

of Reo circuits using SPIN.

We proposed a formal framework for translation of Reo models

into Promela. We use a transition-systems-based operational se-

mantics of Promela to express the formal semantics of Reo, through

which we establish the correctness of our translation. Most of the

existing work uses constraint automata, instead, as operational

semantics.

Similar to our concerns, the CHARMY framework [20] also ad-

dresses verifying LTL formulas expressing properties of component-

based systems. CHARMY is a UML based specification, where state

diagrams are counterparts of our agents, and sequence diagrams

are that of our protocols. CHARMY defines a system as a set of

state diagrams, coordinated by a sequence diagram. The CHARMY

framework offers the possibility to translate its specification into

a Promela program, and thereby allows the verification of proper-

ties using SPIN. However, CHARMY allows composition of state

diagram specifications only, and not that of sequence diagrams. In

our case, agents and protocol differ only in their implementations.

In Reo, protocols are constructed compositionally, and their com-

position preserves and propagates synchrony. CHARMY does not

seem to support such compositions.. Moreover, Reo can express

nesting of components, which is disallowed in CHARMY. Finally,

properties of protocols are specified using property sequence chart

(PSC) in CHARMY. In our approach, we require the specification of

LTL properties directly in Promela, and leave as future work the

integration of property specification at the design level.

Vereofy [5–7] is a model checking tool developed at the Uni-

versity of Dresden to analyze and verify Reo connectors. Vere-

ofy has two input languages: the Reo Scripting Language (RSL),

used to specify the coordination protocol, and a guarded command

language called Constraint Automata Reactive Module Language

(CARML), a textual version of constraint automata used to specify

the behavior of components. Vereofy allows the verification of tem-

poral properties expressed in LTL and CTL-like logics. In contrast

to Vereofy, in our work we use only one language, Promela, to

specify both component behavior and coordination protocols.

The constraint automata semantics for Reo was also considered

in [8] for defining and verifying bisimulation and language equiva-

lence between Reo connectors. In [3, 4], the authors considered time

constraints, and proposed a timed version of constraint automaton

to verify by model checking timed CTL properties. In [15, 16], the

authors use timed constraint automata and present a SAT-based

approach for bounded model checking of real-time component con-

nectors. Another verification approach based on SAT solvers was

proposed in [11], exploiting Alloy. This work allows analysis of Reo

circuits and verification of their properties expressed as predicates

in the lightweight modeling language of Alloy, which is based on

first-order relational logic. In [17, 18], Kokash et al. proposed a

framework for the verification of Reo circuits using the mCRL2

toolset (developed at the TU of Eindhoven). Their tool automati-

cally generates mCRL2 specifications from Reo graphical models.

The translation from Reo to mCRL2 uses the constraint automata

semantics of Reo.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented sufficient conditions to compile a proto-

col specified in Reo into a program implemented in Promela. We

introduced the notions of ephemeral and permanent constraints;

the former consist of constraints that change through time, reflect-

ing the states of the environment or internal memories, whereas

the latter consist of structural constraints that must hold invari-

ably. We defined sufficient conditions for expressing the permanent

constraint of a component in the guarded command form. We then

defined a translation of a formula in guarded command form to

a Promela program. We show the correctness of our translation,

which we have implemented as a back-end for the current Reo

compiler.

We demonstrate the relevance of our work in a case study involv-

ing design and verification of a railway component-based system.

We use our compiler to translate the Reo specification of a protocol

in this system into Promela, and use SPIN to verify LTL-specified

properties, such as safety and liveness. In future work, we would

like to support specification of LTL properties at design level as

an extension of constraint formula. This direction is justified by

the argument that in Reo, we can deduce the states of a protocol

entirely from the current state of its boundary ports and its internal

memory. A designer, thus, has enough information at the level of

Reo to specify not just a protocol, but also its required LTL prop-

erties, in some suitable constraint language, which our extended

compilation can subsequently translate into Promela LTL statement

on protocol states, for verification.
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