CEUR-WS.org/Vol-2245/modcomp_paper_6.pdf

A Component-Based and Model-Driven Approach to Deal with
Non-Functional Properties through Global QoS Metrics

Cristina
Vicente-Chicote
Universidad de
Extremadura
Céceres, Spain
cristinav@unex.es

Juan F. Inglés-Romero
Biometric Vox, S.L.
Murcia, Spain
juanfran.ingles@
biometricvox.com

ABSTRACT

Non-functional properties play a key role in most software systems.
There is a lot of literature on what non-functional properties are
but, unfortunately, there is also a lot of disagreement and different
points of view on how to deal with them. Non-functional proper-
ties, such as safety or dependability, become particularly relevant
in the context of robotics. In the EU H2020 RobMoSys Project, non-
functional properties are treated as first-class citizens and consid-
ered key added-value services. In this vein, the RoOQME Integrated
Technical Project, funded by RobMoSys, aims at contributing a
component-based and model-driven tool-chain for dealing with
system-level non-functional properties, enabling the specification
of global Quality of Service (QoS) metrics. The estimation of these
metrics at runtime, in terms of the contextual information available,
can then be used for different purposes, such as robot behavior
adaptation or benchmarking.

KEYWORDS

Non-Functional Properties, QoS Metrics, Model-Driven Engineer-
ing, Component-Based Software Development, Robotics, RoQME.

1 INTRODUCTION

Component-Based Software Development (CBSD) aims at promot-
ing software reuse for significantly reducing development time and
cost. Existing solutions are encapsulated in well-defined compo-
nents with clear (required and provided) interfaces that enable their
connection to and interoperation with other components. Building
systems out of components requires taking into account both func-
tional and non-functional properties. Non-functional properties
define how a system performs rather than what it does [25]. Ex-
amples of non-functional properties include timing, dependability,
safety or resource consumption, among others. Despite the impor-
tance of non-functional properties, there are just a few component
models explicitly supporting their specification and management
throughout the development process. In most cases, this support
is limited and, unlike the well-established solution of embodying
functional properties into interfaces, no consensus has emerged on
how to handle non-functional properties both at a component and
at a system level [25].

RobMoSys: Composable Models and Software for Robotics [20] is a
4-year Project (2017-2020), funded by the EU H2020 Research and In-
novation Program under grant agreement No. 732410. The vision of
RobMoSys is to create better models, as the basis for better tools and

Jestus Martinez Dennis Stampfer

Universidad de Malaga Alex Lotz
. Mélag? Spain Matthias Lutz
jmeruz@lec.uma.es Christian Schlegel
Hochschule Ulm

Ulm, Germany
<lastname> @hs-ulm.de

better software, which then allow building better robotic systems.
RobMoSys aims at creating an open, sustainable, agile and multi-
domain European robotics software ecosystem. RobMoSys seeks to
enable the composition of robotics applications with managed, as-
sured, and maintained system-level properties using Model-Driven
Engineering (MDE) techniques from a CBSD perspective. To achieve
its goals, RobMoSys establishes structures that enable the manage-
ment of the interfaces between different robotics-related domains,
different roles in the ecosystem, and different levels of abstraction.
RobMoSys financially supports, through a cascade funding scheme
scheduled in two open calls, third party contributions as means
to achieve its own objectives. ROQME: Dealing with non-functional
properties through global Robot Quality-of- Service Metrics [21] has
been one of the six selected Integrated Technical Project (ITP) to
be funded in the context of the first RobMoSys open call (out of the
thirty four proposals submitted).

The main intended goal of ROQME is to provide robotics soft-
ware engineers with a model-driven tool-chain allowing them to:
(1) model relevant system-level non-functional properties in terms
of the (internal and external) contextual information available at
runtime; and (2) generate a RobMoSys-compliant component, ready
to provide other components with QoS metrics defined on the non-
functional properties, previously specified.

This paper describes the ROQME foundations, laid down during
the initial stage of the project, namely: (1) the new role of QoS
Engineers and how it integrates with the other roles considered in
RobMoSys; (2) the RoOQME and the RoOQME-to-RobMoSys Mapping
meta-models, which gather the main modeling concepts and their
relation to those included in the RobMoSys meta-models; and the
process (including the relevant roles, models and tools) we propose
to enable the modeling (at design-time) and estimation (at runtime)
of metrics defined on system-level non-functional properties.

RoQME will run for one year, starting March 2018. Achieving
substantial results in such a short period of time requires building on
previous results. In this vein, the RoOQME partners contribute solid
background in Robotics, Component-Based Software Development,
and Model-Driven Engineering [1, 2, 6, 10-14, 18, 19, 23]. Apart
from the fruitful relationship existing among the RoOQME partners,
which already resulted in some preliminary results [5, 9, 17, 22],
it is worth mentioning our close collaboration with some of the
RobMoSys partners in line with the current goals of the Project [8,
15-17, 24]. This will undoubtedly contribute to align RoOQME to the
RobMoSys vision, guiding principles, and structures.

ModComp’18. Copenhagen (Denmark), 2018

The rest of the paper is organized as follows. Firstly, Section 2
presents an overview of the ROQME project, introducing its main
intended goals and contributions. Secondly, Section 3 introduces the
RobMoSys project and outlines how RoQME plans to integrate into
its Ecosystem, focusing on the description of the new QoS Engineer
role. Then, Section 4 introduces the main modeling concepts gath-
ered in the ROQME meta-models and illustrates them through some
practical examples. And, finally, Section 5 draws some conclusions
and outlines current and future works.

2 ROOQME OVERVIEW

RoQME intends to support the role of QoS Engineers (see Sec-
tion 3.2), providing them with a specific QoS View that allows them
to model system-level non-functional properties according to the
RoQME meta-model (see Section 4). This new role, view and meta-
model complement and interrelate with those already defined in
RobMoSys through the so called RoOQME-to-RobMoSys mapping
meta-model. This mapping aims at promoting good design princi-
ples, such as high cohesion and loose coupling among the different
RobMoSys views, providing a non-intrusive way of extending the
RobMoSys meta-model, i.e., modifying the RoOQME meta-model
would only imply adapting the mapping but not the RobMoSys
meta-model and, vice versa, new versions of the RobMoSys meta-
model would imply adapting the mapping, but not the RoQME
meta-model.

RoQME will allow QoS Engineers to model context variables
(e.g., battery level) and, from them, relevant context patterns (e.g.,
“the battery level drops more than 1% per minute”). The detection
of a context pattern will be considered an observation associated
with a variable in a belief network. Belief networks will be used
to specify the dynamics of non-functional properties (e.g., power
consumption). The degree of fulfillment of these non-functional
properties will then be used to estimate the QoS metrics, obtained
as real values in the range [0, 1].

RoQME aims to be application domain agnostic, providing QoS
Engineers with a compact set of modeling tools to express system-
level QoS metrics. However, it is being designed to be as flexible
as possible, e.g., supporting extension mechanisms that allow QoS
Engineers (or other RobMoSys roles, such as Safety Engineers or
Performance Designers) to enrich and customize the RoQME mod-
eling capabilities with domain-specific requirements (e.g., related
to safety, dependability, etc.).

The RoQME tool-chain, delivered as an Eclipse plug-in, will pro-
vide both modeling and code generation tools, enabling the creation
of RobMoSys-compliant components, readily usable in RobMoSys-
based solutions as QoS information providers (see Figure 1). This
information could then be used by other components for different
purposes, e.g., robot behavior adaptation or benchmarking. In this
line, a preliminary result on how to use the ROQME metrics as an
input in a reinforcement learning problem can be found in [7].

Internally, the generated component will estimate the value of
each non-functional property, specified in the RoQME model, by
successively processing the available contextual information, either
from internal (e.g., robot sensors) or external (e.g., web services,
other robots, etc.) sources. The contextual information received by
the component will be sequentially processed by three modules:

C. Vicente-Chicote et al.

E.g., the robot task
sequencer may
use the resulting
QoS metrics for

deciding among
alternative tasks,

DESIGN-TIME
RoQME Model

* Non-functional properties

RUN-TIME
Global QoS Metrics Provider

Abstract non-functional properties

Probabilistic Reasoning

Observations

+ Context variables

+ Observations based on
context patterns and rules

Event processing
& . (J
Mapping model —
Context monitoring activating or de-
1

i 1 activating certain

components, or
, n Communication
Ob]ecls setting component
RobMoSys Structures params within their
(models) Context information allowed range

Figure 1: Main RoOQME elements, models and tools.

(1) a context monitor that will receive raw contextual data and will
produce context events (e.g., changes in the battery level); (2) an
event processor that will search for the event patterns specified in
the RoOQME model and, when found, will produce observations (e.g.,
battery is draining too fast); and, finally (3) a probabilistic reasoner
that will compute a numeric estimation for each metric (i.e., the
degree of fulfillment of each non-functional property).

3 ROOME IN THE CONTEXT OF ROBMOSYS

RoQME focuses on the modeling (at design-time), management and
measurement (at runtime) of non-functional properties. To achieve
it, ROQME extends the core structures, roles and views, laid down by
RobMoSys, by defining the RoOQME meta-models (later introduced
in Section 3.2 and a new QoS Engineer role, which is provided with
a new modeling view for describing the non-functional aspects of
robotic applications.

Before detailing the activities carried out and the models devel-
oped by the QoS Engineers, let us briefly review the main RobMoSys
principles, structures and roles, as they define the QoS Engineers
working context.

3.1 Main RobMoSys Tiers, Structures and Roles

RobMoSys proposes an Ecosystem organized into three tiers, ar-
ranged along levels of abstraction (see Figure 2). Tier 1, shaped
by few representative Robotics Experts, defines the overall com-
position structures to which the lower tiers must conform. Tier 2,
structures particular robotics sub-domains, such as SLAM, manipu-
lation, object recognition, etc. Tier 2 is shaped by Domain Experts
and conforms to the foundations laid down in Tier 1. Finally, Tier 3,
conforms to the domain-structures defined in Tier 2, and provides
reusable building block (developed by Component Suppliers and
Behavior Developers), readily available to be integrated (by System
Builders) into different robotic systems.

RobMoSys considers a large number of loosely interconnected
participants that depend on each other for their mutual effectiveness
and individual success. RobMoSys is about managing the interfaces
between different roles (Domain Experts, System Architects, Com-
ponent Suppliers, Behavior Developers, System Builders, etc.) and
separate concerns in an efficient and systematic way.

According to the information available in the RobMoSys Wiki!,
System Architects define the functional requirements of robotic

!https://robmosys.eu/wiki

https://robmosys.eu/wiki

A Component-Based and Model-Driven Approach to Deal with Non-Functional Properties (...)

Ecosystem Tiers Tier Elements
and groups of roles
Tier 1 Composition
Structure
Ecosystem
l” Driv:rs A conforms
to
Tier 2 -
e Domain |~ % Domain-
! Experts - Models
e A confarms
to
Tier 3 I:
|.-E}"_| i\ !‘ LEJcosystEm & Content for
=i Exchange

Figure 2: The RobMoSys Ecosystem: tiers, roles and ele-
ments [20]

applications in terms of Service Wishes (e.g., navigation, location,
handover, etc.) and create Service Links among them when needed.
Service Links (specified as uses relationships) identify component-
independent inter-service dependencies (i.e., if a Service Wish A
depends on the existence of another Service B, then a relationship
"A uses B" needs to be modeled). Each Service Wish, defined by the
System Architect in Tier 3, is an instancesOf a Service Definition,
previously modeled by a Domain Expert in Tier 2. Service defini-
tions are reusable artifacts (at least within a robotics sub-domain)
that can be instantiated as many times and in as many applications
as needed.

In order to realize the Service Wishes defined by the System
Architect, the System Builder selects applicable components and
behaviors (task plots) from the RobMoSys Ecosystem (developed
by Component Suppliers and Behavior Developers, respectively)
and connects them appropriately to obtain the final application.

This (very briefly) summarizes the typical workflow that needs to
be followed to come up with a robotics application according to the
RobMoSys structures and guidelines (see Figure 3). The following
section introduces the new role of the QoS Engineers, contributed
by RoQME, and details how they interact with the other roles within
the RobMoSys Ecosystem.

3.2 QoS Engineers in Action

Both functional and non-functional requirements should respond
to customer or business needs, either directly or indirectly. In this
sense, ROQME provides the means to support: (1) the evaluation of
non-functional requirements, e.g. to check statements such as "the
robot should perform at least GOOD with respect to PERFORMANCE";
(2) benchmarking, e.g. to test the impact of different robot real-
izations on SAFETY; and (3) self-adaptation, e.g., the robot could
select, at runtime, its navigation strategy so that PERFORMANCE is
maximized. Therefore, non-functional properties and the metrics
defined to quantify them, offer many possibilities, from assessing
requirements fulfillment to dynamic adaptation of the robot behav-
ior.

Figure 3 shows an overview of the RoOQME and RobMoSys roles,
models and relationships. In the following, we describe the process
by presenting the actions of the roles involved in relation to ROQME.

C. Vicente-Chicote et al.

(1) Domain Experts could define relevant domain-specific non-
functional properties specifications in terms of reusable RoQME
models.

(2) QoS Engineers can search and select (one or more) existing
non-functional properties specifications from the Ecosystem.
The selected properties will be added to their RoOQME models,
together with their associated Contexts and Observations.

(3) QoS Engineers model application-specific non-functional
properties. From them, the following artifacts will be auto-
matically generated:

e A Service Definition, in order to make the metrics calcu-
lated on the different non-functional properties available
to other components as a service.

o A Service Wish (as an instance of the previous Service Def-
inition). This Service Wish will be available to the System
Architect in case he/she wants to create a Service Link
(i.e., a use dependency, for example, for benchmarking or
adaptation purposes) from some of the Service Wishes pre-
viously included in the System Service Architecture Model.
Note that the generated Service Wish will be realized by
the “QoS Metric Provider” Component, also generated by
the ROQME generation engine (in a later step). Thus, this
component will be available to the System Builder in order
to fulfill the corresponding Service Wish.

(4) QoS Engineers select relevant Contexts by searching among
the Service Definitions available in the Ecosystem (i.e., con-
text providers). For each of these contexts:

o Anew element will be created in the RoQME-to-RobMoSys
(R2R) Mapping Model with a reference both to the Context
and to the corresponding Service Definition. The R2R Map-
ping Model conforms to the R2R Mapping Meta-Model,
which provides a loose coupling mechanism between the
RoQME and the RobMoSys modeling concepts (i.e., in case
any of the two meta-models is modified or evolves, the
other will remain unaltered; only the mapping meta-model
will need to be modified accordingly).

o A Service Wish will be automatically generated and added
to the ROQME Model as an instance of the correspond-
ing Service Definition. This Service Wish will need to be
later realized by the System Builder by selecting the ap-
propriate Component/Task Plot (context provider) from
the RobMoSys Ecosystem.

(5) QoS Engineers define application-specific Observations in
terms of one or more of the previous Contexts. An Observa-
tion is an evidence reinforcing (or undermining) the belief
that the system is optimal in terms of one or more of the
non-functional properties previously defined.

(6) The QoS Engineer generates the "QoS Metric Provider" Com-

ponent from the resulting RoOQME Model and makes it avail-

able to the System Builder.

In order to realize the Service Wishes included both in the

System Service Architecture Model (developed by the System

Architect) and in the RoOQME Model (developed by the QoS

Engineer), the System Builder selects applicable components

and behaviors (task plots) from the RobMoSys Ecosystem

(provided by Component Suppliers and Behavior Developers,

—
~
~

ModComp’18. Copenhagen (Denmark), 2018

C. Vicente-Chicote et al.

Tier Zt

Tier3 ‘

Context @

[1..*] reuses [1..1] serviceDef

o0

£ =

S —

a9

£3 Mapping

=

o

4

[1..1] context realizes
Service
Context > Wish

(Context)

K ‘ [1..*] uses

QoS Engineer

Observation

Provider

System Builder

L
QoS Metrics gl @
Provider

RoOQME '«
GeneratorL‘C‘)'

Application-Specific
RoQME Model

[1..*] impacts

y realizes @ @
Service
NFP > Wish e e
(NFP) . \ /
R H
Y (T e T T T T T P P P P PP P PP PP PP PP PP PP T
o 1] uses H
S — H
53 2P
VE’ 2 Service @
. = .
System Architect % S Wish . Compo:nent Components Task Plots Beha.vnor
>< realizes H pp D p
2] -
...... e

Figure 3: The RoOQME models and the role of QoS Engineers in the context of RobMoSys.

respectively) and connects them appropriately to obtain the
final application.

(8) The System Builder must also add the "QoS Metric Provider"
Component, generated from the RoOQME Model, which will
provide Global Robot QoS Metrics at runtime; appropriately
connect this component to the required context providers
(either components, Knowledge Base, ...); and eventually
connect the resulting metrics to those components making
use of them (if any).

Finally, it is worth noting that the generated component will
provide information about (1) the metric computed for each non-
functional property defined in the RoOQME model; (2) a ranking of
observations depending on their influence on the metric values;
and (3) when possible, information about the degree of confidence
associated to each metric, depending on the availability, reliability
and uncertainty [4] of the context sources.

4 THE ROQME META-MODELS

As previously mentioned, RoOQME defines two meta-models: (1) the
RoQME meta-model, responsible for the definition of Non-Functional

Properties, Contexts and Observations; and (2) the RoQME-to-RobMoSys

mapping meta-model, responsible for binding each Context defined
in a ROQME model with the RobMoSys Service Definition acting as
the corresponding context provider.

The RoOQME meta-model has been divided into four packages:

e The Documentation Package, which provides users with el-
ements to annotate the main RoOQME modeling concepts,

enabling the later generation of their associated documenta-
tion;

e The Datatypes Package, which provides users with the foun-
dations of the modeling language, i.e., sentences, data types,
typed variables and values;

o The Expressions Package, which provides users with the ca-
pability of defining logical and arithmetical expressions; and

o The Kernel Package, which specifies the main RoOQME mod-
eling concepts, such as, context variables, properties and
observations, among others.

Figure 4 shows an excerpt of the most relevant concepts included
both in the RoOQME meta-model (highlighted in green) and in the
RoQME-to-RobMoSys mapping meta-model (those highlighted in
blue). The later define the mapping between the RoOQME and the
corresponding RobMoSys elements (highlighted in red).

A RoQME model is mainly composed of Contexts, Properties
(derived from TypedVariables), and Observations (derived from Sen-
tences). Contexts represent the contextual information provided
by the sensors or by other components included in the robot archi-
tecture (PrimitiveContext) or by a combination of these primitive
context through a complex expression (DerivedContext). Lines 1-
3 in Figure 5 declare three primitive contexts, whereas Lines 4-7
declare a derived context of type enum, obtained in terms of one of
the previous primitive contexts.

A RoQME Property represents the degree of fulfillment of a
non-functional property. They are defined as a particular type of
Belief Variables (i.e., variables that store the output probability of

A Component-Based and Model-Driven Approach to Deal with Non-Functional Properties (...)

C. Vicente-Chicote et al.

H RoQMEMOodel

[0.*] sentences

* Sentence H SetVariable

expression :
a

[0.*] variables

* TypedVariable |

= name : EString

[1..1] variable

GeneralExpression

[

5 Observation

5 ClearEvidence

= name : EString
= pattern : ContextPattern

5 SetEvidence

[1.*] actions _ influence : InfluenceEnum =
REINFORCE
E Act
ction _ strength : StrengthEnum =
MEDIUM

= survival : TimeValue

< InfluenceEnum

1..1] target

1..1] target

= declaration : DataTypeDeclaration
= initializedTo : TypedValue

i

H Beliefvariable ‘ T Context [1.1] context
= prior : GeneralExpression
B Property ‘ g PrimitiveContaxt| ‘ E DerivedContext ‘
_ transformation: _, definition:
QutputTransformation ContextPattern

= MappingModel w

= REINFORCE [1..1] contains

H CommServiceDefinition

[1..1] service l J

= CommpPatternUsage

=~ UNDERMINE

[1..1] has

I [0.*] monitors
= Monitor

= period : Elnt
= minTimeBTWUpdates : Eint = 0

T

H AttributeDefinition ‘ E NumericMonitor

-
< StrengthEnum
= VERY_HIGH
~ IRl [1..2] has
= MEDIUM
- Low £ CommunicationObject ‘
- VERY_LOW 0.1 attributes‘

= minDiffBTWUpdates : EDouble = 0

‘ [1..1] source

Figure 4: Excerpt of the ROQME Meta-Model (elements highlighted in green) and RoQME-to-RobMoSys Mapping Meta-Model
(elements highlighted in blue). The elements highlighted in red belong to the RobMoSys meta-model.

a belief network). The value of a property changes at runtime in re-
sponse to different Actions, namely: SetVariable, ClearEvidence
and SetEvidence actions. Lines 9-14 in Figure 5 show two example
properties: usability and effectiveness. Each one takes a belief value
in the range [0, 1]. However, the value of the later is transformed
into an enumerated value (LOW, MEDIUM or HIGH) according to
the OutputTransformation included its definition.

Finally, Observations specify relevant context patterns and how
they influence (REINFORCE or UNDERMINE) and to what extent
(VERY_HIGH, HIGH, MEDIUM, etc.) in one or more Properties (see
Figure 5, lines 16-20).

The RoQME-to-RobMoSys mapping models include one Moni-
tor per Context defined in the ROQME model. Each of these context
is then bound to the corresponding RobMoSys CommServiceDef-
inition, indicating which AttributeDefinition of its Communi-
cationObject will provide the required contextual information. It is
worth noting that RobMoSys AttributeDefinitions are not annotated
with information about the units or the precision of the information
they store. In order to cope with this, ROQME is considering the
approach proposed in [3].

5 CONCLUSIONS AND FUTURE WORK

Nowadays, component-based development is a commonly accepted
approach to design, build, manage and evolve robotics software.

O 0 NN o W N =

e e e o
0 N N R W = O

context temperature number

context state enum {TOO_HOT, FINE, TOO_COLD}
context motionDetected eventtype

context motion enum {MOTIONLESS, MOVING}

count (motionDetected, 1min) > 5 ?
motion : : MOVING motion : : MOTIONLESS

property usability

property effectiveness enum {LOW, MEDIUM, HIGH}:
belief > 0.7 ? HIGH
belief > 0.3 ? MEDIUM

Low

observation obsl
= MOVING reinforces
temperature > 40 {
= TOO_HOT,
usability }

motion effectiveness
observation obs2
sets state

undermines

Figure 5: ROQME syntax examples

The critical nature of this kind of software systems makes it nec-
essary to deal with different non-functional properties at runtime,
such as safety, performance or dependability, among others. The

ModComp’18. Copenhagen (Denmark), 2018

RoQME ITP is contributing to the EU H2020 RobMoSys Project with
amodel-driven tool-chain enabling the specification of system-level
non-functional properties by so-called QoS Engineers. This new role
whithin RobMoSys is aimed at defining application-specific observa-
tions (evidences which reinforce or undermine the non-functional
properties previously modeled as relevant for that application) in
terms of the contextual information available. The RoOQME model
then guides a fully automated code generation process that results
in a QoS metrics provider component, which may be used by other
RobMoSys-compliant components for different purposes, such as
robot behavior adaptation or benchmarking.

Currently, the RoOQME team is working in the support software
on which the generated QoS metrics provider will rely, i.e., the
software in charge of (1) monitoring the context; (2) identifying
relevant context patterns; and (3) estimating the value of each non-
functional property in terms of the positive or negative influence
of the identified context patterns, according to the observations
included in the RoOQME models.

Future work will focus on validating the ROQME tool-chain with
real world complex scenarios involving industrial and social assis-
tive robots. The definition of pertinent non-functional properties
for these different areas of application in robotics will help us refine
the expressiveness of the ROQME modeling language, along with
the robustness of the QoS metrics provider and the accuracy of the
non-functional properties estimations.

All the RoOQME partners are pledged to making the knowledge
generated in the course of the Project as widely and freely avail-
able as possible for subsequent research and development. For this
reason, the Project partners are fully committed to open-access
and open-source. Actually, all the Project results will be punc-
tually announced through the Project social networks (Twitter:
@RoQME_ITP, LinkedIn: RoOQME Group, or ResearchGate: RoQME
Project), and made publicly available through the dedicated project
web page [21], allocated within the RobMoSys website [20].

ACKNOWLEDGMENTS

The RoQME Integrated Technical Project has received funding from
the European Union’s H2020 Research and Innovation Programme
under grant agreement No. 732410, in the form of financial support
to third parties of the RobMoSys Project.

REFERENCES

[1] D. Alonso, J. A. Pastor, P. Sanchez, B. Alvarez, and C. Vicente-Chicote. 2012.
Automatic Code Generation for Real-Time Systems: a Development Approach
based on Components, Models, and Frameworks. Revista Iberoamericana de
Automatica e Informatica Industrial (RIAI) 9, 2 (2012), 170-181. https://doi.org/
10.1016/j.riai.2012.02.010

[2] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. A. Pastor, and B. Alvarez. 2010. V3CMM:
a 3-View Component Meta-Model for Model-Driven Robotic Software. Journal
of Software Engineering for Robotics 1, 1 (2010), 3-17. http://joser.unibg.it/index.
php/joser/article/view/18

[3] L.Burgueiio, T. Mayerhofer, M. Wimmer, and A. Vallecillo. 2018. Using Physical
Quantities in Robot Software Models. In Proc. 1st ACM/IEEE International Work-
shop on Robotics Software Engineering. 23-28. https://doi.org/10.1145/3196558.
3196562

[4] J. Camara, W. Peng, D. Garlan, and B. Schmerl. 2018. Reasoning about sensing

uncertainty and its reduction in decision-making for self-adaptation. Science of

Computer Programming 167 (2018), 51-69. https://doi.org/10.1016/j.scico.2018.

07.002

C. Vicente-Chicote et al. 2018. RoQME: Dealing with Non-Functional Properties

through Global Robot QoS Metrics. In Proc. XXIII Jornadas de Ingenieria del

Software y Bases de Datos (FISBD’18). SISTEDES.

&

C. Vicente-Chicote et al.

[6] M. A. Gutiérrez, A. Romero-Garcés, and P. Bustos. 2013. Progress in RoboComp.
Journal of Physical Agents 7,1 (2013), 39-48. https://doi.org/10.14198/JoPha.2013.
7.1.06

[7] J. F. Inglés-Romero, J. M. Espin, R. Jiménez-Andreu, R. Font, and C. Vicente-
Chicote. 2018. Towards the use of Quality-of-Service Metrics in Reinforcement
Learning: A robotics example. In Proc. 5th International Workshop on Model-driven
Robot Software Engineering (MORSE’18), in conjunction with MODELS 2018.

[8] J. F. Inglés-Romero, A. Lotz, C. Vicente-Chicote, and C. Schlegel. 2012. Dealing
with Run-Time Variability in Service Robotics: Towards a DSL for Non-Functional
Properties. In Proc. 3rd International Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRob-12). https://arxiv.org/pdf/1303.4296.pdf

[9] J.F. Inglés-Romero, A. Romero-Garcés, C. Vicente-Chicote, and J. Martinez. 2017.
A Model-Driven Approach to Enable Adaptive QoS in DDS-Based Middleware.
IEEE Transactions on Emerging Topics in Computational Intelligence 1, 3 (June
2017), 176-187. https://doi.org/10.1109/TETCL.2017.2669187

[10] J.F. Inglés-Romero and C. Vicente-Chicote. 2011. A Component-Based Architec-
ture Template for Adaptive System Design. In Proc. XVI Jornadas de Ingenieria
del Software y Bases de Datos (JISBD’11). SISTEDES.

[11] J.F. Inglés-Romero and C. Vicente-Chicote. 2013. Towards a Formal Approach
for Prototyping and Verifying Self-Adaptive Systems. In Advanced Information
Systems Engineering Workshops. CAiSE 2013, Soffer P. Franch X. (Ed.). Lecture
Notes in Business Information Processing, Vol. 148. Springer, Berlin, Heidelberg,
432-446. https://doi.org/10.1007/978-3-642-38490-5_39

[12] J. F. Inglés-Romero, C. Vicente-Chicote, B. Morin, and O. Barais. 2010. Using
Models@Runtime for Designing Adaptive Robotics Software: an Experience
Report. In Proc. 1st International Workshop on Model-Based Engineering for Robotics
(RoSym’10), in conjunction with MODELS 2010.

[13] J.F.Inglés-Romero, C. Vicente-Chicote, B. Morin, and O. Barais. 2011. Towards the
Automatic Generation of Self-Adaptive Robotics Software: An Experience Report.
In 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises. 79-86. https://doi.org/10.1109/WETICE.2011.54

[14] J.F.Inglés-Romero, C. Vicente-Chicote, J. Troya, and A. Vallecillo. 2012. Prototyp-
ing component-based self-adaptive systems with Maude. In Proc. XVII Jornadas
de Ingenieria del Software y Bases de Datos (JISBD’12). SISTEDES.

[15] A. Lotz, J. F. Inglés-Romero, D. Stampfer, M. Lutz, C. Vicente-Chicote, and C.

Schlegel. 2014. Towards a Stepwise Variability Management Process for Complex

Systems: A Robotics Perspective. International Journal of Information System

Modeling and Design 5, 3 (2014). https://doi.org/10.4018/ijismd.2014070103

A. Lotz, J. F. Inglés-Romero, C. Vicente-Chicote, and C. Schlegel. 2013. Man-

aging Run-Time Variability in Robotics Software by Modeling Functional and

Non-functional Behavior. In Enterprise, Business-Process and Information Systems

Modeling, Nurcan S. et al. (Ed.). Lecture Notes in Business Information Process-

ing, Vol. 147. Springer, Berlin, Heidelberg, 441-455. https://doi.org/10.1007/

978-3-642-38484-4 31

M. Lutz, J. F. Inglés-Romero, D. Stampfer, A. Lotz, C. Vicente-Chicote, and C.

Schlegel. In press. Managing Variability as a Means to Promote Composability:

A Robotics Perspective. In New Perspectives on Information Systems Modeling and

Design, A. M. Rosado da Cruz and M. E. Ferreira da Cruz (Eds.). IGI-Global.

[18] J. Martinez, A. Romero-Garcés, J. P. Bandera, and A. Bandera. 2011. Nerve: a
lightweight middleware for quality-of-service networked robotics. In Proc. 8th
International Conference on Information Technology: New Generations (ITNG).
655-660. https://doi.org/10.1109/ITNG.2011.116

[19] J. Martinez, A. Romero-Garcés, J. P. Bandera, R. Marfil, and A. Bandera. 2012. A
DDS-based middleware for quality-of-service and high-performance networked
robotics. Concurrency and Computation: Practice and Experience 24, 16 (2012),
1940-1952. https://doi.org/10.1002/cpe.2816

[20] RobMoSys EU H2020 Project. (2017-2020). RobMoSys: Composable Models and
Software for Robtics Systems - Towards an EU Digital Industrial Platform for
Robotics. Retrieved July 2, 2018 from http://robmosys.eu

[21] RoQME Integrated Technical Project. (2018-2019). RoQME: Dealing with non-
functional properties through global Robot Quality-of- Service Metrics. Retrieved
July 2, 2018 from http://robmosys.eu/roqme/

[22] A.Romero-Garcés, J. F. Inglés-Romero, J. Martinez, and C. Vicente-Chicote. 2013.
Self-adaptive quality-of-service in distributed middleware for robotics. In Proc.
2nd International Workshop on Recognition and Action for Scene Understanding
(REACTS 2013).

[23] A. Romero-Garcés, L. Manso, M. A. Gutiérrez, R. Cintas, and P. Bustos. 2011.

Improving the life cycle of robotics components using Domain Specific Languages.

In Proc. 2nd International Workshop on Domain-Specific Languages and models for

ROBotic systems (DSLRob’11). https://arxiv.org/pdf/1301.6022.pdf

C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-Romero, and C. Vicente-

Chicote. 2015. Model-driven software systems engineering in robotics: Covering

the complete life-cycle of a robot. it - Information Technology 57, 2 (March 2015).

https://doi.org/10.1515/itit-2014-1069

S. Sentilles. 2012. Managing extra-functional properties in component-based devel-

opment of embedded systems. Ph.D. Dissertation. Malardalen University. ISBN:

978-91-7485-067-3.

[16

[17

™~
=)

[25

https://twitter.com/roqme_itp
https://www.linkedin.com/groups/12096769
https://www.researchgate.net/project/RoQME-Dealing-with-non-functional-properties-through-global-Robot-Quality-of-Service-Metrics
https://www.researchgate.net/project/RoQME-Dealing-with-non-functional-properties-through-global-Robot-Quality-of-Service-Metrics
https://doi.org/10.1016/j.riai.2012.02.010
https://doi.org/10.1016/j.riai.2012.02.010
http://joser.unibg.it/index.php/joser/article/view/18
http://joser.unibg.it/index.php/joser/article/view/18
https://doi.org/10.1145/3196558.3196562
https://doi.org/10.1145/3196558.3196562
https://doi.org/10.1016/j.scico.2018.07.002
https://doi.org/10.1016/j.scico.2018.07.002
https://doi.org/10.14198/JoPha.2013.7.1.06
https://doi.org/10.14198/JoPha.2013.7.1.06
https://arxiv.org/pdf/1303.4296.pdf
https://doi.org/10.1109/TETCI.2017.2669187
https://doi.org/10.1007/978-3-642-38490-5_39
https://doi.org/10.1109/WETICE.2011.54
https://doi.org/10.4018/ijismd.2014070103
https://doi.org/10.1007/978-3-642-38484-4_31
https://doi.org/10.1007/978-3-642-38484-4_31
https://doi.org/10.1109/ITNG.2011.116
https://doi.org/10.1002/cpe.2816
http://robmosys.eu
http://robmosys.eu/roqme/
https://arxiv.org/pdf/1301.6022.pdf
https://doi.org/10.1515/itit-2014-1069

	Abstract
	1 Introduction
	2 RoQME Overview
	3 RoQME in the Context of RobMoSys
	3.1 Main RobMoSys Tiers, Structures and Roles
	3.2 QoS Engineers in Action

	4 The RoQME Meta-Models
	5 Conclusions and Future Work
	Acknowledgments
	References

