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Abstract  

Business processes are used to represent the enterprise’s 

business and services it delivers. They are also used as a 

means to enforce customer’s satisfaction and to create an 

added value to the company. It is then more than critical to 

seriously consider the design of such processes and to make 

sure that they are free of any kind of inconsistencies. 

This paper highlights the issues with current approaches 

for process verification and proposes a new approach called 

ProVer. Three important design decisions will be motivated: 

1) the use of UML AD as a process modeling language, 2) the 

formalization of the UML AD concepts for process 

verification as well as a well-identified set of properties in 

first-order logic (FOL) and 3) the use of SMT (Satisfiability 

Modulo Theories) as a mean to verify properties spanning 

different process’s perspectives in a very optimal way. The 

originality of ProVer is the ability for non-experts to express 

properties on processes than span the control, data, time, and 

resource perspectives using the same tool. 

Introduction 

Processes, whatever the field (ex. software, military or 

healthcare), are everywhere. They represent the building 

block of any information system nowadays. Business 

processes are used to represent the enterprise’s business and 

services it delivers. They are also used as a mean to enforce 

customer’s satisfaction and to create an added value to the 

company. Software processes are critical as well since they 

represent the guaranty to respect development process’s 

deadlines and to ensure a certain quality of the delivered 

software, which in some cases will end up being the 

company’s information system itself. It is then more than 

critical to seriously consider the design of such processes and 

to make sure that they are free of any kind of inconsistencies.  

 

 

 

 

 

 

 

Inconsistencies can range from very basic syntactical 

errors, to more complex issues such as deadlocks, inconsistent 

allocation of resources and time on process’s activities or any 

proprietary business constraints that might be violated by 

potential process executions.  

Some process models, depending on the business domain (ex. 

Healthcare or military), can be very complex and may contain 

more than 250 activities with very sophisticated control and 

data flows, resource and time constraints [Christov 

14][Simidchieva 10].  Trying to analyze these processes and 

to verify them without the help of a tool would be 

unmanageable. In [Mendling 09], a study demonstrated that 

over 2000 inspected process models, 10% of these models 

where unsound. An equivalent study on SAP repository 

containing more than 600 complex process models 

demonstrated that more than 20% had flaws. [Mendling 06, 

07]. Similarly, Gruhn et al. [Gruhn 07] collected 285 EPC 

(Even-Driven Process Chains) from different sources i.e., 

repositories, scientific papers, thesis, etc., and came to the 

conclusion that even though process models were 

syntactically correct, more than 38% of them were unsound.  

Finally, Vanhatalo et al. [Vanhatalo 07] analyzed more than 

340 Business process models with a focus and the control 

flow aspect to realize that half of them were invalid i.e., 

contained deadlocks or unreachable activities.  

More than 20 years after the introduction of business 

processes, it is quite surprising to realize that, despite the 

different approaches and tools provided by the literature for 

model verification, such ratio of errors still persist in the 

domain of process models. One possible reason could be the 

complexity of some process models and the fact that they 

integrate different perspectives and properties that need to be 

checked, each one requiring a specific tool or approach to 

validate it [Gruhn 06].  

In the following we give a motivating example to explain 

our point.  

 

 

 

 

 

    

 

Figure 1. The ProcessOrder business process example extracted from the UML Specification. 

 



Motivating Example. Process models are mainly driven 

by three perspectives: Control flow, Data flow and Resources. 

In addition, more complexity can be introduced by other 

constraints related to the “Time” perspective as well as to 

some project’s specific business constraints  (ex. some 

resources can be substitutable under some circumstances,  

some activities can be skipped under some conditions, etc.). 

Figure 1 presents an example which highlights process 

perspectives. The notation used is UML Activity diagrams. 

The goal of this process is to manage the reception, 

processing, payment and shipping of customers’ orders. The 

process contains 7 actions connected to control nodes 

(DecisionNode, ForkNode…) and represents the control flow 
perspective. The data perspective is represented through the 

so-called input/output Pins (see notation details in the figure).  

They represent what an action might require to trigger its 

execution or what it might produce as the result of its 

execution. Some organizational aspects/constraints are 

annotated on the diagram such as the resources used by 

actions (ex. BankConnector) and time constraints on top of 

each action in terms of hours. Time units could also be used 

instead. 

One way to validate such process models is to use formal 

verification techniques such as Model-Checking. In the field 

of business processes many approaches have been proposed 

for process verification [Eshuis 06, Wong 07, Liu 07, Trck 09, 

Fahland 09, Van der Aalst 11]. They address essentially what 

it is called soundness properties [Van der Aalst 11]. These 

properties guarantee the absence of deadlocks, unreachable 

activities, and other anomalies that can be detected without 

domain knowledge. However none of these approaches was 

really adopted in the industry [Morimoto 08]. Their 

complexity, the requirement of a mathematical background to 

use them and very often, a lack of a user-friendly tooling 

support was an obstacle for their adoption [Gruhn 06, 

Mendling 09]. But more specifically, let’s illustrate what we 

believe to be an issue in the current approaches and the 

problems we intended to contribute to with our work. In the 

following we categorize the different issues we identified 

after a review of the state of the art in the domain of software 

and business process verification. A detailed review of the 

different approaches (more than 23) is given in [Laurent 18] 

Identified issues in process verification. A major 

point with current process verification approaches is about the 

formalism and tools they rely on for performing the 

verification. Whatever the process modeling language (PML), 

a formal semantics is given to the language by mapping its 

constructs to either variants of automata [Guelfi 05, Eshuis 

06], Petri nets [Van der Aalst 98 & 11, Trcka 09, Fahland 09, 

Jung 10] or process algebra [Wong 07, Liu 07]. However, this 

means that we are relying on the semantics of the targeted 

formal language concepts in terms of expressiveness, e.g. 

Petri Nets, instead of the modeling language itself. For 

instance, if one wants to check the following 

property/constraint: “is the Close Order action always 

executed?”, he can use classical Petri nets to represent the 

process model [Peterson 81]. However, verifying the property 

“is the invoice always produced after the execution of the Fill 

Order action?” (cf. Figure 1), implies using data from the 

system domain and imposes to use Colored Petri Nets 

(CPN)[Jensen 87].  Even if Petri nets, with their different 

variants, can represent anything defined in terms of an 

algorithm, this does not imply that the modeling effort is 

acceptable. Hofstede's and Wohed’s paper [Hofstede 02] 

gives concrete examples of some Workflow Patterns that need 

very complex Petri nets extensions and tricks to represent 

them while this is expressed very naturally in UML Activity 

diagrams (AD) [Wohed 05] or Business Process Modeling 

Notation (BPMN) [OMG 11] which are among the modeling 

languages that support most of the workflow patterns as 

demonstrated in [Van der Aalst 03]. When it comes to the 

properties to be checked on process models, most of the 

approaches focus on the control flow aspect [Van der Aalst 

11b], only a few of them address the data perspective [Awad 

09, Trcka 09, Knuplesch 10] or  the time perspective [Eshuis 

02, Guelfi 05, Watahiki 11]. No approach proposes to address 

all these perspectives in a unified way.  For instance, in the 

process depicted in figure 1, expressing a property such as “is 

it possible to reach the end of the process in less than 8 hours 

while making sure that the invoice artifact is produced and 

without using the BankConnector resource?” would be 

challenging. 

Another obstacle for the limited adoption of formal 

techniques and approaches for process model verification in 

the industry comes from the process modelers’ resistance to 

express process constraints and properties using formal 

languages [Emerson 90, Smith 02, Keleppe 03, Awad 07 & 

08]. Due to the lack of mathematical background, properties 

are usually expressed in natural language and then given to 

experts that will translate these properties into a mathematical 

formalism with the eventual risk of misinterpreting what was 

initially required by the process modeler [Smith 02]. Other 

process modelers would prefer going through the process 

model and double checking it or by adding some exception 

handlers in the process model and extra checks in order to 

make sure that the process is sound. Of course, this is not 

feasible in the case of complex and sophisticated process 

models. These will definitely need a Model-Checking tool to 

ensure that the properties/constraints are satisfied whatever 

the process execution. LTL (Linear Temporal Logic) [Pnueli 

77] or CTL (Computation Tree Logic)[Hafer 87] are usually 

used to express these properties.  

Finally, current approaches and Model-Checking tools 

are not fully integrated to process modeling tools and the 

verification workflow is not always fully automated. Some 

translation steps of the process models and of the properties to 

be checked towards the verification formalism have to be 

done manually in some approaches [Van der Aalst 99, 

Dijkman 08]. Moreover, usually the results of the verification 

in case of a counter-example is found is not explicitly 

reported graphically on the process model so that the process 

modeler can clearly identify the problem. Instead, the existing 



approaches propose a list of states representing the process 

execution that failed.  

In conclusion, the issues we identified during a thorough 

study of the literature for process model verifications are: 1) 

the need to rely on the semantics of a target formal language 

which may limit the expressiveness of process models; 2) the 

inability of current approaches to support the different process 

perspectives (control flow, data flow, time and resources) in a 

unified way; 3) lack of a user-friendly tooling support which 

discourages the use of the current approaches and limits their 

adoption by the industry.  

In the following section we draw the main lines of our 

approach for process verification called ProVer. Three 

important design decisions will be highlighted and motivated: 

1) the use of UML AD as a process modeling language, 2) the 

formalization of the UML AD concepts for process 

verification as well as a well-identified set of properties in 

first-order logic (FOL) and 3) the use of SMT (Satisfiability 

Modulo Theories) as a mean to verify properties spanning 

different process’s perspectives in a very optimal way. 

Section 3 gives more details about the role of SMT in ProVer 

while Section 4 will detail the tooling support and the 

validation aspects. Section 5 concludes this work and draws 

future steps of this contribution 

ProVer: a framework for Process 

Verification 

The traditional approach to achieve the verification of a 

model (a process model in our case) with respect to a given 

property consists beforehand in defining the two entities 

formally: a) the process modeling language concepts and b) 

the properties to be verified.  A process model is then 

submitted to a so-called model-checker tool, which will 

answer the question of (un)satisfaction of the given property 

by the process model.  

In the following sub-sections, we will detail our design 

choices and contributions regarding the ProVer framework. 

UML Activity Diagram formalization for process modeling: 
our choice of UML as PML was mainly driven by the 

following arguments: 

- UML is a standard and widespread modeling language in 

the industry with a mature tooling support. 

- UML AD has proven to be a good candidate as PML in 

many works presented in the literature [Bendraou 10]. 

- UML AD has proven to be one of the most expressive 

languages in terms of satisfying the so well-known 

workflow patterns as presented by [Van Der Aalst 03].  

However, the approach presented here can be applied to any 

PML such as BPMN but a formalization of BPMN concepts is 

required in order to achieve that. This represents the cost to 

adapt our approach to other PMLs.    

One of the main challenges we had to face was that the 

semantics of UML AD is given in natural language in the 

standard specification which could be ambiguous and a source 

of misinterpretations. However, the OMG (Object 

Management Group) issued a new standard called fUML 

(Semantics of a Foundational Subset for Executable UML 

Models) that aims at giving a precise semantics to a subset of 

UML [OMG 11b]. The operational semantics of this subset 

are given in a pseudo java-code which is supposed to reduce 

ambiguity however; there are no mathematical and formal 

representations of this semantics that can be used 

straightforwardly as input to model-checking tools.  

To face this issue, we decided to provide a formalization 

of UML AD semantics based on the fUML specification 

instead of relying on a translation of UML AD towards 

other formalisms such as Petri nets for instance. We aimed 

to define a formal model of fUML using First-Order Logic 

(FOL). The formalization addresses a subset of fUML that 

includes the set of concepts required for process modeling as 

identified in [Bendraou 05]. Current formalizations proposed 

in the literature focus mainly on the control-flow aspects of 

the process preventing to verify many kinds of properties 

related to data-flow, resources and timing constraints [Van der 

Aalst 11]. Therefore, our formalization covers both control 

and data-flow of the process through the use of the UML AD 

notations and takes into account organizational data such as 

resources and time constraints.  

At this aim, we have formally reduced the representation 

of a software process to a vertex-labeled graph. Each graph's 

node corresponds to a UML Activity node according to its 

type (i.e. Control, Executable or Object Node). Each graph's 

arc corresponds to a UML Activity edge (i.e. Control or 

Object Flow). The execution semantics of this formalism is 

based on the notions of states, enabling and firing of 

transitions, similar to those used in the Colored Petri Nets 

[Jensen 87]. To be able to reason about each dimension of the 

process, the formalization covers both control and data-flow 

of the process through the use of the AD notations, and takes 

into account the associated organizational data such as 

resources and timing constraints. We partially published this 

formalization in [Laurent 14] and we extended it for the 

purpose of this work in order to cover more UML Concepts. 

Due to space constraints we can introduce it here but the 

interested reader can find it in [Laurent 18]. 

Once we had formalized the UML AD in FOL, we opted 

for an implementation based on Satisfiability Modulo 

Theories (SMT) technologies. SMT is an area of automated 

deduction that studies methods for checking the satisfiability 

of first-order formulas with respect to some logical theory T 

of interest [Barret 09]. What distinguishes SMT from general 

automated deduction is that the background theory T need not 

be finitely or even first-order axiomatizable, and that 

specialized inference methods are used for each theory. By 

being theory-specific and restricting their language to certain 

classes of formulas (such as, typically but not exclusively, 

quantifier-free formulas), these specialized methods can be 

implemented in solvers that are more efficient in practice than 



general-purpose theorem provers. Typical theories of interest 

include formalizations of various forms of arithmetic, arrays, 

finite sets, bit vectors, algebraic datatypes, strings, floating 

point numbers, equality with uninterpreted functions, and 

various combinations of these. These theories are supported 

by a standard called SMT-LIB 

[http://smtlib.cs.uiowa.edu/language.shtml] and are 

implemented in many efficient solvers (z3, Yices, CVC4, etc.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Categorization of process perspectives and properties: as 

mentioned earlier, the literature addresses essentially what it 

is called soundness properties [Van der Aalst 11] which aim 

to detect some Behavioral issues on process executions vs. 

Syntactical errors. Business processes and more particularly 

software processes are concerned with additional and critical 

constraints related to their human-oriented nature. They imply 

many creative tasks that rely on many factors such as time, 

human agents and resource management. The success of a 

software process depends also on the application of many best 

practices and organizational constraints. We call these 

constraints Organizational properties and we consider them as 

a subcategory of Behavioral properties since a state space 

exploration is required to guarantee their preservation for all 

possible process's executions. They are related to the Time 

and Resource perspectives of a process. Examples of such 

properties are to make sure, for instance, that the process or an 

activity will terminate before a given deadline whatever the 

execution path, make sure that there will be enough agents to 

perform the activities of the process, etc. A detailed 

identification and formalization of such properties are then 

required in order to verify them on process models and to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

integrate them into our process verification tool. 

Once we formalized the UML AD, we also formalized a 

set of process properties that we identified through a detailed 

study of the literature. This set addresses the four process 

aspects introduced earlier (Control and Data flow, Time and 

Resources) plus another one that we called Business 

properties which refers to every project’s specific constraints 

that have to be defined by the process modelers depending on 

the project’s context. This set comes in the form of a library 

of properties described both in natural language and LTL 

which is the logic we have chosen to express our properties 

and which covered all of them in terms of expressivity.  In a 

separate work [Khelladi 15], we also studied the four most 

Category Definition 

(1) Syntactical 

SynWorkflow Syntactical errors on the process (e.g. the source and target of an edge are different) 

SynOrganizational 
Syntactical errors on the organizational part of the process (e.g. the same agent cannot be 
assigned more than one time to the same activity) 

(2) Soundness 

OptionToComplete A started process can always complete 

ProperCompletion No other activity should be running when the process terminates 

NoDeadTransition All the activities must be reachable 

Soundness with data 

MissingData Data is always present when  needed (e.g. no data missing to start an activity) 

UselessData Data created is always used (e.g. no data created but never used before the process ends) 

InconsistentData 
Data can never be in an inconsistent state (e.g. no data modified by multiple activities in 
parallel) 

(3) Organizational 

InTime 
There is enough time to perform the activities (e.g. the process will terminate before X 
hours/days) 

MissingResource No missing resource to start an activity (e.g. there are enough agents to do the process) 

InefficientResourceUse No resources that are inefficiently used (e.g. the agents have always activity to do) 

(4) Business 

ExistenceActivity A is executed more / less / (between) X (and Y) times 

ExistenceTimeActivity A is executed before / after / (between) X (and Y) time unit 

ExistenceTimeData ArtefactA is available before / after/(between) X (and Y) time unit 

ExistenceTimeResource ResourceA is used before / after/(between) X (and Y) time unit 

Relation A is executed before / after / in-parallel / in-exclusion / (between) B (and C) 

RelationData ArtefactA is available before /after / in-exclusion of ArtefactB 

RelationActivityData 
ArtefactA is available before / after/in-parallel / in-exclusion / (between) the execution of B 
(and C) 

LogicBased e.g. Existence(A) implies Existence(B) else Existence(C) 

…. e.g. Existence(A) implies (ExistenceData(ArtefactA) and ExistenceData(ArtefactB)) 

Table 1. Overview of the software properties we identified 

http://smtlib.cs.uiowa.edu/language.shtml


used software development methods namely RUP, SCRUM, 

XP and KANBAN in order to extract from each of them, a set 

of best practices and constraints that should be enforced 

during the development process. This resulted in a ready-to-

use library of constraints that we integrated to our process 

modelling and verification tool so process modelers can 

annotate their process models with one of these 

properties/constraints to make sure that the process model 

doesn’t violate any of them.  

Table 1 depicts the set of properties we identified and 

their categorization.  

Now that we have introduced the formalization of both the 

PML and the properties, the next sub-section gives an 

overview of the ProVer tool.  

Overview of the approach. In this section, we briefly 

highlight the different steps required to run a process model 

verification using ProVer, then we present its internal 

architecture and the steps we followed in order to build this 

framework.  

First, the process modeler needs either to design a process 

model or to import an existing one (see (1) in figure 2). In our 

tool, UML AD is used as a process modeling language. 

Secondly, the process modelers can choose among the library 

of predefined properties proposed by ProVer and which 

covers different process perspectives (Control/ Data flow, 

Time or Resources).  This is done either by checking boxes 

(see (2.a) in figure 2) or by using an annotation-based 

language we defined in [Khelladi 15] (see (2.b) in figure 2). 

Process models and the properties are then translated into 

SMT specification which implements the semantics of UML 

AD as defined by our FOL formalization and based on the 

fUML standard (see (3) in figure 2). The SMT solver 

performs the verification (see (4) in figure 2) and if a counter-

example is found, this is highlighted in the process model 

editor on the process model in red with a message of the 

unsatisfied property (see (5) in figure 2).   

As we can see in the figure, the steps we followed in order to 

realize ProVer were 1) formalization of UML AD semantics 

as well as the set of properties in FOL; 2) implementation of 

the UML AD / Properties semantics and UML AD syntax in 

SMT; 3) implementation of the translations from UML AD/ 

Properties specifications => SMT; 3) graphical integration of 

the result into the process model editor.  

In the following sections we will zoom-in SMT choice 

and the translation details. We will give examples of some 

concepts and properties expressed in SMT before to present 

the graphical interface of our tool. A user guide of the tool 

presenting all the details of the GUI is given here 

[Bendraou16]. 

Use of SMT for process verification  

The verification process that we adopted is the well-

known Bounded Model Checking (BMC) procedure 

[Clarke01]. Classically, this procedure inputs, 1) an initial 

state (for the system), 2) the transition relation, 3) a property 

to verify and, 4) a length bound k, then outputs the 

(un)satisfaction of the of system w.r.t the property up the 

bound k.  

The implementation of such a procedure is done by 

constructing a logical formula that is satisfiable if and only if 

the underling transition system can realize a sequence of k 

state transitions that satisfy the property. If such a path 

segment cannot be found at the given length k, the search 

continues for larger k. The procedure is symbolic, i.e., 

symbolic Boolean variables are utilized; thus, when a check is 

done for a specific path segment of length k, all path segments 

of length k are being examined. The formula that is formed is 

given to a satisfiability solving program and if a satisfying 

assignment is found, that assignment is a witness for the path 

segment of interest. 

 

Figure 3. A process model with UML AD representing a 

selling process 

If the formula is propositional and not very large then a basic 

Boolean SAT-solver can solve it efficiently. Things become 

more complicated when the formula is FOL! Actually, a first 

attempt to solve such formula is to transform it to 

propositional one and use SAT-solvers. However, this 

transformation is memory and time consuming and, most of 

all degenerative! For example, when comparing two 32-bits 

integer variables, we have to use 64 binary variables and 

compare them bitwise. So, the approach will have serious 

efficiency issues when the treated models are large.  

The other option is to explore Satisfiability Modulo Theories 

(SMT). This area handles FOL formulae directly by use of 

simple transformation based on the SMT-LIB standard 

[Barret 15]. The SMT option seems to be very promising and 

is strengthened by the results obtained by SMT-solvers in the 

last SMT competitions (2014 and 2015). 

 

Figure 2. ProVer: overview of the approach 

http://smtcomp.sourceforge.net/2014/
http://smtcomp.sourceforge.net/2015/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Architecture of the ProVer tool 

 Actually, solvers, like z3 (form Microsoft), Yices  (from 

SRI International), show their ability to solve very 

complicated problems (from both academic and industrial 

worlds) in a reasonable time.  

To give an idea on the effectiveness of our SMT-based 

approach, we use an example representing a selling process 

(see Figure. 3). The process includes 7 activities and 4 

decision nodes (one from each type).  Table 2 shows some 

results comparing our SAT-based approach (implemented in 

Alloy4SPV [Laurent 14b]) with respect to the SMT-based 

one. The first column of Table 2 represents the checked 

properties, while the second highlights the execution time (in 

seconds) with Alloy4SPV. The third column mentions the 

execution time of our ProVer tool (SMT-based) and the last 

column exhibits the result of the verification. We can clearly 

notice here the efficiency of our SMT-based approach just by 

looking the speed up we obtain for each property. 

The results obtained so far are very interesting i.e. 64x 

faster in the example shown above and up to 92x faster for 

some properties verification on another example, the OpenUP 

process, not presented here. The next section gives more 

details about ProVer architecture. 

Tooling support: architecture and 

validation. 

The architecture of our tool is highlighted in Fig. 4. It is based 

on the two classical layers: the front-end and the back-end. 

The former allows the interaction with the final user in a 

friendly graphical way. It inputs the UML AD representing 

the business process as well as the properties to be analysed. 

It outputs the result of the verification. The Obeo UML Tool 

component is dedicated to the input of the studied process 

model and the output of the verification result, while the 

FUML AD Verification plugin component deals with the input 

of the properties to be verified. It is worth noting that no 

mathematical background is needed to operate these inputs 

and interpret the results. All the properties can be selected 

through an integrated and ready to use library of properties. 

   

 

Property Alloy4SPV ProVer Speed Up Result 

Check Completion   24 0.8 30 Verified 

Run Completion   33 1.5 22 Model Found 

Check Total Time 6 154 2 64 Verified 

Run Total Time 6 63 2 23 Model Found 

Check Existence Reserve 

Stock = 0 
20 2 10 

Counter Example 

Found 

Run Existence Reserve 

Stock = 0 
22 1 22 Model Found 

 

Table 2. Alloy approach (Alloy4SPV, with Alloy Analyzer) Vs. SMT-based approach (ProVer with z3 solver), 

performance for properties expressed on the process on figure 3. 
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Due to space limit we can’t present in details the GUI of the 

tool but a user guide can be found here [Bendraou 16]. A 

java-like annotation language has also been developed to ease 

the specification of customized properties [Khelladi 15]. 

The two other components are FOL2SMT Translator and the 

SMT-solver components form the back-end. The former is the 

heart of the tool. It implements the verification request of the 

user as a FOL formula that is written in the SMT-LIB 

language. The produced SMT problem is then submitted to 

the SMT-solver component that resolves it. The result of that 

resolution is a feedback that is directly highlighted in the 

process model editor tool in a user friendly way. If the 

property is violated then an example (a path) of such a 

violation is highlighted.  

Since the most complicated part in our tool is the one 

dedicated to the translation of a FOL formula to the SMT-LIB 

language, let us give some hints about its implementation by 

mean of a very simple example. 

Consider the 

AD element of 

figure 5. It is a 

decision node 

(called Dec), that 

inputs the XtoDec 

arc and outputs two 

arcs: DecToY and 

DecToZ. According 

to the semantics 

defined in [Laurent 14], the execution of such a node 

considers two situations: (i) the node is ready to start; (ii) the 

node is ready to finish. The former case is identified by the 

presence of a token on the input arc and the absence of any on 

the decision node. In this case, the resulting action consists in 

moving the token from the input arc to the node. The later 

case is formalized by the presence of token on the decision 

node. Here, the resulting action is to move the token from the 

node to one of the outputs (chosen arbitrarily). 

If we note by enableStart(Dec, t) the predicate that 

represents the case (i) at time stamp t and enableFinish(Dec,t) 

the predicate that represents the case (ii) at time stamp t, then 

using the SMT-LIB language we can write:  

- enableStart(Dec,t)=(and (>(select XToDec t)    

                      0) (=(select Dec t)0) 

- enableFinish(Dec,t) = (>(select Dec t)0) 

 

Actually, Dec, XtoDec, DecToY and DecToZ are 

represented as arrays of integers indexed by integers. Each 

entry of these arrays defines the “marking” (number of 

tokens) of the element at the given time stamp. For example, 

(select Dec t) returns the marking of Dec at time t. 

Similarly, if we consider fireStart(Dec,t) as the predicate 

that starts the execution of the decision node at time stamp t, 

while fireFinish(Dec,t)  the one that terminates its execution, 

we obtain the following encoding:  

 

- fireStart(Dec,t) = (and (= (select XToDec (+ t 1)) 

(- (select XToDec t) 1)) 

 ; Remove a token from XToDec 
(= (select Dec (+ t 1)) (+ (select Dec t) 1)) 

 ; Add a token to Dec 

(= (select DecToY (+ t 1)) (= (select DecToY t) 1)) 

; Between t and t+1 instants the marking  

  of DecToY must remain the same 

(= (select DecToZ (+ t 1)) (= (select DecToZ t) 1)) 

 ; Between t and t+1 instants the marking 

   of DecToZ must remain the same ) 

 

- fireFinish(Dec,t) = (and (= (select Dec (+ t 1)) 

(- (select Dec t) 1)) 

 ; Remove a token from XToDec 
(= (select XtoDec (+ t 1)) (select XToDec t)) 

 ; Between t and t+1 instants the marking  

           of XToDec must remain the same 
(or (and (= (select DecToY (+ t 1)) 

  (+ (select DecToY t) 1)) 

         (= (select DecToZ (+ t 1))  

         (select DecToZ t)))  

 ; Move the token to DecToY (choice 1) 

    (and (= (select DecToY (+ t 1))  

  (select DecToY t))       

         (= (select DecToZ (+ t 1))  

         (+ (select DecToZ t) 1)))  

 ; Move the token to DecToZ (choice 2) 

 )) 

Actually, we operate such a transformation for all 

elements of AD that are necessary for the modeling of 

business processes. The implementation of this transformation 

needed nearly 2000 lines of code in java. 

Conclusion  

The most important contributions of this work are (i) the 

identification of a reusable and configurable library of 

properties addressing all the process aspects (control, data 

flow, time and resources), (ii) the formalization of this 

library as well as the UML AD semantics in first order 
logic. This makes these definitions reusable for any other 

purposes such as the mapping to other model-checker 

formalism. In our case we opted for SMT theories.  

The second undeniable contribution is the integration 

and the verification of all process perspectives in a unified 

and integrated way thanks to our formalization and of our 
use of SMT theories, within a user-friendly tool for process 

verification and execution. This framework has been adopted 

by our MeRGE industrial partners (European project) 

[MeRGE 12] and integrated to the MeRGE platform, an EMF 

eclipse framework for the development of safety critical 

systems.  

Regarding our feedback using SMT for process 

verification it can be summarized in the following points: (1) 

handling complex constraints in a compact way, hence saving 

memory; (2) treating specific constraints with dedicated 

algorithms, hence saving time. 

We are currently working on the validation of our 

approach on bigger process models from the Healthcare 

domain (more than 200 activities). We are also investigating 

the difference in performance according the property checked 

and the solver used. Indeed, in our experiments, the 

verification time for some properties was different from one 

solver into another.  

Figure 5.  A decision node in an AD  
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