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Abstract. Scenario-basedmodeling (SBM) is an approach for creating executable
models for reactive systems where each artifact specifies a separate aspect of over-
all system behavior. SBM has many advantages, including structural alignment
with requirements, intuitiveness and incrementality, and it is available in visual
languages (e.g., LSC), textual languages (e.g., Java, C++) and DSLs (e.g., SML).
In this position paper, we argue that endowing the Statecharts visual formalism
with SBM capabilities can significantly benefit software and system engineering,
enhancing intuitive visualization of specifications and designs, and their scalabil-
ity and amenability to formal verification. We demonstrate the position by amal-
gamating Statecharts and SBM within the YAKINDU Statechart Tools.

1 Introduction

Scenario-based modeling (SBM) [2, 8, 10], also termed scenario-based programming
(SBP) and behavioral programming (BP), is an approach for creating executable mod-
els of reactive systems, such that each artifact (i.e., scenario) describes a separate aspect
of the overall system behavior. Such scenarios can specify allowed, mandatory and for-
bidden behavior. New and refined requirements are often added incrementally in new
artifacts, with little or no change to existing ones. The full system consists of the col-
lection of these scenarios, taken together, either as is or transformed into code. SBM’s
advantages also include alignment of the codewith the requirements, ease of understand-
ing for a human reading the model or the code, the ability to directly execute the intuitive
models, amenability to formal verification (see, e.g., [5]) and even succinctness of the
formal representations as compared to alternatives (see, e.g., [6]). The syntax, semantics
and an implementation of the approach were first introduced in [2, 8], with the graphi-
cal language of live sequence charts (LSC) and the Play-Engine tool. SBM was subse-
quently generalized and implemented in standard procedural languages, such as Java, C,
C++ and JavaScript, in functional languages like Erlang, in the graphical block-oriented
language Blockly and in textual modeling DSLs like SML/SCENARIOTOOLS.

An SBM scenario is often inter-object, involving behavior flow across multiple com-
ponents. It thus may be contrasted with object-oriented or object-centric approaches for
designing systems, based on each class’s reactions to stimuli received from the environ-
ment and from other components.

A widely accepted visual formalism, which has been shown to be particularly suit-
able for object-oriented design (OOD), is Statecharts [4]. In various modeling environ-
ments there were elements that enabled integrating SBM with OOD and, in particular,
with Statecharts. For example, in IBM’s MDE tool Rational/Rhapsody, object behaviors



can be modeled in the Statecharts while scenarios depicted in sequence diagrams can
monitor that behavior. In [1], the Play-Engine and Rhapsody were actually integrated to
exchange messages, and in [9] statecharts-based modeling was embedded and integrated
within the PlayGo [7] LSC development environment, where LSCs and statecharts co-
exist with fully defined composite semantics.

In this paper, we present a novel approach to integrating intra-object OO design with
inter-object scenarios, by enhancing the syntax and semantics of the Statecharts formal-
ism with SBM features. In Sec. 2, we present the main features of Statecharts and SBM
and our research goals, namely, valuable SBM capabilities that we wish to propagate to
Statecharts, and valuable Statecharts capabilities that were absent heretofore from ex-
isting SBM implementations. In Sec. 3, we describe a prototype implementation and its
execution semantics as carried out by endowing the YAKINDU Statechart Tools of itemis
corporation with SBM features. In Sec. 4, we illustrate the implementation via a small
rocket-control simulator and game, and in Sec. 5, we conclude and discuss next steps.
In the Appendices we extend the discussion of the example and the implementation in
Yakindu, and lay the groundwork for the next research steps of this emerging language
in outlining the key semantic and syntactic considerations.

2 Rationale for Amalgamating Statecharts and Scenarios

Statecharts were introduced in [4] as a visual formalism, in which complex behavior of
reactive systems can be captured succinctly and intuitively. The key contributions over
classical state machines were: behavioral hierarchy, represented as topological state
containment; orthogonality of concurrent behavior, represented as side-by-side state
machines; and state awareness, i.e., the ability to condition a transition upon another
state machine being in a particular state. The Statetcharts formalism comes with formal
semantics, and specifications are directly executable—enabling generation of prototype
simulators and of the code of final system components. The HumanPilot region in Fig. 1
shows hierarchy and orthogonality3. Statecharts exist in leading development suites, in-
cluding STATEMATE, Rhapsody [11], MATLAB/Simulink and SCADE and it is the
formalism of choice for describing behavior dynamics in the OMG UML [13].

In SBM, each scenario describes an aspect of, or a requirement concerning, overall
system behavior. The scenarios run in parallel and constantly present declarations of re-
quested events, i.e., events that should be considered for triggering, blocked events, i.e.,
events whose triggering is forbidden, and events that the scenario neither requests nor
blocks, but wishes to be notified when they occur. An infrastructure execution mecha-
nism repeatedly synchronizes all scenarios, selects an event that is requested by some
scenario and is not blocked by any scenario (termed an enabled event), and notifies all
scenarios that requested that event or are waiting for it. These scenarios then resume
execution, and can change their state accordingly, including declarations of requested,
blocked and waited-for events. All scenarios are resynchronized and the process repeats.
When no event is enabled, the system waits for an external environment event. Sensor
scenarios or external code translate environment events and conditions into SBM events
3 Please zoom-in on screen. The CR version will have larger font sizes, for printed copies.



that the model can react to, and actuator scenarios can translate SBM events into actual
environment effects, by waiting for a given event (e.g., MoveForward) and calling an
appropriate external environment API (e.g., a method that sets a motor object’s speed).

The Statecharts-SBM amalgamation is motivated by research questions and engi-
neering requirements that are part the general pursuit of making system development
faster, cheaper, and with better quality: (a) In Statecharts, enable specification of excep-
tions and refinements to already-specified behavior in an incremental manner; i.e., add
orthogonal state machines with little or no change to existing ones (SBM event blocking
is a key contributor to this capability); (b) In the otherwise-flat SBM specifications, add
hierarchy and containment, e.g. for organization and for managing context-dependent
constraints (see also [3]); (c) In SBM, add the state-awareness ability that exists in Stat-
echarts to explicitly condition a behavior upon the then-current state of another behavior;
(d) Leverage in the amalgamated formalism the amenability of SBM to scalable com-
positional verification [5]. These goals come, of course, with challenges, like the risk of
sacrificing the intuitive nature of a scenario when encoding it in statecharts.

3 Implementation and Semantics

Our implementation is based on the open-sourceYAKINDUStatecharts Tools (YSCT) [12].
The solution’s key aspects are:

Hierarchical declaration of requested and blocked events. Each Statecharts state
has now two additional properties (entered via the GUI editor): a set of requested events
and a set of blocked events. The full sets of requested and blocked events when the system
is at a given state s are the union of the respective sets in all the states containing s.

SBM-style event triggering. The Statecharts execution engine is modified as fol-
lows. A superstep begins when the statechart processes an external (environment) event
or one that was explicitly raised within the statechart. The execution engine then chooses
an enabled event— i.e., one that is requested by at least one active state and is not blocked
by any active state — triggers it, and reacts to it using the normal Statecharts semantics
based on transition labels. This process repeats until there are no more enabled events.
The system then starts a new superstep by processing from its queue the next event that
was triggered by the environment or explicitly raised by the statechart during the preced-
ing superstep. If this queue is empty, the system waits for the next environment event.

4 An Example

We illustrate our implementation and semantics, using a small rocket-landing game/simulator
(see Fig. 1): A rocket descends by gravity towards the ground or sea, aiming to land
exactly on a landing pad. The user can choose between auto-pilot simulation or human-
pilot control. A human pilot/player can press right/left buttons to shift the rocket ac-
cordingly in order to position it above the landing pad before it touches the surface. The
entire landing area is curbed by two vertical walls. An adversary, e.g., ocean waves, arbi-
trarily shifts the landing pad, and the player has to re-adjust the rocket’s position accord-
ingly. In Auto-pilot mode an SBM-modelled controller issues the same right/left



commands (for a related real-world control problem see, e.g., the SpaceX successful
ocean landing at https://www.youtube.com/watch?v=lEr9cPpuAx8).

Fig. 1: The rocket-landing game and a portion of its statechart.

The application’s scenarios shown in Fig.1 are the orthogonal regions of player con-
trols, movement actuators, the constraining walls’ effects, win/lose/pause handling, and 
adversary behavior. The gravity force, autopilot behavior, landing detection and switch-
ing between human and auto-pilot modes, are shown in Appendix A.

Notice the introduction of SBM capabilities, where, e.g., human-pilot scenarios move 
the rocket unconditionally and they are composed with separate wall behavior that blocks

https://www.youtube.com/watch?v=lEr9cPpuAx8


this motion when needed. Likewise, when the rocket reaches the surface, all motion
events are blocked. In addition, scenarios can be aware that their requests may not be
granted, and withdraw them if they deem them to no longer be relevant (e.g., by labeling
the transition exiting the requesting state also with a timeout or with an opposite move
event). Here, this avoids an uncalled-for future rocket motion towards the wall, after
moving away from the wall such that the event is no longer blocked.

Note also SBM’s use of Statecharts features, like transitions based on Statecharts’
state awareness, (e.g., from Playing to Won or Lost, based on the landing-detection
state), and the hierarchical propagation of blocked events (e.g, in Inactive). A more
detailed analysis of the SBM-Statecharts amalgamation appears in the appendix.

5 Discussion and Future Work

Wehave shown thatmerging scenarios and Statecharts is possible, and have argued that it
is promising. In the Appendix, we analyze additional features, e.g., that transitions from
a state that contains other states can be used to implement the classical break function
(termed cold violation in SBM), and provide the basis for future enhancement of State-
charts with additional SBM-related features, like strict event ordering, and specification
of liveness properties (SBM’s hot and cold) for execution control and verification. We
plan to also evaluate the amalgamation’s benefits empirically, and to study its formal
succinctness properties as compared to those of Statecharts and SBM alone.
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Appendices - Supplemental Material

Appendix A. Discussion of Demonstrated Statecharts and SBM Features

Fig. 2: Gravity, landing detection and auto-pilot statecharts.

Figs. 1, 2 and 3 depict the rocket-landing game Statechart almost in its entirety. 
Omitted are the similar handling of left movements and wall, and actuation of the gravity 
and adversary. We hope that the statechart diagrams are indeed self explanatory, as a 
model is expected to be, and add here some notes to draw attention to particular details 
and special properties of the SBM-Statecharts amalgamation.

Hidden components. The code that is not shown includes: the rendering of the 
game UI with rocket and landing pad location and movement, and the external sensor 
that listens to user controls and translates them into behavioral events.

Dynamic scenario instantiation. When the user activates and deactivates human 
pilot mode, the transition into the respective humanPilot On state respectively activates 
(i.e., instantiates), the scenarios that react to the player’s control, illustrating one of the 
ways in which Statecharts can very intuitively introduce context-orientation into SBM 
(which SBM presently solves with dynamic object binding).

Incrementality. Aside from having developed this application incrementally, adding 
the autopilot and adversary behaviors with little or no change to existing scenarios, note



Fig. 3: Pilot mode switching statechart.

how new obstacles, e.g., rockets or mountains can be added incrementally, and how they 
can simply block the movement of the rocket upon additional conditions. Or, the rocket 
movement events could be requested by additional behaviors, say of engines or wind.

SBM’s event unification in Statecharts. In SBM semantics, when an event that is 
requested by more than one scenario is triggered, all scenarios that requested it are re-
sumed, and all observe this one occurrence of the event. If the intent is that the event will 
have separate occurrences per the requesting scenarios, the engineer must distinguish 
these events, e.g., by some parameter. This provides an added capability, compared with 
standard Statecharts semantics, where each execution of a raise <event> command 
results in a a separate, new, triggering of that event (note however that, some Statecharts 
implementations do support one triggering of an event per superstep).

State-awareness in SBM. The transition from the Playing to GameEnded is depen-
dent not on internal events, but on awareness of whether other parts of the statecharts 
are in the states crashed or landed. In other SBM language in order for such status 
to be available to other components, it would have to be kept explicitly by the applica-
tion in a dedicated variable, while in Statecharts it is readily available as a state. Clearly,



Statecharts-like system-wide reflection by which a system component can discover the 
internal states of other components may undesirably break the otherwise-important en-
capsulation principle. However, with proper methodologies such reflection can enable 
system enhancements (perhaps ‘patching’) when, (a) one cannot modify existing code 
and (b) the referenced internal states indeed belong in the target component’s interface.

Context Orientation in SBM. Note, e.g., the collective blocking of movement events 
during the scenarios contained in state/context SwitchPilotMode, or in all the states 
contained in the Inactive state which is reached when the game ends or is paused.

Explicit states in SBM. One of the attractive properties of SBM, say, the LSC lan-
guage, is the ease with which one specifies sequential procedures like “S1: After events 
E1, E2, E3 occur in that order, do actions A1, A2, A3, A4, in that order”. When written 
in Statecharts, the eight states of this executable scenario have to be specified explic-
itly. While this may seem excessive, this becomes valuable when considering reflection 
or strict ordering. E.g., at run time, another scenario S2 is able to inquire whether S1 
has reached the actions segment or not, and react accordingly. The explicit states can 
also connect execution traces and formal verification results with program states that 
the engineer is already aware of, and that are not only derivatives of internal structures.

Intuitive break. In SBM, when a forbidden or interrupting event occurs in a cold 
state, the scenario (or a subchart) is simply exited. This is termed a cold violation, and is 
similar to a break statement in procedural programming. In other SBM languages the 
list of events that can cause a cold violation at a given state may not be obvious. With 
the SBM-Statecharts amalgamation this becomes clear, through the explicit and succinct 
labels of transitions exiting the given state or any state hierarchically containing it.

Retention of native Statecharts design choices. In the amalgamated solution engi-
neers still have the choice of using pure object-oriented and Statecharts-specific features 
that may otherwise be ‘against the grain’ of SBM. E.g., in the rocket game, the auto pilot 
is driven by changes in object data and not by SBM events (though in LSC this is pos-
sible too). Another example are the transition arrows in pause-unpause or pilot-mode-
switching scenarios that cross the boundaries of the containing state, where in SBM 
exiting arrows would begin at the perimeter of relevant context state, and transitioning 
into a specific internal behavior state would be specified by marking an initial states, and, 
when there is more than one, creating orthogonal behaviors. Developing design patterns 
and methodological recommendations for such choices are a future endeavor.

Appendix B. YAKINDU Implementation Specifics

This proptotype of an SBM extension to Statecharts is implemented using the YAKINDU 
Statechart Tools (YSCT) and consists of two parts: a language extension that supports 
the declaration or requested and blocked events and a runtime extension that processes 
SBM events. While YSCT has commercial components these extensions are all within 
YSCT’s open-source core.

The Statechart Language Extension. Two statement types, block and request, were 
added to the textual behavioral description of states extending YSCT’s standard stat-
echart language definitions ( see the YSCT l anguage documentation in www.itemis. 
com). This language consists of a set of modular meta-models and syntax definitions 
that completely cover the graphical and textual parts. Like any textual notation in YSCT

www.itemis.com
www.itemis.com


the additional statements are defined using a  meta model f ragment t hat specifies the 
abstract syntax and a set of grammar rules that define the concrete textual syntax. Both 
parts are pure extensions to the underlying YSCT meta models and grammar definitions, 
hence all statechart language concepts are still available also in combination with SBM.

The Statecharts Runtime Extension. The runtime extensions are implemented in 
YSCT Java code generator (Yakindu also supports C and C++). The code generator relies 
on the new language concepts to calculate requested and blocked event sets and imple-
ments the event triggering mechanism according to the defined semantics (see Sec. 3). 
A comparable addition also to YSCT’s model interpreter infrastructure, which is used 
for direct simulation of statecharts, is deferred for future work.

SBM Statechart Domain. YAKINDU Statechart Tools support the concept of Stat-
echart Domains which are pluggable extensions that allow the definition o f domain-
specific statecharts and statechart dialects. Statechart domains may contribute extensions 
and substitutes to various parts of the statechart language, type system and type infer-
rer, validation rules, execution semantics, interpreter, and code generators. The current 
extensions are implemented in a separate statechart domain.

Internal vs. External Extension. The current implementation addresses statechart 
internal concepts and concepts that are part of the statecharts external interface are not 
covered. This will become necessary as soon as the implementation has to support SBM 
concepts across multiple statecharts. Then, the requested and blocked event sets and state 
information for state-awareness must be added to the statecharts’ public interfaces and to 
the new event triggering mechanism which which might have to be implemented outside 
of the statecharts. Another consideration in this case would be adopting for YSCT the 
distributed SBM execution semantics.

Appendix C. Next-steps blueprints

In this section we discuss the various considerations that affect the syntactic and seman-
tics decisions to be taken when further extending the amalgamation of Statecharts and 
SBM in YAKINDU as well as in other platforms.

Must vs. May. In some SBM languages (e.g., LSC) scenario states can be tagged 
as hot or cold meaning where if scenario that is in a hot state must eventually transition 
into a cold one. If in this state the only declaration is that of one requested event, then 
this means that this event must happen (In the PlayGo LSC tool, the hotness/coldness 
of states is derived from the hot/cold annotation of the requested and waited for events). 
States being hot or cold affects both run-time event selection and the determination of 
whether a run complies with the (liveness properties of the) specifications. While adding 
hot/cold annotation to states and/or transitions in YAKINDU would be straightforward, 
the semantics is more delicate. One possibility is to add hot/cold annotation only to states 
(an not to transitions) and prioritize selecting enabled events that exit a hot state over 
ones that exit a cold state.

Idioms for dealing with time. In Statecharts and in LSCs and some BP implemen-
tations, time is a separate entity with its own idioms. In addition, user-written code can 
create events indicating periodic time ticks or the passing of desired time durations. It 
is yet to be determined what features are really necessary for development productivity 
and for verifiability of the models.



Waiting for a state’s own requested events. In most SBM implementations, when
a scenario requests an event, it is notified when the event is triggered. In the SBM-
YAKINDU amalgamation, we captured requested events as a state property, creating
some redundancy with the transition labels, which include all events that the scenario
should be notified about in that state. The redundancy may be eliminated by noting the
requested events only on the respective transitions, and having distinct notation for events
that are requested (and waited for) and for those that are only waited for.

Strict event ordering. In LSC and SML, one can annotate a scenario as strict mean-
ing: (a) if an event mentioned in this scenario is triggered out of order (for this scenario)
as driven by the environment or by another scenario, this scenario exits; (b) if a sce-
nario is in a hot state then all events mentioned in the scenario which are not enabled are
considered forbidden and cannot be triggered by other scenarios, and if such an event is
triggered by the environment (as this cannot be blocked), a hot violation occurs. Note
that events that are not specified in the scenario can occur at any time, and the scenario
is oblivious to them. A similar function can be readily added to the Statecharts execution
semantics, however, one needs to carefully determine the scope of the strictness, e.g.,
how to treat a request by a containing state, when the contained behavior is in a hot state.

Automatic generation of Statecharts from Natural Language (NL). The existing
NL LSC interface that formalizes NL requirements (like “when the driver presses the
brake pedal, the car slows down”) as executable LSCs can be adjusted for also creating
Statecharts. Note that, additionally, one can describe multiple transitions in the same
statechart in multiple sentences of the form “when the car is in State Driving, and
event pressPedal occurs, then the car transitions into state slowingDown”. The NL
specification may be tied to existing textual descriptions of statecharts like SCXML [14]
together giving engineers a choice of both visual and textual specifications.

Multi-statechart support. The rocket-landing example one statechart, divided into
regions. Applications that usemultiple statecharts can presently be developed inYAKINDU
by adding application-specific glue code. It is our plan to add to YAKINDU’s GUI edi-
tor and execution visualizer native support for multiple Statecharts (similar to what was
done in the PlayGo tool in in [9]).

Distributed and dynamic environments. We plan to add demonstration multiple
concurrent flows that are instantiated dynamically and are associated with a dynamic
object model where objects appear and disappear, and the events carry additional data.
Such capabilities were already shown in SBM natively in BP in PlayGo and SML as well
as in [9] in the tight-coupling SBM and Statecharts, hence it should be straightforward
to extend it to the amalgamated solution.
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